217
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Quantum chemical studies on the binding domain of SARS-CoV-2 S-protein: human ACE2 interface complex

&
Pages 7354-7364 | Received 12 Apr 2022, Accepted 29 Aug 2022, Published online: 13 Sep 2022

References

  • Agraharam, G., Girigoswami, A., & Girigoswami, K. (2022). Myricetin: a Multifunctional Flavonol in Biomedicine. Current Pharmacology Reports, 8(1), 48–61. https://doi.org/10.1007/s40495-021-00269-2
  • Aihara, J-i (1999). Reduced HOMO − LUMO gap as an index of kinetic stability for polycyclic aromatic hydrocarbons. The Journal of Physical Chemistry A, 103(37), 7487–7495. https://doi.org/10.1021/jp990092i
  • Baildya, N., Ghosh, N. N., & Chattopadhyay, A. P. (2020). Inhibitory activity of hydroxychloroquine on COVID-19 main protease: an insight from MD-simulation studies. Journal of Molecular Structure, 1219, 128595.
  • Becke, A. D. (1993). A new mixing of Hartree–Fock and local density‐functional theories. The Journal of Chemical Physics, 98(2), 1372–1377. https://doi.org/10.1063/1.464304
  • Belouzard, S., Millet, J. K., Licitra, B. N., & Whittaker, G. R. (2012). Mechanisms of coronavirus cell entry mediated by the viral spike protein. Viruses, 4(6), 1011–1033. https://doi.org/10.3390/v4061011
  • Bijina, P. V., & Suresh, C. H. (2020). Molecular electrostatic potential reorganization theory to describe positive cooperativity in noncovalent trimer complexes. The Journal of Physical Chemistry. A, 124(11), 2231–2241. https://doi.org/10.1021/acs.jpca.9b11538
  • Bijina, P. V., Suresh, C. H., & Gadre, S. R. (2018). Electrostatics for probing lone pairs and their interactions. Journal of Computational Chemistry, 39(9), 488–499. https://doi.org/10.1002/jcc.25082
  • Bocci, G., Verma, S., & Hassan, M. M. (2021). A machine learning platform to estimate anti-SARS-CoV-2 activities. Nature Machine Intelligence, 3, 527–535.
  • Chung, L. W., Sameera, W. M. C., Ramozzi, R., Page, A. J., Hatanaka, M., Petrova, G. P., Harris, T. V., Li, X., Ke, Z., Liu, F., Li, H.-B., Ding, L., & Morokuma, K. (2015). The ONIOM method and its applications. Chemical Reviews, 115(12), 5678–5796. https://doi.org/10.1021/cr5004419
  • Dapprich, S., Komáromi, I., & Byun, K. S. (1999). A new ONIOM implementation in Gaussian98. Part I. The calculation of energies, gradients, vibrational frequencies and electric field derivatives. Journal of Molecular Structure: THEOCHEM, 461, 1–21.
  • de Oliveira, O. V., Rocha, G. B., Paluch, A. S., & Costa, L. T. (2021). Repurposing approved drugs as inhibitors of SARS-CoV-2 S-protein from molecular modeling and virtual screening. Journal of Biomolecular Structure & Dynamics, 39(11), 3924–3933. https://doi.org/10.1080/07391102.2020.1772885
  • Donoghue, M., Hsieh, F., Baronas, E., Godbout, K., Gosselin, M., Stagliano, N., Donovan, M., Woolf, B., Robison, K., Jeyaseelan, R., Breitbart, R. E., & Acton, S. (2000). A novel angiotensin-converting enzyme–related carboxypeptidase (ACE2) converts angiotensin I to angiotensin 1-9. Circulation Research, 87(5), e1–e9. https://doi.org/10.1161/01.res.87.5.e1
  • Guarner, J. (2020). Three Emerging Coronaviruses in Two Decades: The Story of SARS, MERS, and Now COVID-19. American Journal of Clinical Pathology, 153(4), 420–421. https://doi.org/10.1093/ajcp/aqaa029
  • Hagar, M., Ahmed, H. A., Aljohani, G., & Alhaddad, O. A. (2020). Investigation of some antiviral N-heterocycles as COVID 19 drug: molecular docking and DFT calculations. International Journal of Molecular Sciences, 21(11), 3922. https://doi.org/10.3390/ijms21113922
  • Hanson, Q. M., Wilson, K. M., Shen, M., Itkin, Z., Eastman, R. T., Shinn, P., & Hall, M. D. (2020). Targeting ACE2–RBD interaction as a platform for COVID-19 therapeutics: development and drug-repurposing screen of an AlphaLISA proximity assay. ACS Pharmacology & Translational Science, 3(6), 1352–1360. https://doi.org/10.1021/acsptsci.0c00161
  • Haritha, M., & Suresh, C. H. (2022). Hydration patterns of rings in drugs and relationship to lipophilicity: A DFT study. Journal of Computational Chemistry, 43(7), 477–490. https://doi.org/10.1002/jcc.26808
  • Karadakov, P. B., & Morokuma, K. (2000). ONIOM as an efficient tool for calculating NMR chemical shielding constants in large molecules. Chemical Physics Letters, 317(6), 589–596. https://doi.org/10.1016/S0009-2614(99)01429-3
  • Khelfaoui, H., Harkati, D., & Saleh, B. A. (2021). Molecular docking, molecular dynamics simulations and reactivity, studies on approved drugs library targeting ACE2 and SARS-CoV-2 binding with ACE2. Journal of Biomolecular Structure & Dynamics, 39(18), 7246–7262.
  • Li, F., Li, W., Farzan, M., & Harrison, S. C. (2005). Structure of SARS coronavirus spike receptor-binding domain complexed with receptor. Science (New York, N.Y.), 309(5742), 1864–1868. https://doi.org/10.1126/science.1116480
  • Li, M.-Y., Li, L., Zhang, Y., & Wang, X.-S. (2020). Expression of the SARS-CoV-2 cell receptor gene ACE2 in a wide variety of human tissues. Infectious Diseases of Poverty, 9(1), 1–7. https://doi.org/10.1186/s40249-020-00662-x
  • Li, W., Moore, M. J., Vasilieva, N., Sui, J., Wong, S. K., Berne, M. A., Somasundaran, M., Sullivan, J. L., Luzuriaga, K., Greenough, T. C., Choe, H., & Farzan, M. (2003). Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature, 426(6965), 450–454. https://doi.org/10.1038/nature02145
  • Li, W., Zhang, C., Sui, J., Kuhn, J. H., Moore, M. J., Luo, S., Wong, S.-K., Huang, I.-C., Xu, K., Vasilieva, N., Murakami, A., He, Y., Marasco, W. A., Guan, Y., Choe, H., & Farzan, M. (2005). Receptor and viral determinants of SARS‐coronavirus adaptation to human ACE2. The EMBO Journal, 24(8), 1634–1643. https://doi.org/10.1038/sj.emboj.7600640
  • Linet, A., Joseph, M. M., Haritha, M., Shamna, K., Varughese, S., Devi, P. S., Suresh, C. H., Maiti, K. K., & Neogi, I. (2021). De novo design and synthesis of boomerang-shaped molecules and their in silico and SERS-based interactions with SARS-CoV-2 spike protein and ACE2. New Journal of Chemistry, 45(38), 17777–17781. https://doi.org/10.1039/D1NJ02955J
  • Frisch GWT, M. J., Schlegel, H. B., Scuseria, G. E., Robb JRC, M. A., Scalmani, G., Barone, V., Petersson HN, G. A., Li, X., Caricato, M., & Marenich, A. V. (2016). Gaussian 16 RevA.03. Gaussian 16 Rev A01,
  • Mebs, S., Lüth, A., & Luger, P. (2010). A simple procedure for the derivation of electron density based surfaces of drug-receptor complexes from a combination of X-ray data and theoretical calculations. Bioorganic & Medicinal Chemistry, 18(16), 5965–5974.
  • Mitra, D., Paul, M., Thatoi, H., & Mohapatra, P. K. D. (2021). Study of potentiality of dexamethasone and its derivatives against Covid-19. Journal of Biomolecular Structure and Dynamics, 1–11. https://doi.org/10.1080/07391102.2021.1942210
  • Morris, G. M., Huey, R., Lindstrom, W., Sanner, M. F., Belew, R. K., Goodsell, D. S., & Olson, A. J. (2009). AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. Journal of Computational Chemistry, 30(16), 2785–2791. https://doi.org/10.1002/jcc.21256
  • Mousavizadeh, L., & Ghasemi, S. (2021). Genotype and phenotype of COVID-19: Their roles in pathogenesis. Journal of Microbiology, Immunology and Infection, 54(2), 159–163. https://doi.org/10.1016/j.jmii.2020.03.022
  • Peng, C., Wang, J., Yu, Y., Wang, G., Chen, Z., Xu, Z., Cai, T., Shao, Q., Shi, J., & Zhu, W. (2019). Improving the accuracy of predicting protein–ligand binding-free energy with semiempirical quantum chemistry charge. Future Medicinal Chemistry, 11(4), 303–321. https://doi.org/10.4155/fmc-2018-0207
  • Prabakaran, P., Xiao, X., & Dimitrov, D. S. (2004). A model of the ACE2 structure and function as a SARS-CoV receptor. Biochemical and Biophysical Research Communications, 314(1), 235–241. https://doi.org/10.1016/j.bbrc.2003.12.081
  • Pushpakom, S., Iorio, F., Eyers, P. A., Escott, K. J., Hopper, S., Wells, A., Doig, A., Guilliams, T., Latimer, J., McNamee, C., Norris, A., Sanseau, P., Cavalla, D., & Pirmohamed, M. (2019). Drug repurposing: progress, challenges and recommendations. Nature Reviews. Drug Discovery, 18(1), 41–58. https://doi.org/10.1038/nrd.2018.168
  • Ray, B., Panigrahi, A. K., & Dutta, S. (2021). Computer aided drug design: tools to develop drug for covid 19. Advances in Medical Sciences, 3, 127–146.
  • Remya, G. S., & Suresh, C. H. (2016). Quantification and classification of substituent effects in organic chemistry: A theoretical molecular electrostatic potential study. Physical Chemistry Chemical Physics : PCCP, 18(30), 20615–20626. https://doi.org/10.1039/c6cp02936a
  • Sahoo, B. M., Ravi Kumar, B. V. V., Sruti, J., Mahapatra, M. K., Banik, B. K., & Borah, P. (2021). Drug repurposing strategy (DRS): Emerging approach to identify potential therapeutics for treatment of novel coronavirus infection. Frontiers in Molecular Biosciences, 8, 628144. https://doi.org/10.3389/fmolb.2021.628144
  • Scherman, D., & Fetro, C. (2020). Drug repositioning for rare diseases: Knowledge-based success stories. Therapie, 75(2), 161–167. https://doi.org/10.1016/j.therap.2020.02.007
  • Singh, J., Malik, D., & Raina, A. (2021). Molecular docking analysis of azithromycin and hydroxychloroquine with spike surface glycoprotein of SARS-CoV-2. Bioinformation, 17(1), 11–22. https://doi.org/10.6026/97320630017011
  • Smith, M., & Smith, J. C. (2020). Repurposing therapeutics for COVID-19: Supercomputer-based docking to the SARS-CoV-2 viral spike protein and viral spike protein-human ACE2 interface. ChemRxiv. Cambridge: Cambridge Open Engage.
  • Stephens, P. J., Devlin, F. J., Chabalowski, C. F., & Frisch, M. J. (1994). Ab initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields. The Journal of Physical Chemistry, 98(45), 11623–11627. https://doi.org/10.1021/j100096a001
  • Stewart, J. J. (2013). Optimization of parameters for semiempirical methods VI: more modifications to the NDDO approximations and re-optimization of parameters. Journal of Molecular Modeling, 19(1), 1–32. https://doi.org/10.1007/s00894-012-1667-x
  • Svensson, M., Humbel, S., Froese, R. D. J., Matsubara, T., Sieber, S., & Morokuma, K. (1996). ONIOM: a multilayered integrated MO + MM method for geometry optimizations and single point energy predictions. A test for Diels − Alder reactions and Pt (P (t-Bu) 3) 2+ H2 oxidative addition. The Journal of Physical Chemistry, 100(50), 19357–19363. https://doi.org/10.1021/jp962071j
  • Tirado-Rives, J., & Jorgensen, W. L. (2008). Performance of B3LYP density functional methods for a large set of organic molecules. Journal of Chemical Theory and Computation, 4(2), 297–306.
  • Trott, O., & Olson, A. J. (2010). AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal of Computational Chemistry, 31(2), 455–461. https://doi.org/10.1002/jcc.21334
  • van Boheemen, S., de Graaf, M., Lauber, C., Bestebroer, T. M., Raj, V. S., Zaki, A. M., Osterhaus, A. D. M. E., Haagmans, B. L., Gorbalenya, A. E., Snijder, E. J., & Fouchier, R. A. M. (2012). Genomic characterization of a newly discovered coronavirus associated with acute respiratory distress syndrome in humans. mBio, 3(6), e00473–12. https://doi.org/10.1128/mBio.00473-12
  • Vreven, T., Mennucci, B., da Silva, C. O., Morokuma, K., & Tomasi, J. (2001). The ONIOM-PCM method: Combining the hybrid molecular orbital method and the polarizable continuum model for solvation. Application to the geometry and properties of a merocyanine in solution. The Journal of Chemical Physics, 115(1), 62–72. https://doi.org/10.1063/1.1376127
  • Wang, M., Cao, R., Zhang, L., Yang, X., Liu, J., Xu, M., Shi, Z., Hu, Z., Zhong, W., & Xiao, G. (2020). Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Research, 30(3), 269–271. https://doi.org/10.1038/s41422-020-0282-0
  • Xu, X., Chen, P., Wang, J., Feng, J., Zhou, H., Li, X., Zhong, W., & Hao, P. (2020). Evolution of the novel coronavirus from the ongoing Wuhan outbreak and modeling of its spike protein for risk of human transmission. Science China. Life Sciences, 63(3), 457–460. https://doi.org/10.1007/s11427-020-1637-5
  • Zhou, P., Yang, X.-L., Wang, X.-G., Hu, B., Zhang, L., Zhang, W., Si, H.-R., Zhu, Y., Li, B., Huang, C.-L., Chen, H.-D., Chen, J., Luo, Y., Guo, H., Jiang, R.-D., Liu, M.-Q., Chen, Y., Shen, X.-R., Wang, X., … Shi, Z.-L. (2020). A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature, 579(7798), 270–273. https://doi.org/10.1038/s41586-020-2012-7

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.