299
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Promising antibacterials for LLM of Staphylococcus aureus using virtual screening, molecular docking, dynamics, and MMPBSA

, , & ORCID Icon
Pages 7277-7289 | Received 08 Apr 2022, Accepted 25 Aug 2022, Published online: 08 Sep 2022

References

  • Abraham, M. J., & Gready, J. E. (2011). Optimization of parameters for molecular dynamics simulation using smooth particle‐mesh Ewald in GROMACS 4.5. Journal of Computational Chemistry, 32(9), 2031–2040. https://doi.org/10.1002/jcc.21773
  • Berendsen, H. J., Postma, J. v., van Gunsteren, W. F., DiNola, A., & Haak, J. R. (1984). Molecular dynamics with coupling to an external bath. The Journal of Chemical Physics, 81(8), 3684–3690. https://doi.org/10.1063/1.448118
  • Berger-Bächi, B., Strässle, A., Gustafson, J. E., & Kayser, F. H. (1992). Mapping and characterization of multiple chromosomal factors involved in methicillin resistance in Staphylococcus aureus. Antimicrobial Agents and Chemotherapy, 36(7), 1367–1373. https://doi.org/10.1128/AAC.36.7.1367
  • Couto, I., Melo-Cristino, J., Fernandes, M. L., Garcia, T., Serrano, N., Salgado, M. J., Torres-Pereira, A., Sanches, I. S., & de Lencastre, H. (1995). Unusually large number of methicillin-resistant Staphylococcus aureus clones in a Portuguese hospital. Journal of Clinical Microbiology, 33(8), 2032–2035. https://doi.org/10.1128/jcm.33.8.2032-2035.1995
  • Dalal, V., Golemi-Kotra, D., & Kumar, P. (2022). Quantum mechanics/molecular mechanics studies on the catalytic mechanism of a novel esterase (FmtA) of Staphylococcus aureus. Journal of Chemical Information and Modeling, 62(10), 2409–2420. https://doi.org/10.1021/acs.jcim.2c00057
  • Dalal, V., Kumar, P., Rakhaminov, G., Qamar, A., Fan, X., Hunter, H., Tomar, S., Golemi-Kotra, D., & Kumar, P. (2019). Repurposing an ancient protein core structure: Structural studies on FmtA, a novel esterase of Staphylococcus aureus. Journal of Molecular Biology, 431(17), 3107–3123. https://doi.org/10.1016/j.jmb.2019.06.019
  • Dalal, V., Dhankhar, P., Singh, V., Rakhaminov, G., Golemi-Kotra, D., & Kumar, P. (2021). Structure-based identification of potential drugs against FmtA of Staphylococcus aureus: Virtual screening, molecular dynamics, MM-GBSA, and QM/MM. The protein journal, 40(2), 148–165.
  • Dallakyan, S., & Olson, A. J. (2015). Small-molecule library screening by docking with PyRx Chemical biology (pp. 243–250). Springer.
  • De Lencastre, H., De Jonge, B., Matthews, P. R., & Tomasz, A. (1994). Molecular aspects of methicillin resistance in Staphylococcus aureus. The Journal of Antimicrobial Chemotherapy, 33(1), 7–24. https://doi.org/10.1093/jac/33.1.7
  • DeLano, W. L. (2002). The pymol molecular graphics system (2002). http://www.pymol.org
  • Dhankhar, P., Dalal, V., Mahto, J. K., Gurjar, B. R., Tomar, S., Sharma, A. K., & Kumar, P. (2020). Characterization of dye-decolorizing peroxidase from Bacillus subtilis. Archives of Biochemistry and Biophysics, 693, 108590. https://doi.org/10.1016/j.abb.2020.108590
  • Dhankhar, P., Dalal, V., Singh, V., Sharma, A. K., & Kumar, P. (2021). Structure of dyedecolorizing peroxidase from Bacillus subtilis in complex with veratryl alcohol. International Journal of Biological Macromolecules, 193, 601–608.
  • Dhankhar, P., Dalal, V., & Kumar, V. (2021). Screening of Severe Acute Respiratory Syndrome Coronavirus 2 RNA-Dependent RNA Polymerase Inhibitors Using Computational Approach. Journal of Computational Biology, 28(12), 1228–1247.
  • Dhankhar, P., Dalal, V., Golemi-Kotra, D., & Kumar, P. (2020). In-silico approach to identify novel potent inhibitors against GraR of S. aureus. Frontiers in Bioscience-Landmark, 25(7), 1337–1360.
  • Fan, X., Liu, Y., Smith, D., Konermann, L., Siu, K. M., & Golemi-Kotra, D. (2007). Diversity of penicillin-binding proteins. The Journal of Biological Chemistry, 282(48), 35143–35152. https://doi.org/10.1074/jbc.M706296200
  • FONTANA, R. (1985). Penicillin-binging proteins and the intrinsic resistance to βlactams in Gram-positive cocci. The Journal of Antimicrobial Chemotherapy, 16(4), 412–416. https://doi.org/10.1093/jac/16.4.412
  • Gupta, D. N., Dalal, V., Savita, B. K., Dhankhar, P., Ghosh, D. K., Kumar, P., & Sharma, A. K. (2021). In-silico screening and identification of potential inhibitors against 2Cys peroxiredoxin of Candidatus Liberibacter asiaticus. Journal of Biomolecular Structure and Dynamics, 1–15. https://doi.org/10.1080/07391102.2021.1916597
  • Gustafson, J., Strässle, A., Hächler, H., Kayser, F. H., & Berger-Bächi, B. (1994). The femC locus of Staphylococcus aureus required for methicillin resistance includes the glutamine synthetase operon. Journal of Bacteriology, 176(5), 1460–1467. https://doi.org/10.1128/jb.176.5.1460-1467.1994
  • Hess, B., Bekker, H., Berendsen, H. J., & Fraaije, J. G. (1997). LINCS: A linear constraint solver for molecular simulations. Journal of Computational Chemistry, 18(12), 1463–1472. https://doi.org/10.1002/(SICI)1096-987X(199709)18:12<1463::AID-JCC4>3.0.CO;2-H
  • Hiramatsu, K. (2001). Vancomycin-resistant Staphylococcus aureus: A new model of antibiotic resistance. The Lancet. Infectious Diseases, 1(3), 147–155. https://doi.org/10.1016/S1473-3099(01)00091-3
  • Hiramatsu, K., Cui, L., Kuroda, M., & Ito, T. (2001). The emergence and evolution of methicillin-resistant Staphylococcus aureus. Trends in Microbiology, 9(10), 486–493. https://doi.org/10.1016/S0966-842X(01)02175-8
  • Holden, M. T. G., Feil, E. J., Lindsay, J. A., Peacock, S. J., Day, N. P. J., Enright, M. C., Foster, T. J., Moore, C. E., Hurst, L., Atkin, R., Barron, A., Bason, N., Bentley, S. D., Chillingworth, C., Chillingworth, T., Churcher, C., Clark, L., Corton, C., Cronin, A., … Parkhill, J. (2004). Complete genomes of two clinical Staphylococcus aureus strains: Evidence for the rapid evolution of virulence and drug resistance. Proceedings of the National Academy of Sciences of the United States of America, 101(26), 9786–9791. https://doi.org/10.1073/pnas.0402521101
  • Katayama, Y., Ito, T., & Hiramatsu, K. (2000). A new class of genetic element, staphylococcus cassette chromosome mec, encodes methicillin resistance in Staphylococcus aureus. Antimicrobial Agents and Chemotherapy, 44(6), 1549–1555. https://doi.org/10.1128/AAC.44.6.1549-1555.2000
  • Kesari, P., Pratap, S., Dhankhar, P., Dalal, V., Mishra, M., Singh, P. K., Chauhan, H., & Kumar, P. (2020). Structural characterization and in-silico analysis of Momordica charantia 7S globulin for stability and ACE inhibition. Scientific Reports, 10(1), 1–13. https://doi.org/10.1038/s41598-020-58138-9
  • Komatsuzawa, H., Sugai, M., Ohta, K., Fujiwara, T., Nakashima, S., Suzuki, J., Lee, C. Y., & Suginaka, H. (1997). Cloning and characterization of the fmt gene which affects the methicillin resistance level and autolysis in the presence of Triton X-100 in methicillin-resistant Staphylococcus aureus. Antimicrobial Agents and Chemotherapy, 41(11), 2355–2361. https://doi.org/10.1128/AAC.41.11.2355
  • Kornblum, J., Hartman, B., Novick, R., & Tomasz, A. (1986). Conversion of a homogeneously methicillin-resistant strain of Staphylococcus aureus to heterogeneous resistance by Tn551-mediated insertional inactivation. European Journal of Clinical Microbiology, 5(6), 714–718. https://doi.org/10.1007/BF02013311
  • Kumar, P., Dalal, V., Kokane, A., Singh, S., Lonare, S., Kaur, H., Ghosh, D. K., Kumar, P. & Sharma, A. K. (2020). Mutation studies and structure-based identification of potential inhibitor molecules against periplasmic amino acid binding protein of Candidatus Liberibacter asiaticus (CLasTcyA). International journal of biological macromolecules, 147, 1228–1238.
  • Kumari, R., & Dalal, V. (2021). Identification of potential inhibitors for LLM of Staphylococcus aureus: Structure-based pharmacophore modeling, molecular dynamics, and binding free energy studies. Journal of Biomolecular Structure and Dynamics, 1–15. https://doi.org/10.1080/07391102.2021.1936179
  • Kumari, N., Dalal, V., Kumar, P., & Rath, S. N. (2022). Antagonistic interaction between TTA-A2 and paclitaxel for anti-cancer effects by complex formation with T-type calcium channel. Journal of Biomolecular Structure and Dynamics, 40(6), 2395-2406. https://doi.org/10.1080/07391102.2020.1839558
  • Kumari, R., Dhankhar, P., & Dalal, V. (2021). Structure-based mimicking of hydroxylated biphenyl congeners (OHPCBs) for human transthyretin, an important enzyme of thyroid hormone system. Journal of Molecular Graphics and Modelling, 105, 107870. https://doi.org/10.1016/j.jmgm.2021.107870
  • Kumari, R., Kumar, R., Consortium, O. S. D. D., & Lynn, A. (2014). g_mmpbsa– A GROMACS tool for high-throughput MM-PBSA calculations. Journal of Chemical Information and Modeling, 54(7), 1951–1962. https://doi.org/10.1021/ci500020m
  • Kumari, R., Rathi, R., Pathak, S. R., & Dalal, V. (2022). Structural-based virtual screening and identification of novel potent antimicrobial compounds against YsxC of Staphylococcus aureus. Journal of Molecular Structure, 1255, 132476.
  • Kurkcuoglu, Z., Koukos, P. I., Citro, N., Trellet, M. E., Rodrigues, J. P. G. L. M., Moreira, I. S., Roel-Touris, J., Melquiond, A. S. J., Geng, C., Schaarschmidt, J., Xue, L. C., Vangone, A., & Bonvin, A. M. J. J. (2018). Performance of HADDOCK and a simple contact-based protein–ligand binding affinity predictor in the D3R Grand Challenge 2. Journal of Computer-Aided Molecular Design, 32(1), 175–185. https://doi.org/10.1007/s10822-017-0049-y
  • Lindsay, J. A., & Holden, M. T. (2006). Understanding the rise of the superbug: Investigation of the evolution and genomic variation of Staphylococcus aureus. Functional & Integrative Genomics, 6(3), 186–201. https://doi.org/10.1007/s10142-005-0019-7
  • Livermore, D. M. (2000). Antibiotic resistance in staphylococci. International Journal of Antimicrobial Agents, 16, 3–10. https://doi.org/10.1016/S0924-8579(00)00299-5
  • Lowy, F. D. (1998). Staphylococcus aureus infections. The New England Journal of Medicine, 339(8), 520–532. https://doi.org/10.1056/NEJM199808203390806
  • Lowy, F. D. (2003). Antimicrobial resistance: The example of Staphylococcus aureus. The Journal of Clinical Investigation, 111(9), 1265–1273. https://doi.org/10.1172/JCI18535
  • Lyon, B., Iuorio, J., May, J., & Skurray, R. (1984). Molecular epidemiology of multiresistant Staphylococcus aureus in Australian hospitals. Journal of Medical Microbiology, 17(1), 79–89. https://doi.org/10.1099/00222615-17-1-79
  • Maciejewski, M. W., Schuyler, A. D., Gryk, M. R., Moraru, I. I., Romero, P. R., Ulrich, E. L., Eghbalnia, H. R., Livny, M., Delaglio, F., & Hoch, J. C. (2017). NMRbox: A resource for biomolecular NMR computation. Biophysical Journal, 112(8), 1529–1534. https://doi.org/10.1016/j.bpj.2017.03.011
  • Maki, H., Yamaguchi, T., & Murakami, K. (1994). Cloning and characterization of a gene affecting the methicillin resistance level and the autolysis rate in Staphylococcus aureus. Journal of Bacteriology, 176(16), 4993–5000. https://doi.org/10.1128/jb.176.16.4993-5000.1994
  • Malik, A., Dalal, V., Ankri, S., & Tomar, S. (2019). Structural insights into Entamoeba histolytica arginase and structure‐based identification of novel non‐amino acid based inhibitors as potential antiamoebic molecules. The FEBS Journal, 286(20), 4135–4155. https://doi.org/10.1111/febs.14960
  • Memmi, G., Filipe, S. R., Pinho, M. G., Fu, Z., & Cheung, A. (2008). Staphylococcus aureus PBP4 is essential for β-lactam resistance in community-acquired methicillin-resistant strains. Antimicrobial Agents and Chemotherapy, 52(11), 3955–3966. https://doi.org/10.1128/AAC.00049-08
  • Morris, G. M., Huey, R., Lindstrom, W., Sanner, M. F., Belew, R. K., Goodsell, D. S., & Olson, A. J. (2009). AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. Journal of Computational Chemistry, 30(16), 2785–2791. https://doi.org/10.1002/jcc.21256
  • O’Boyle, N. M., Banck, M., James, C. A., Morley, C., Vandermeersch, T., & Hutchison, G. R. (2011). Open Babel: An open chemical toolbox. Journal of Cheminformatics, 3(1), 33. https://doi.org/10.1186/1758-2946-3-33
  • Ornelas-Soares, A., De Lencastre, H., De Jonge, B., & Tomasz, A. (1994). Reduced methicillin resistance in a new Staphylococcus aureus transposon mutant that incorporates muramyl dipeptides into the cell wall peptidoglycan. Journal of Biological Chemistry, 269(44), 27246–27250. https://doi.org/10.1016/S0021-9258(18)46975-X
  • Pandit, S., Dalal, V., & Mishra, G. (2018). Identification of novel phosphatidic acid binding domain on sphingosine kinase 1 of Arabidopsis thaliana. Plant Physiology and Biochemistry: PPB, 128, 178–184. https://doi.org/10.1016/j.plaphy.2018.04.039
  • Panlilio, A. L., Culver, D. H., Gaynes, R. P., Banerjee, S., Henderson, T. S., Tolson, J. S., … System, N. N. I. S. (1992). Methicillin-resistant Staphylococcus aureus in US hospitals, 1975–1991. Infection Control & Hospital Epidemiology, 13(10), 582–586. https://doi.org/10.2307/30148460
  • Parrinello, M., & Rahman, A. (1981). Polymorphic transitions in single crystals: A new molecular dynamics method. Journal of Applied Physics, 52(12), 7182–7190. https://doi.org/10.1063/1.328693
  • Peacock, S. J., & Paterson, G. K. (2015). Mechanisms of methicillin resistance in Staphylococcus aureus. Annual Review of Biochemistry, 84, 577–601. https://doi.org/10.1146/annurev-biochem-060614-034516
  • Pinho, M. G., de Lencastre, H., & Tomasz, A. (2001). An acquired and a native penicillin-binding protein cooperate in building the cell wall of drug-resistant staphylococci. Proceedings of the National Academy of Sciences, 98(19), 10886–10891. https://doi.org/10.1073/pnas.191260798
  • Pires, D. E., Blundell, T. L., & Ascher, D. B. (2015). pkCSM: Predicting small-molecule pharmacokinetic and toxicity properties using graph-based signatures. Journal of Medicinal Chemistry, 58(9), 4066–4072. https://doi.org/10.1021/acs.jmedchem.5b00104
  • Release, S. (2016). 2: Maestro. Schrödinger, LLC.
  • Reynolds, P. E., & Fuller, C. (1986). Methicillin-resistant strains of Staphylococcus aureus; presence of identical additional penicillin-binding protein in all strains examined. FEMS Microbiology Letters, 33(2–3), 251–254. https://doi.org/10.1111/j.1574-6968.1986.tb01281.x
  • Saini, G., Dalal, V., Gupta, D. N., Sharma, N., Kumar, P., & Sharma, A. K. (2021). A molecular docking and dynamic approach to screen inhibitors against ZnuA1 of Candidatus Liberibacter asiaticus. Molecular Simulation, 47(6), 510-525. https://doi.org/10.1080/08927022.2021.1888948
  • Saini, G., Dalal, V., Savita, B. K., Sharma, N., Kumar, P., & Sharma, A. K. (2019). Molecular docking and dynamic approach to virtual screen inhibitors against Esbp of Candidatus Liberibacter asiaticus. Journal of Molecular Graphics & Modelling, 92, 329–340. https://doi.org/10.1016/j.jmgm.2019.08.012
  • Schüttelkopf, A. W., & Van Aalten, D. M. (2004). PRODRG: A tool for high-throughput crystallography of protein–ligand complexes. Acta Crystallographica Section D Biological Crystallography, 60(8), 1355–1363. https://doi.org/10.1107/S0907444904011679
  • Shopsin, B., Mathema, B., Martinez, J., Ha, E., Campo, M. L., Fierman, A., Krasinski, K., Kornblum, J., Alcabes, P., Waddington, M., Riehman, M., & Kreiswirth, B. N. (2000). Prevalence of methicillin-resistant and methicillin-susceptible Staphylococcus aureus in the community. The Journal of Infectious Diseases, 182(1), 359–362. https://doi.org/10.1086/315695
  • Singh, V., Dhankhar, P., Dalal, V., Tomar, S., & Kumar, P. (2022). In-silico functional and structural annotation of hypothetical protein from Klebsiella pneumonia: A potential drug target. Journal of Molecular Graphics and Modelling, 116, 108262.
  • Singh, N., Dalal, V., & Kumar, P. (2018). Structure based mimicking of Phthalic acid esters (PAEs) and inhibition of hACMSD, an important enzyme of the tryptophan kynurenine metabolism pathway. International Journal of Biological Macromolecules, 108, 214–224.
  • Singh, N., Dalal, V., & Kumar, P. (2020). Molecular docking and simulation analysis for elucidation of toxic effects of dicyclohexyl phthalate (DCHP) in glucocorticoid receptor-mediated adipogenesis. Molecular Simulation, 46(1), 9–21. https://doi.org/10.1080/08927022.2019.1662002
  • Singh, N., Dalal, V., Kumar, V., Sharma, M., & Kumar, P. (2019). Characterization of phthalate reductase from Ralstonia eutropha CH34 and in silico study of phthalate dioxygenase and phthalate reductase interaction. Journal of Molecular Graphics & Modelling, 90, 161–170. https://doi.org/10.1016/j.jmgm.2019.05.002
  • Singh, N., Dalal, V., Mahto, J. K., & Kumar, P. (2017). Biodegradation of phthalic acid esters (PAEs) and in silico structural characterization of mono-2-ethylhexyl phthalate (MEHP) hydrolase on the basis of close structural homolog. Journal of Hazardous Materials, 338, 11–22. https://doi.org/10.1016/j.jhazmat.2017.04.055
  • Suzuki, T., Campbell, J., Swoboda, J. G., Walker, S., & Gilmore, M. S. (2011). Role of wall teichoic acids in Staphylococcus aureus endophthalmitis. Investigative Ophthalmology & Visual Science, 52(6), 3187–3192. https://doi.org/10.1167/iovs.10-6558
  • Tong, S. Y., Davis, J. S., Eichenberger, E., Holland, T. L., & Fowler, V. G. Jr. (2015). Staphylococcus aureus infections: Epidemiology, pathophysiology, clinical manifestations, and management. Clinical Microbiology Reviews, 28(3), 603–661. https://doi.org/10.1128/CMR.00134-14
  • Trott, O., & Olson, A. J. (2010). AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal of Computational Chemistry, 31(2), 455–461. https://doi.org/10.1002/jcc.21334
  • Ubukata, K., Nonoguchi, R., Matsuhashi, M., & Konno, M. (1989). Expression and inducibility in Staphylococcus aureus of the mecA gene, which encodes a methicillin-resistant S. aureus-specific penicillin-binding protein. Journal of Bacteriology, 171(5), 2882–2885. https://doi.org/10.1128/jb.171.5.2882-2885.1989
  • Van Der Spoel, D., Lindahl, E., Hess, B., Groenhof, G., Mark, A. E., & Berendsen, H. J. (2005). GROMACS: Fast, flexible, and free. Journal of Computational Chemistry, 26(16), 1701–1718. https://doi.org/10.1002/jcc.20291
  • van Gunsteren, W. F., Billeter, S., Eising, A., Hünenberger, P., Krüger, P., Mark, A., & Tironi, I. (1996). Biomolecular simulation: The GROMOS96 manual and user guide. Vdf Hochschulverlag AG an Der ETH Zürich, Zürich, 86, 1–1044.
  • Wielders, C. L. C., Vriens, M. R., Brisse, S., de Graaf-Miltenburg, L. A. M., Troelstra, A., Fleer, A., Schmitz, F. J., Verhoef, J., & Fluit, A. C. (2001). Evidence for in-vivo transfer of mecA DNA between strains of Staphylococcus aureus. The Lancet, 357(9269), 1674–1675. https://doi.org/10.1016/S0140-6736(00)04832-7
  • Wu, S., de Lencastre, H., Sali, A., & Tomasz, A. (1996). A phosphoglucomutase-like gene essential for the optimal expression of methicillin resistance in Staphylococcus aureus: Molecular cloning and DNA sequencing. Microbial Drug Resistance (Larchmont, N.Y.), 2(2), 277–286. https://doi.org/10.1089/mdr.1996.2.277
  • Wu, S., de Lencastre, H., & Tomasz, A. (1996). Sigma-B, a putative operon encoding alternate sigma factor of Staphylococcus aureus RNA polymerase: Molecular cloning and DNA sequencing. Journal of Bacteriology, 178(20), 6036–6042. https://doi.org/10.1128/jb.178.20.6036-6042.1996

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.