474
Views
6
CrossRef citations to date
0
Altmetric
Review Article

Pharmacological features, health benefits and clinical implications of honokiol

, , ORCID Icon, , , , & ORCID Icon show all
Pages 7511-7533 | Received 05 Aug 2022, Accepted 29 Aug 2022, Published online: 12 Sep 2022

References

  • Ahn, K. S., Sethi, G., Shishodia, S., Sung, B., Arbiser, J. L., & Aggarwal, B. B. (2006). Honokiol potentiates apoptosis, suppresses osteoclastogenesis, and inhibits invasion through modulation of nuclear factor-κB activation pathway. Molecular Cancer Research: MCR, 4(9), 621–633. https://doi.org/10.1158/1541-7786.MCR-06-0076
  • Alam, M., Ahmed, S., Elasbali, A. M., Adnan, M., Alam, S., Hassan, M. I., & Pasupuleti, V. R. (2022). Therapeutic implications of caffeic acid in cancer and neurological diseases. Frontiers in Oncology, 12. https://doi.org/10.3389/fonc.2022.860508
  • Alonso-Castro, A. J., Zapata-Bustos, R., Domínguez, F., García-Carrancá, A., & Salazar-Olivo, L. A. (2011). Magnolia dealbata Zucc and its active principles honokiol and magnolol stimulate glucose uptake in murine and human adipocytes using the insulin-signaling pathway. Phytomedicine: International Journal of Phytotherapy and Phytopharmacology, 18(11), 926–933. https://doi.org/10.1016/j.phymed.2011.02.015
  • Amblard, F., Delinsky, D., Arbiser, J. L., & Schinazi, R. F. (2006). Facile purification of honokiol and its antiviral and cytotoxic properties. Journal of Medicinal Chemistry, 49(11), 3426–3427. https://doi.org/10.1021/jm060268m
  • Amorati, R., Zotova, J., Baschieri, A., & Valgimigli, L. (2015). Antioxidant activity of magnolol and honokiol: Kinetic and mechanistic investigations of their reaction with peroxyl radicals. The Journal of Organic Chemistry, 80(21), 10651–10659. https://doi.org/10.1021/acs.joc.5b01772
  • Anwar, S., DasGupta, D., Azum, N., Alfaifi, S. Y. M., Asiri, A. M., Alhumaydhi, F. A., Alsagaby, S. A., Sharaf, S. E., Shahwan, M., & Hassan, M. I. (2022). Inhibition of PDK3 by artemisinin, a repurposed antimalarial drug in cancer therapy. Journal of Molecular Liquids, 355, 118928. https://doi.org/10.1016/j.molliq.2022.118928
  • Aoki, M., Ishigami, S., Uenosono, Y., Arigami, T., Uchikado, Y., Kita, Y., Kurahara, H., Matsumoto, M., Ueno, S., & Natsugoe, S. (2011). Expression of BMP-7 in human gastric cancer and its clinical significance. British Journal of Cancer, 104(4), 714–718. https://doi.org/10.1038/sj.bjc.6606075
  • Arora, S., Bhardwaj, A., Srivastava, S. K., Singh, S., McClellan, S., Wang, B., & Singh, A. P. (2011). Honokiol arrests cell cycle, induces apoptosis, and potentiates the cytotoxic effect of gemcitabine in human pancreatic cancer cells. PloS One, 6(6), e21573. https://doi.org/10.1371/journal.pone.0021573
  • Arora, S., Singh, S., Piazza, G. A., Contreras, C. M., Panyam, J., & Singh, A. P. (2012). Honokiol: A novel natural agent for cancer prevention and therapy. Current Molecular Medicine, 12(10), 1244–1252. https://doi.org/10.2174/156652412803833508
  • Asrani, P., Eapen, M. S., Hassan, M. I., & Sohal, S. S. (2021). Implications of the second wave of COVID-19 in India. The Lancet. Respiratory Medicine, 9(9), e93–e94. https://doi.org/10.1016/S2213-2600(21)00312-X
  • Aster, J. C., Pear, W. S., & Blacklow, S. C. (2017). The varied roles of Notch in cancer. Annual Review of Pathology, 12, 245–275. https://doi.org/10.1146/annurev-pathol-052016-100127
  • Averett, C., Bhardwaj, A., Arora, S., Srivastava, S. K., Khan, M. A., Ahmad, A., Singh, S., Carter, J. E., Khushman, M., & Singh, A. P. (2016). Honokiol suppresses pancreatic tumor growth, metastasis and desmoplasia by interfering with tumor–stromal cross-talk. Carcinogenesis, 37(11), 1052–1061. https://doi.org/10.1093/carcin/bgw096
  • Bae, S. H., Park, M.-J., Lee, M. M., Kim, T. M., Lee, S.-H., Cho, S. Y., Kim, Y.-H., Kim, Y. J., Park, C.-K., & Kim, C.-Y. (2014). Toxicity profile of temozolomide in the treatment of 300 malignant glioma patients in Korea. Journal of Korean Medical Science, 29(7), 980–984. https://doi.org/10.3346/jkms.2014.29.7.980
  • Balan, M., Chakraborty, S., Flynn, E., Zurakowski, D., & Pal, S. (2017). Honokiol inhibits c-Met-HO-1 tumor-promoting pathway and its cross-talk with calcineurin inhibitor-mediated renal cancer growth. Scientific Reports, 7(1), 11. https://doi.org/10.1038/s41598-017-05455-1
  • Balan, M., y Teran, E. M., Waaga-Gasser, A. M., Gasser, M., Choueiri, T. K., Freeman, G., & Pal, S. (2015). Novel roles of c-Met in the survival of renal cancer cells through the regulation of HO-1 and PD-L1 expression. The Journal of Biological Chemistry, 290(13), 8110–8120. https://doi.org/10.1074/jbc.M114.612689
  • Banerjee, P., Basu, A., Arbiser, J. L., & Pal, S. (2013). The natural product honokiol inhibits calcineurin inhibitor-induced and Ras-mediated tumor promoting pathways. Cancer Letters, 338(2), 292–299. https://doi.org/10.1016/j.canlet.2013.05.036
  • Banik, K., Ranaware, A. M., Deshpande, V., Nalawade, S. P., Padmavathi, G., Bordoloi, D., Sailo, B. L., Shanmugam, M. K., Fan, L., Arfuso, F., Sethi, G., & Kunnumakkara, A. B. (2019). Honokiol for cancer therapeutics: A traditional medicine that can modulate multiple oncogenic targets. Pharmacological Research, 144, 192–209. https://doi.org/10.1016/j.phrs.2019.04.004
  • Barbi de Moura, M., Vincent, G., Fayewicz, S. L., Bateman, N. W., Hood, B. L., Sun, M., Suhan, J., Duensing, S., Yin, Y., & Sander, C. (2012). Mitochondrial respiration-an important therapeutic target in melanoma.
  • Barsoum, I. B., Koti, M., Siemens, D. R., & Graham, C. H. (2014). Mechanisms of hypoxia-mediated immune escape in cancer. Cancer Research, 74(24), 7185–7190. https://doi.org/10.1158/0008-5472.CAN-14-2598
  • Battle, T. E., Arbiser, J., & Frank, D. A. (2005). The natural product honokiol induces caspase-dependent apoptosis in B-cell chronic lymphocytic leukemia (B-CLL) cells. Blood, 106(2), 690–697. https://doi.org/10.1182/blood-2004-11-4273
  • Bayati, A., Kumar, R., Francis, V., & McPherson, P. S. (2021). SARS-CoV-2 infects cells after viral entry via clathrin-mediated endocytosis. The Journal of Biological Chemistry, 296, 100306. https://doi.org/10.1016/j.jbc.2021.100306
  • Bestle, D., Heindl, M. R., Limburg, H., Van Lam van, T., Pilgram, O., Moulton, H., Stein, D. A., Hardes, K., Eickmann, M., Dolnik, O., Rohde, C., Klenk, H.-D., Garten, W., Steinmetzer, T., & Böttcher-Friebertshäuser, E. (2020). TMPRSS2 and furin are both essential for proteolytic activation of SARS-CoV-2 in human airway cells. Life Science Alliance, 3(9), e202000786. https://doi.org/10.26508/lsa.202000786
  • Bi, L., Yu, Z., Wu, J., Yu, K., Hong, G., Lu, Z., & Gao, S. (2015). Honokiol inhibits constitutive and inducible STAT3 signaling via PU. 1-induced SHP1 expression in acute myeloid leukemia cells. The Tohoku Journal of Experimental Medicine, 237(3), 163–172.
  • Biscardi, J. S., Ishizawar, R. C., Silva, C. M., & Parsons, S. J. (2000). Tyrosine kinase signalling in breast cancer: Epidermal growth factor receptor and c-Src interactions in breast cancer. Breast Cancer Research, 2(3), 1–8. https://doi.org/10.1186/bcr55
  • Böhmdorfer, M., Maier‐Salamon, A., Taferner, B., Reznicek, G., Thalhammer, T., Hering, S., Hüfner, A., Schühly, W., & Jäger, W. (2011). In vitro metabolism and disposition of honokiol in rat and human livers. Journal of Pharmaceutical Sciences, 100(8), 3506–3516. https://doi.org/10.1002/jps.22536
  • Braun, E., & Sauter, D. (2019). Furin‐mediated protein processing in infectious diseases and cancer. Clinical & Translational Immunology, 8(8), e1073. https://doi.org/10.1002/cti2.1073
  • Callaghan, R., Luk, F., & Bebawy, M. (2014). Inhibition of the multidrug resistance P-glycoprotein: Time for a change of strategy? Drug Metabolism and Disposition: The Biological Fate of Chemicals, 42(4), 623–631. https://doi.org/10.1124/dmd.113.056176
  • Cardullo, N., Barresi, V., Muccilli, V., Spampinato, G., D’Amico, M., Condorelli, D. F., & Tringali, C. (2020). Synthesis of bisphenol neolignans inspired by honokiol as antiproliferative agents. Molecules, 25(3), 733. https://doi.org/10.3390/molecules25030733
  • Chang-Mu, C., Jen-Kun, L., Shing-Hwa, L., & Shoei-Yn, L.-S. (2010). Characterization of neurotoxic effects of NMDA and the novel neuroprotection by phytopolyphenols in mice. Behavioral Neuroscience, 124(4), 541–553. https://doi.org/10.1037/a0020050
  • Chao, L. K., Liao, P.-C., Ho, C.-L., Wang, E. I.-C., Chuang, C.-C., Chiu, H.-W., Hung, L.-B., & Hua, K.-F. (2010). Anti-inflammatory bioactivities of honokiol through inhibition of protein kinase C, mitogen-activated protein kinase, and the NF-κB pathway to reduce LPS-induced TNFα and NO expression. Journal of Agricultural and Food Chemistry, 58(6), 3472–3478. https://doi.org/10.1021/jf904207m
  • Chen, C., Zhang, Q. W., Ye, Y., & Lin, L. G. (2021a). Honokiol: A naturally occurring lignan with pleiotropic bioactivities. Chinese Journal of Natural Medicines, 19(7), 481–490. https://doi.org/10.1016/S1875-5364(21)60047-X
  • Chen, C. M., Liu, S. H., & Lin-Shiau, S. Y. (2007a). Honokiol, a neuroprotectant against mouse cerebral ischaemia, mediated by preserving Na+, K+-ATPase activity and mitochondrial functions. Basic & Clinical Pharmacology & Toxicology, 101(2), 108–116. https://doi.org/10.1111/j.1742-7843.2007.00082.x
  • Chen, C. M., Liu, S. H., & Lin‐Shiau, S. Y. (2007b). Honokiol, a neuroprotectant against mouse cerebral ischaemia, mediated by preserving Na+, K+‐ATPase activity and mitochondrial functions. Basic & Clinical Pharmacology & Toxicology, 101(2), 108–116. https://doi.org/10.1111/j.1742-7843.2007.00082.x
  • Chen, F., Wang, T., Wu, Y.-F., Gu, Y., Xu, X.-L., Zheng, S., & Hu, X. (2004). Honokiol: A potent chemotherapy candidate for human colorectal carcinoma. World Journal of Gastroenterology, 10(23), 3459–3463.
  • Chen, L., Li, S., Ding, Y., Wang, C., Zhang, S., Xu, R., Chen, Y., Li, H., Gao, M., Qi, Y., Xu, Y., Ma, X., & Li, L. (2021b). Honokiol prodrug nanoparticles based on in situ albumin binding for long circulation and high tumor uptake. ACS Medicinal Chemistry Letters, 12(10), 1589–1595. https://doi.org/10.1021/acsmedchemlett.1c00429
  • Cheng, S., Castillo, V., Welty, M., Eliaz, I., & Sliva, D. (2016). Honokiol inhibits migration of renal cell carcinoma through activation of RhoA/ROCK/MLC signaling pathway. International Journal of Oncology, 49(4), 1525–1530. https://doi.org/10.3892/ijo.2016.3663
  • Cheng, Y.-W., Chao, T.-L., Li, C.-L., Chiu, M.-F., Kao, H.-C., Wang, S.-H., Pang, Y.-H., Lin, C.-H., Tsai, Y.-M., Lee, W.-H., Tao, M.-H., Ho, T.-C., Wu, P.-Y., Jang, L.-T., Chen, P.-J., Chang, S.-Y., & Yeh, S.-H. (2020). Furin inhibitors block SARS-CoV-2 spike protein cleavage to suppress virus production and cytopathic effects. Cell Reports, 33(2), 108254. https://doi.org/10.1016/j.celrep.2020.108254
  • Chi, Z., Le, T. P. H., Lee, S. K., Guo, E., Kim, D., Lee, S., Seo, S.-Y., Lee, S. Y., Kim, J. H., & Lee, S. Y. (2020). Honokiol ameliorates angiotensin II-induced hypertension and endothelial dysfunction by inhibiting HDAC6-mediated cystathionine γ-lyase degradation. Journal of Cellular and Molecular Medicine, 24(18), 10663–10676. https://doi.org/10.1111/jcmm.15686
  • Chilampalli, C., Guillermo, R., Kaushik, R. S., Young, A., Chandrasekher, G., Fahmy, H., & Dwivedi, C. (2011). Honokiol, a chemopreventive agent against skin cancer, induces cell cycle arrest and apoptosis in human epidermoid A431 cells. Experimental Biology and Medicine, 236(11), 1351–1359. https://doi.org/10.1258/ebm.2011.011030
  • Choi, S. S., Cha, B. Y., Lee, Y. S., Yonezawa, T., Teruya, T., Nagai, K., & Woo, J. T. (2012). Honokiol and magnolol stimulate glucose uptake by activating PI3K‐dependent Akt in L6 myotubes. BioFactors (Oxford, England), 38(5), 372–377. https://doi.org/10.1002/biof.1029
  • Cournede, A., Ries, P., Richard, K., Guillain, A., Dahan, L., Grandval, P., Pourroy, B., Moutardier, V., Hardwigsen, J., Braguer, D., & Seitz, J.-F. (2005). Oxaliplatin neurotoxicity: A report of three cases with post-operative exacerbation. Gastroenterologie Clinique et Biologique, 29(4), 461–464. https://doi.org/10.1016/S0399-8320(05)80817-6
  • Csepregi, K., & Hideg, É. (2018). Phenolic compound diversity explored in the context of photo‐oxidative stress protection. Phytochemical Analysis: PCA, 29(2), 129–136. https://doi.org/10.1002/pca.2720
  • Dai, X., Li, R.-Z., Jiang, Z.-B., Wei, C.-L., Luo, L.-X., Yao, X.-J., Li, G.-P., & Leung, E. L.-H. (2018). Honokiol inhibits proliferation, invasion and induces apoptosis through targeting lyn kinase in human lung adenocarcinoma cells. Frontiers in Pharmacology, 9, 558. https://doi.org/10.3389/fphar.2018.00558
  • Deng, J., Qian, Y., Geng, L., Chen, J., Wang, X., Xie, H., Yan, S., Jiang, G., Zhou, L., & Zheng, S. (2008). Involvement of p38 mitogen‐activated protein kinase pathway in honokiol‐induced apoptosis in a human hepatoma cell line (hepG2. Liver International: Official Journal of the International Association for the Study of the Liver, 28(10), 1458–1464. https://doi.org/10.1111/j.1478-3231.2008.01767.x
  • Deng, S., Zhang, C., Yang, L., & Ma, L. (2019). Formylated honokiol analogs showed antitumor activity against lung carcinoma. Anti-Cancer Drugs, 30(8), 795–802. https://doi.org/10.1097/CAD.0000000000000771
  • Dikalov, S., Losik, T., & Arbiser, J. L. (2008). Honokiol is a potent scavenger of superoxide and peroxyl radicals. Biochemical Pharmacology, 76(5), 589–596. https://doi.org/10.1016/j.bcp.2008.06.012
  • Ding, W., Hou, X., Cong, S., Zhang, Y., Chen, M., Lei, J., Meng, Y., Li, X., & Li, G. (2016). Co-delivery of honokiol, a constituent of Magnolia species, in a self-microemulsifying drug delivery system for improved oral transport of lipophilic sirolimus. Drug Delivery, 23(7), 2513–2523. https://doi.org/10.3109/10717544.2015.1020119
  • Do, M. T., Kim, H. G., Choi, J. H., & Jeong, H. G. (2014). Metformin induces microRNA-34a to downregulate the Sirt1/Pgc-1α/Nrf2 pathway, leading to increased susceptibility of wild-type p53 cancer cells to oxidative stress and therapeutic agents. Free Radical Biology & Medicine, 74, 21–34.
  • Duffy, A. M., Bouchier-Hayes, D. J., & Harmey, J. H. (2013). Vascular endothelial growth factor (VEGF) and its role in non-endothelial cells: Autocrine signalling by VEGF. In Madame Curie Bioscience Database [Internet] (Landes Bioscience). Taylor and Francis group.
  • Dufour, M., Dormond-Meuwly, A., Demartines, N., & Dormond, O. (2011). Targeting the mammalian target of rapamycin (mTOR) in cancer therapy: Lessons from past and future perspectives. Cancers, 3(2), 2478–2500. https://doi.org/10.3390/cancers3022478
  • Eckert, M. A., Lwin, T. M., Chang, A. T., Kim, J., Danis, E., Ohno-Machado, L., & Yang, J. (2011). Twist1-induced invadopodia formation promotes tumor metastasis. Cancer Cell, 19(3), 372–386. https://doi.org/10.1016/j.ccr.2011.01.036
  • Esumi, T., Makado, G., Zhai, H., Shimizu, Y., Mitsumoto, Y., & Fukuyama, Y. (2004). Efficient synthesis and structure–activity relationship of honokiol, a neurotrophic biphenyl-type neolignan. Bioorganic & Medicinal Chemistry Letters, 14(10), 2621–2625. https://doi.org/10.1016/j.bmcl.2004.02.067
  • Fan, Y., Xue, W., Schachner, M., & Zhao, W. (2018). Honokiol eliminates glioma/glioblastoma stem cell-like cells via JAK-STAT3 signaling and inhibits tumor progression by targeting epidermal growth factor receptor. Cancers, 11(1), 22. https://doi.org/10.3390/cancers11010022
  • Fang, C.-Y., Chen, S.-J., Wu, H.-N., Ping, Y.-H., Lin, C.-Y., Shiuan, D., Chen, C.-L., Lee, Y.-R., & Huang, K.-J. (2015). Honokiol, a lignan biphenol derived from the magnolia tree, inhibits dengue virus type 2 infection. Viruses, 7(9), 4894–4910. https://doi.org/10.3390/v7092852
  • Fried, L. E., & Arbiser, J. L. (2009). Honokiol, a multifunctional antiangiogenic and antitumor agent. Antioxidants & Redox Signaling, 11(5), 1139–1148. https://doi.org/10.1089/ars.2009.2440
  • Fukuyama, Y., Nakade, K., Minoshima, Y., Yokoyama, R., Zhai, H., & Mitsumoto, Y. (2002). Neurotrophic activity of honokiol on the cultures of fetal rat cortical neurons. Bioorganic & Medicinal Chemistry Letters, 12(8), 1163–1166. https://doi.org/10.1016/s0960-894x(02)00112-9
  • Furqan, M., Akinleye, A., Mukhi, N., Mittal, V., Chen, Y., & Liu, D. (2013). STAT inhibitors for cancer therapy. Journal of Hematology & Oncology, 6(1), 1–11. https://doi.org/10.1186/1756-8722-6-90
  • Godugu, C., Doddapaneni, R., & Singh, M. (2017). Honokiol nanomicellar formulation produced increased oral bioavailability and anticancer effects in triple negative breast cancer (TNBC). Colloids and Surfaces B: Biointerfaces, 153, 208–219. https://doi.org/10.1016/j.colsurfb.2017.01.038
  • Gou, M., Zheng, L., Peng, X., Men, K., Zheng, X., Zeng, S., Guo, G., Luo, F., Zhao, X., Chen, L., Wei, Y., & Qian, Z. (2009). Poly (ɛ-caprolactone)–poly (ethylene glycol)–poly (ɛ-caprolactone)(PCL–PEG–PCL) nanoparticles for honokiol delivery in vitro. International Journal of Pharmaceutics, 375(1–2), 170–176. https://doi.org/10.1016/j.ijpharm.2009.04.007
  • Guo, S., Xu, J. J., Wei, N., Han, J. Y., Xue, R., Xu, P. S., & Gao, C. Y. (2019). Honokiol attenuates the memory impairments, oxidative stress, neuroinflammation, and GSK-3β activation in vascular dementia rats. Journal of Alzheimer’s Disease: JAD, 71(1), 97–108. https://doi.org/10.3233/JAD-190324
  • Gupta, P., Mohammad, T., Dahiya, R., Roy, S., Noman, O. M. A., Alajmi, M. F., Hussain, A., & Hassan, M. I. (2019a). Evaluation of binding and inhibition mechanism of dietary phytochemicals with sphingosine kinase 1: Towards targeted anticancer therapy. Scientific Reports, 9(1), 019–55199. https://doi.org/10.1038/s41598-019-55199-3
  • Gupta, P., Mohammad, T., Khan, P., Alajmi, M. F., Hussain, A., Rehman, M. T., & Hassan, M. I. (2019b). Evaluation of ellagic acid as an inhibitor of sphingosine kinase 1: A targeted approach towards anticancer therapy. Biomedicine and Pharmacotherapy, 118, 109245. https://doi.org/10.1016/j.biopha.2019.109245
  • Hahm, E. R., Sakao, K., & Singh, S. V. (2014). Honokiol activates reactive oxygen species‐mediated cytoprotective autophagy in human prostate cancer cells. The Prostate, 74(12), 1209–1221. https://doi.org/10.1002/pros.22837
  • Halasi, M., Hitchinson, B., Shah, B. N., Váraljai, R., Khan, I., Benevolenskaya, E. V., Gaponenko, V., Arbiser, J. L., & Gartel, A. L. (2018). Honokiol is a FOXM1 antagonist. Cell Death & Disease, 9(2), 1–8. https://doi.org/10.1038/s41419-017-0156-7
  • Han, H.-K., & Van Anh, L. T. (2012). Modulation of P-glycoprotein expression by honokiol, magnolol and 4-O-methylhonokiol, the bioactive components of Magnolia officinalis. Anticancer Research, 32(10), 4445–4452.
  • Han, M., Yu, X., Guo, Y., Wang, Y., Kuang, H., & Wang, X. (2014). Honokiol nanosuspensions: Preparation, increased oral bioavailability and dramatically enhanced biodistribution in the cardio-cerebro-vascular system. Colloids and Surfaces. B, Biointerfaces, 116, 114–120. https://doi.org/10.1016/j.colsurfb.2013.12.056
  • Harada, S., Kishimoto, M., Kobayashi, M., Nakamoto, K., Fujita-Hamabe, W., Chen, H.-H., Chan, M.-H., & Tokuyama, S. (2012). Retracted Article: Honokiol suppresses the development of post-ischemic glucose intolerance and neuronal damage in mice. Journal of Natural Medicines, 66(4), 591–599. https://doi.org/10.1007/s11418-011-0623-x
  • He, A., Yu, H., Hu, Y., Chen, H., Li, X., Shen, J., Zhuang, R., Chen, Y., Sasmita, B. R., Luo, M., & Lv, D. (2022). Honokiol improves endothelial function in type 2 diabetic rats via alleviating oxidative stress and insulin resistance. Biochemical and Biophysical Research Communications, 600, 109–116. https://doi.org/10.1016/j.bbrc.2022.02.057
  • He, Y., Wang, X.-B., Fan, B.-Y., & Kong, L.-Y. (2014). Honokiol trimers and dimers via biotransformation catalyzed by Momordica charantia peroxidase: Novel and potent α-glucosidase inhibitors. Bioorganic & Medicinal Chemistry, 22(2), 762–771. https://doi.org/10.1016/j.bmc.2013.12.005
  • He, Z., Subramaniam, D., Zhang, Z., Zhang, Y., & Anant, S. (2013). Honokiol as a radiosensitizing agent for colorectal cancers. Current Colorectal Cancer Reports, 9(4), 358–364. https://doi.org/10.1007/s11888-013-0191-4
  • Hoda, N., Naz, H., Jameel, E., Shandilya, A., Dey, S., Hassan, M. I., Ahmad, F., & Jayaram, B. (2016). Curcumin specifically binds to the human calcium-calmodulin-dependent protein kinase IV: Fluorescence and molecular dynamics simulation studies. Journal of Biomolecular Structure & Dynamics, 34(3), 572–584. https://doi.org/10.1080/07391102.2015.1046934
  • Hoffmann, M., Kleine-Weber, H., & Pöhlmann, S. (2020). A multibasic cleavage site in the spike protein of SARS-CoV-2 is essential for infection of human lung cells. Molecular Cell, 78(4), 779–784.e5. e775. https://doi.org/10.1016/j.molcel.2020.04.022
  • Hoi, C. P., Ho, Y. P., Baum, L., & Chow, A. H. (2010a). Neuroprotective effect of honokiol and magnolol, compounds from Magnolia officinalis, on beta-amyloid-induced toxicity in PC12 cells. Phytotherapy Research: PTR, 24(10), 1538–1542. https://doi.org/10.1002/ptr.3178
  • Hoi, C. P., Ho, Y. P., Baum, L., & Chow, A. H. (2010b). Neuroprotective effect of honokiol and magnolol, compounds from Magnolia officinalis, on beta‐amyloid‐induced toxicity in PC12 cells. Phytotherapy Research: PTR, 24(10), 1538–1542. https://doi.org/10.1002/ptr.3178
  • Hou, W., Chen, L., Yang, G., Zhou, H., Jiang, Q., Zhong, Z., Hu, J., Chen, X., Wang, X., Yuan, Y., Tang, M., Wen, J., & Wei, Y. (2008). Synergistic antitumor effects of liposomal honokiol combined with adriamycin in breast cancer models. Phytotherapy Research: PTR, 22(8), 1125–1132. https://doi.org/10.1002/ptr.2472
  • Hou, Y., Peng, S., Li, X., Yao, J., Xu, J., & Fang, J. (2018). Honokiol alleviates oxidative stress-induced neurotoxicity via activation of Nrf2. ACS Chemical Neuroscience, 9(12), 3108–3116. https://doi.org/10.1021/acschemneuro.8b00290
  • Hsiao, C. H., Yao, C. J., Lai, G. M., Lee, L. M., Whang-Peng, J., & Shih, P. H. (2019). Honokiol induces apoptotic cell death by oxidative burst and mitochondrial hyperpolarization of bladder cancer cells. Experimental and Therapeutic Medicine, 17, 4213–4222. https://doi.org/10.3892/etm.2019.7419
  • Hu, H., Zhang, X-x., Wang, Y-y., & Chen, S-z (2005). Honokiol inhibits arterial thrombosis through endothelial cell protection and stimulation of prostacyclin. Acta Pharmacologica Sinica, 26(9), 1063–1068. https://doi.org/10.1111/j.1745-7254.2005.00164.x
  • Hu, Z., Bian, X., Liu, X., Zhu, Y., Zhang, X., Chen, S., Wang, K., & Wang, Y. (2013). Honokiol protects brain against ischemia-reperfusion injury in rats through disrupting PSD95-nNOS interaction. Brain Research, 1491, 204–212. https://doi.org/10.1016/j.brainres.2012.11.004
  • Hua, H., Chen, W., Shen, L., Sheng, Q., & Teng, L. (2013). Honokiol augments the anti-cancer effects of oxaliplatin in colon cancer cells. Acta Biochimica et Biophysica Sinica, 45(9), 773–779. https://doi.org/10.1093/abbs/gmt071
  • Hua, H., Kong, Q., Zhang, H., Wang, J., Luo, T., & Jiang, Y. (2019). Targeting mTOR for cancer therapy. Journal of Hematology & Oncology, 12(1), 1–19. https://doi.org/10.1186/s13045-019-0754-1
  • Huang, J.-S., Yao, C.-J., Chuang, S.-E., Yeh, C.-T., Lee, L.-M., Chen, R.-M., Chao, W.-J., Whang-Peng, J., & Lai, G.-M. (2016). Honokiol inhibits sphere formation and xenograft growth of oral cancer side population cells accompanied with JAK/STAT signaling pathway suppression and apoptosis induction. BMC Cancer, 16(1), 13. https://doi.org/10.1186/s12885-016-2265-6
  • Huang, L., Zhang, K., Guo, Y., Huang, F., Yang, K., Chen, L., Huang, K., Zhang, F., Long, Q., & Yang, Q. (2017). Honokiol protects against doxorubicin cardiotoxicity via improving mitochondrial function in mouse hearts. Scientific Reports, 7(1), 017–12095. https://doi.org/10.1038/s41598-017-12095-y
  • Inoue, K., Kodama, T., & Daida, H. (2012). Pentraxin 3: A novel biomarker for inflammatory cardiovascular disease. International Journal of Vascular Medicine, 2012, 657025. https://doi.org/10.1155/2012/657025
  • Ishikawa, C., Arbiser, J. L., & Mori, N. (2012). Honokiol induces cell cycle arrest and apoptosis via inhibition of survival signals in adult T-cell leukemia. Biochimica et Biophysica Acta, 1820(7), 879–887. https://doi.org/10.1016/j.bbagen.2012.03.009
  • Jairajpuri, D. S., Mohammad, T., Adhikari, K., Gupta, P., Hasan, G. M., Alajmi, M. F., Rehman, M. T., Hussain, A., & Hassan, M. I. (2020). Identification of sphingosine kinase-1 inhibitors from bioactive natural products targeting cancer therapy. ACS Omega, 5(24), 14720–14729. https://doi.org/10.1021/acsomega.0c01511
  • Jayakumari, N. R., Rajendran, R. S., Sivasailam, A., Parambil, S. T., Reghuvaran, A. C., Sreelatha, H. V., & Gopala, S. (2021). Honokiol regulates mitochondrial substrate utilization and cellular fatty acid metabolism in diabetic mice heart. Eur J Pharmacol,.896, 30.
  • Jiang, Q-q., Fan, L-y., Yang, G-l., Guo, W.-H., Hou, W-l., Chen, L-j., & Wei, Y-q (2008). Improved therapeutic effectiveness by combining liposomal honokiol with cisplatin in lung cancer model. BMC Cancer, 8(1), 242. https://doi.org/10.1186/1471-2407-8-242
  • Jiraviriyakul, A., Songjang, W., Kaewthet, P., Tanawatkitichai, P., Bayan, P., & Pongcharoen, S. (2019). Honokiol-enhanced cytotoxic T lymphocyte activity against cholangiocarcinoma cells mediated by dendritic cells pulsed with damage-associated molecular patterns. World Journal of Gastroenterology, 25(29), 3941–3955. https://doi.org/10.3748/wjg.v25.i29.3941
  • Jun-Jun, W., Xiao-Lei, M., Jing-Ya, C., & Yong, C. (2016). The pharmacokinetics and tissue distribution of honokiol and its metabolites in rats. European Journal of Drug Metabolism and Pharmacokinetics, 41(5), 587–594. https://doi.org/10.1007/s13318-015-0281-6
  • Kari, C., Chan, T. O., de Quadros, M. R., & Rodeck, U. (2003). Targeting the epidermal growth factor receptor in cancer: Apoptosis takes center stage. Cancer Research, 63(1), 1–5.
  • Katiyar, S. K. (2016). Emerging phytochemicals for the prevention and treatment of head and neck cancer. Molecules, 21(12), 1610. https://doi.org/10.3390/molecules21121610
  • Katoh, M., & Katoh, M. (2010). Integrative genomic analyses of CXCR4: Transcriptional regulation of CXCR4 based on TGFβ, Nodal, Activin signaling and POU5F1, FOXA2, FOXC2, FOXH1, SOX17, and GFI1 transcription factors. International Journal of Oncology, 36(2), 415–420. https://doi.org/10.3892/ijo_00000514
  • Kaushik, G., Kwatra, D., Subramaniam, D., Jensen, R. A., Anant, S., & Mammen, J. M. (2014). Honokiol affects melanoma cell growth by targeting the AMP-activated protein kinase signaling pathway. American Journal of Surgery, 208(6), 995–1002. https://doi.org/10.1016/j.amjsurg.2014.09.014
  • Kaushik, G., Venugopal, A., Ramamoorthy, P., Standing, D., Subramaniam, D., Umar, S., Jensen, R. A., Anant, S., & Mammen, J. M. (2015). Honokiol inhibits melanoma stem cells by targeting notch signaling. Molecular Carcinogenesis, 54(12), 1710–1721. https://doi.org/10.1002/mc.22242
  • Kerr, M., Miller, J. J., Thapa, D., Stiewe, S., Timm, K. N., Aparicio, C. N. M., Scott, I., Tyler, D. J., & Heather, L. C. (2020). Rescue of myocardial energetic dysfunction in diabetes through the correction of mitochondrial hyperacetylation by honokiol. JCI Insight, 5(17), 140326. https://doi.org/10.1172/jci.insight.140326
  • Khan, P., Queen, A., Mohammad, T., Khan, N. S., Hafeez, Z. B., Hassan, M. I., & Ali, S. (2019). Identification of α-mangostin as a potential inhibitor of microtubule affinity regulating kinase 4. Journal of Natural Products, 82(8), 2252–2261. https://doi.org/10.1021/acs.jnatprod.9b00372
  • Khan, P., Rahman, S., Queen, A., Manzoor, S., Naz, F., Hasan, G. M., Luqman, S., Kim, J., Islam, A., Ahmad, F., & Hassan, M. I. (2017). Elucidation of dietary polyphenolics as potential inhibitor of microtubule affinity regulating kinase 4: In silico and in vitro studies. Scientific Reports, 7(1), 9470. https://doi.org/10.1038/s41598-017-09941-4
  • Khan, S., Fakhar, Z., Hussain, A., Ahmad, A., Jairajpuri, D. S., Alajmi, M. F., & Hassan, M. I. (2020). Structure-based identification of potential SARS-CoV-2 main protease inhibitors. Journal of Biomolecular Structure and Dynamics, 40(8), 3595-3608. https://doi.org/10.1080/07391102.2020.1848634.
  • Kim, Y.-J., & Jung, U. J. (2019). Honokiol improves insulin resistance, hepatic steatosis, and inflammation in type 2 diabetic db/db mice. International Journal of Molecular Sciences, 20(9), 2303. https://doi.org/10.3390/ijms20092303
  • Kindrachuk, J., Ork, B., Hart, B. J., Mazur, S., Holbrook, M. R., Frieman, M. B., Traynor, D., Johnson, R. F., Dyall, J., Kuhn, J. H., Olinger, G. G., Hensley, L. E., & Jahrling, P. B. (2015). Antiviral potential of ERK/MAPK and PI3K/AKT/mTOR signaling modulation for Middle East respiratory syndrome coronavirus infection as identified by temporal kinome analysis. Antimicrobial Agents and Chemotherapy, 59(2), 1088–1099. https://doi.org/10.1128/AAC.03659-14
  • Kobayashi, A., Okuda, H., Xing, F., Pandey, P. R., Watabe, M., Hirota, S., Pai, S. K., Liu, W., Fukuda, K., Chambers, C., Wilber, A., & Watabe, K. (2011). Bone morphogenetic protein 7 in dormancy and metastasis of prostate cancer stem-like cells in bone. The Journal of Experimental Medicine, 208(13), 2641–2655. https://doi.org/10.1084/jem.20110840
  • Kumar, V. P., Reddy, R. G., Vo, D. D., Chakravarty, S., Chandrasekhar, S., & Grée, R. (2012). Synthesis and neurite growth evaluation of new analogues of honokiol, a neolignan with potent neurotrophic activity. Bioorganic & Medicinal Chemistry Letters, 22(3), 1439–1444. https://doi.org/10.1016/j.bmcl.2011.12.015
  • Lai, I.-C., Shih, P.-H., Yao, C.-J., Yeh, C.-T., Wang-Peng, J., Lui, T.-N., Chuang, S.-E., Hu, T.-S., Lai, T.-Y., & Lai, G.-M. (2015). Elimination of cancer stem-like cells and potentiation of temozolomide sensitivity by Honokiol in glioblastoma multiforme cells. PloS One, 10(3), e0114830. https://doi.org/10.1371/journal.pone.0114830
  • Lan, K-l., Lan, K-h., Sheu, M-l., Chen, M-y., Shih, Y-s., Hsu, F-c., Wang, H.-M., Liu, R-s., & Yen, S-h (2011). Honokiol inhibits hypoxia-inducible factor-1 pathway. International Journal of Radiation Biology, 87(6), 579–590. https://doi.org/10.3109/09553002.2011.568572
  • Lawenda, B. D. (2010). Response to “radiation therapeutic gain and Asian botanicals,” by Stephen Sagar. Integrative Cancer Therapies, 9(1), 14–15. https://doi.org/10.1177/1534735410361476
  • Lee, J. S., Sul, J. Y., Park, J. B., Lee, M. S., Cha, E. Y., & Ko, Y. B. (2019a). Honokiol induces apoptosis and suppresses migration and invasion of ovarian carcinoma cells via AMPK/mTOR signaling pathway. International Journal of Molecular Medicine, 43(5), 1969–1978. https://doi.org/10.3892/ijmm.2019.4122
  • Lee, M. Y., Shi, C. S., Hsu, Y. C., Huang, K. J., Chen, S. H., Zhao, P. W., Chung, H. C., Huang, Y. C., & Lee, Y. R. (2019b). Honokiol is a potential therapeutic agent and has a synergistic effect with 5-FU in human urothelial cell carcinoma cells. Anticancer Research, 39(12), 6555–6565. https://doi.org/10.21873/anticanres.13871
  • Lee, T.-Y., Chang, C.-C., Lu, W.-J., Yen, T.-L., Lin, K.-H., Geraldine, P., Li, J.-Y., & Sheu, J.-R. (2017). Honokiol as a specific collagen receptor glycoprotein VI antagonist on human platelets: Functional ex vivo and in vivo studies. Scientific Reports, 7(1), 40002. https://doi.org/10.1038/srep40002
  • Lee, Y.-J., Choi, D.-Y., Yun, Y.-P., Han, S. B., Kim, H. M., Lee, K., Choi, S. H., Yang, M.-P., Jeon, H. S., Jeong, J.-H., Oh, K.-W., & Hong, J. T. (2013). Ethanol extract of Magnolia officinalis prevents lipopolysaccharide‐induced memory deficiency via its antineuroinflammatory and antiamyloidogenic effects. Phytotherapy Research: PTR, 27(3), 438–447. https://doi.org/10.1002/ptr.4740
  • Lee, Y. S., Jeong, S., Kim, K. Y., Yoon, J. S., Kim, S., Yoon, K. S., Ha, J., Kang, I., & Choe, W. (2021). Honokiol inhibits hepatoma carcinoma cell migration through downregulated Cyclophilin B expression. Biochemical and Biophysical Research Communications, 552, 44–51. https://doi.org/10.1016/j.bbrc.2021.03.011
  • Leeman-Neill, R. J., Cai, Q., Joyce, S. C., Thomas, S. M., Bhola, N. E., Neill, D. B., Arbiser, J. L., & Grandis, J. R. (2010). Honokiol inhibits epidermal growth factor receptor signaling and enhances the antitumor effects of epidermal growth factor receptor inhibitors. Clinical Cancer Research: An Official Journal of the American Association for Cancer Research, 16(9), 2571–2579. https://doi.org/10.1158/1078-0432.CCR-10-0333
  • Li, C-g., Ni, C-l., Yang, M., Tang, Y-z., Li, Z., Zhu, Y-j., Jiang, Z-h., Sun, B., & Li, C-j (2018a). Honokiol protects pancreatic β cell against high glucose and intermittent hypoxia-induced injury by activating Nrf2/ARE pathway in vitro and in vivo. Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie, 97, 1229–1237. https://doi.org/10.1016/j.biopha.2017.11.063
  • Li, H. Y., Ye, H. G., Chen, C. Q., Yin, L. H., Wu, J. B., He, L. C., & Gao, S. M. (2015). Honokiol induces cell cycle arrest and apoptosis via inhibiting class I histone deacetylases in acute myeloid leukemia. Journal of Cellular Biochemistry, 116(2), 287–298. https://doi.org/10.1002/jcb.24967
  • Li, L., Chen, C., Zhang, C., Luo, R., Lan, X., Guo, F., Ma, L., Fu, P., & Wang, Y. (2021a). A honokiol-mediated robust coating for blood-contacting devices with anti-inflammatory, antibacterial and antithrombotic properties. Journal of Materials Chemistry. B, 9(47), 9770–9783. https://doi.org/10.1039/d1tb01617b
  • Li, N., Zhang, J., Yan, X., Zhang, C., Liu, H., Shan, X., Li, J., Yang, Y., Huang, C., Zhang, P., Zhang, Y., & Bu, P. (2017). SIRT3-KLF15 signaling ameliorates kidney injury induced by hypertension. Oncotarget, 8(24), 39592–39604. https://doi.org/10.18632/oncotarget.17165
  • Li, Q., Ma, Y., Liu, X. L., Mu, L., He, B. C., Wu, K., & Sun, W. J. (2020). Anti‑proliferative effect of honokiol on SW620 cells through upregulating BMP7 expression via the TGF‑β1/p53 signaling pathway. Oncology Reports, 44(5), 2093–2107. https://doi.org/10.3892/or.2020.7745
  • Li, W., Wang, S., Zhang, H., Li, B., Xu, L., Li, Y., Kong, C., Jiao, H., Wang, Y., Pang, Y., Qin, W., Jia, L., & Jia, J. (2021b). Honokiol restores microglial phagocytosis by reversing metabolic reprogramming. Journal of Alzheimer’s Disease: JAD, 82(4), 1475–1485. https://doi.org/10.3233/JAD-210177
  • Li, X. Q., Ren, J., Wang, Y., Su, J. Y., Zhu, Y. M., Chen, C. G., Long, W. G., Jiang, Q., & Li, J. (2021c). Synergistic killing effect of paclitaxel and honokiol in non-small cell lung cancer cells through paraptosis induction. Cellular Oncology (Dordrecht), 44(1), 135–150. https://doi.org/10.1007/s13402-020-00557-x
  • Li, Y., Liang, C., & Zhou, X. (2022). The application prospects of honokiol in dermatology. Dermatol Ther, 35, 28.
  • Li, Z., Dong, H., Li, M., Wu, Y., Liu, Y., Zhao, Y., Chen, X., & Ma, M. (2018b). Honokiol induces autophagy and apoptosis of osteosarcoma through PI3K/Akt/mTOR signaling pathway. Molecular Medicine Reports, 17(2), 2719–2723. https://doi.org/10.3892/mmr.2017.8123
  • Liang, Y., Cui, G., Wang, X., Zhang, W., An, Q., Lin, Z., Wang, H., & Chen, S. (2014). Pharmacokinetics of honokiol after intravenous guttae in beagle dogs assessed using ultra‐performance liquid chromatography–tandem mass spectrometry. Biomedical Chromatography, 28(10), 1378–1383. https://doi.org/10.1002/bmc.3179
  • Lin, J.-W., Chen, J.-T., Hong, C.-Y., Lin, Y.-L., Wang, K.-T., Yao, C.-J., Lai, G.-M., & Chen, R.-M. (2012). Honokiol traverses the blood-brain barrier and induces apoptosis of neuroblastoma cells via an intrinsic bax-mitochondrion-cytochrome c-caspase protease pathway. Neuro-oncology, 14(3), 302–314. https://doi.org/10.1093/neuonc/nor217
  • Lin, Y.-R., Chen, H.-H., Ko, C.-H., & Chan, M.-H. (2005). Differential inhibitory effects of honokiol and magnolol on excitatory amino acid-evoked cation signals and NMDA-induced seizures. Neuropharmacology, 49(4), 542–550. https://doi.org/10.1016/j.neuropharm.2005.04.009
  • Liou, K.-T., Lin, S.-M., Huang, S.-S., Chih, C.-L., & Tsai, S.-K. (2003a). Honokiol ameliorates cerebral infarction from ischemia-reperfusion injury in rats. Planta Medica, 69(2), 130–134. https://doi.org/10.1055/s-2003-37707
  • Liou, K.-T., Shen, Y.-C., Chen, C.-F., Tsao, C.-M., & Tsai, S.-K. (2003b). Honokiol protects rat brain from focal cerebral ischemia–reperfusion injury by inhibiting neutrophil infiltration and reactive oxygen species production. Brain Research, 992(2), 159–166. https://doi.org/10.1016/j.brainres.2003.08.026
  • Liu, H., Zang, C., Emde, A., Planas-Silva, M. D., Rosche, M., Kühnl, A., Schulz, C.-O., Elstner, E., Possinger, K., & Eucker, J. (2008). Anti-tumor effect of honokiol alone and in combination with other anti-cancer agents in breast cancer. European Journal of Pharmacology, 591(1–3), 43–51. https://doi.org/10.1016/j.ejphar.2008.06.026
  • Liu, R.-X., Ren, W.-Y., Ma, Y., Liao, Y.-P., Wang, H., Zhu, J.-H., Jiang, H.-T., Wu, K., He, B.-C., & Sun, W.-J. (2017). BMP7 mediates the anticancer effect of honokiol by upregulating p53 in HCT116 cells. International Journal of Oncology, 51(3), 907–917. https://doi.org/10.3892/ijo.2017.4078
  • Liu, S. H., Wang, K. B., Lan, K. H., Lee, W. J., Pan, H. C., Wu, S. M., Peng, Y. C., Chen, Y. C., Shen, C. C., & Cheng, H. C. (2012). Calpain/SHP-1 interaction by honokiol dampening peritoneal dissemination of gastric cancer in nu/nu mice. PloS one, 7(8), e43711. https://doi.org/10.1371/journal.pone.0043711.
  • Liu, Y., Cheng, P., & Wu, A. H. (2020). Honokiol inhibits carotid artery atherosclerotic plaque formation by suppressing inflammation and oxidative stress. Aging, 12(9), 8016–8028. https://doi.org/10.18632/aging.103120
  • Locatelli, M., Zoja, C., Zanchi, C., Corna, D., Villa, S., Bolognini, S., Novelli, R., Perico, L., Remuzzi, G., Benigni, A., & Cassis, P. (2020). Manipulating Sirtuin 3 pathway ameliorates renal damage in experimental diabetes. Scientific Reports, 10(1), 1–12. https://doi.org/10.1038/s41598-020-65423-0
  • Luo, L.-X., Li, Y., Liu, Z.-Q., Fan, X.-X., Duan, F.-G., Li, R.-Z., Yao, X.-J., Leung, E. L.-H., & Liu, L. (2017). Honokiol induces apoptosis, G1 arrest, and autophagy in KRAS mutant lung cancer cells. Frontiers in Pharmacology, 8, 199. https://doi.org/10.3389/fphar.2017.00199
  • Lv, L., Kong, Q., Li, Z., Zhang, Y., & C., B. (2022). Honokiol provides cardioprotection from myocardial ischemia/reperfusion injury (MI/RI) by inhibiting mitochondrial apoptosis via the PI3K/AKT signaling pathway. Cardiovasc Ther, 27, 1001692. https://doi.org/10.1155/2022/1001692
  • Lv, X-q., Qiao, X-r., Su, L., & Chen, S-z (2016). Honokiol inhibits EMT-mediated motility and migration of human non-small cell lung cancer cells in vitro by targeting c-FLIP. Acta Pharmacologica Sinica, 37(12), 1574–1586. https://doi.org/10.1038/aps.2016.81
  • Masoud, G. N., & Li, W. (2015). HIF-1α pathway: Role, regulation and intervention for cancer therapy. Acta Pharmaceutica Sinica. B, 5(5), 378–389. https://doi.org/10.1016/j.apsb.2015.05.007
  • Matsui, N., Takahashi, K., Takeichi, M., Kuroshita, T., Noguchi, K., Yamazaki, K., Tagashira, H., Tsutsui, K., Okada, H., Kido, Y., Yasui, Y., Fukuishi, N., Fukuyama, Y., & Akagi, M. (2009). Magnolol and honokiol prevent learning and memory impairment and cholinergic deficit in SAMP8 mice. Brain Research, 1305, 108–117. https://doi.org/10.1016/j.brainres.2009.09.107
  • Mohammad, T., Singh, P., Jairajpuri, D. S., Al-Keridis, L. A., Alshammari, N., Adnan, M., Dohare, R., & Hassan, M. I. (2022). Differential gene expression and weighted correlation network dynamics in high-throughput datasets of prostate cancer. Frontiers in Oncology, 12, 881246. https://doi.org/10.3389/fonc.2022.881246
  • Molloy, S., Bresnahan, P., Leppla, S. H., Klimpel, K., & Thomas, G. (1992). Human furin is a calcium-dependent serine endoprotease that recognizes the sequence Arg-XX-Arg and efficiently cleaves anthrax toxin protective antigen. The Journal of Biological Chemistry, 267(23), 16396–16402. https://doi.org/10.1016/S0021-9258(18)42016-9
  • Mottaghi, S., & Abbaszadeh, H. (2022). Natural lignans honokiol and magnolol as potential anticarcinogenic and anticancer agents. A comprehensive mechanistic review. Nutrition and Cancer, 74(3), 761–778. https://doi.org/10.1080/01635581.2021.1931364
  • Münz, C. (2011). Beclin-1 targeting for viral immune escape. Viruses, 3(7), 1166–1178. https://doi.org/10.3390/v3071166
  • Nanayakkara, A. K., Follit, C. A., Chen, G., Williams, N. S., Vogel, P. D., & Wise, J. G. (2018). Targeted inhibitors of P-glycoprotein increase chemotherapeutic-induced mortality of multidrug resistant tumor cells. Scientific Reports, 8(1), 18. https://doi.org/10.1038/s41598-018-19325-x
  • Naqvi, A. A. T., Fatima, K., Mohammad, T., Fatima, U., Singh, I. K., Singh, A., Atif, S. M., Hariprasad, G., Hasan, G. M., & Hassan, M. I. (2020). Insights into SARS-CoV-2 genome, structure, evolution, pathogenesis and therapies: Structural genomics approach. Biochimica et Biophysica Acta (BBA) – Molecular Basis of Disease, 1866(10), 165878. https://doi.org/10.1016/j.bbadis.2020.165878
  • Naz, H., Khan, P., Tarique, M., Rahman, S., Meena, A., Ahamad, S., Luqman, S., Islam, A., Ahmad, F., & Hassan, M. I. (2017). Binding studies and biological evaluation of beta-carotene as a potential inhibitor of human calcium/calmodulin-dependent protein kinase IV. International Journal of Biological Macromolecules, 96, 161–170. https://doi.org/10.1016/j.ijbiomac.2016.12.024
  • Naz, H., Tarique, M., Ahamad, S., Alajmi, M. F., Hussain, A., Rehman, M. T., Luqman, S., & Hassan, M. I. (2019). Hesperidin-CAMKIV interaction and its impact on cell proliferation and apoptosis in the human hepatic carcinoma and neuroblastoma cells. Journal of Cellular Biochemistry, 120(9), 15119–15130. https://doi.org/10.1002/jcb.28774
  • Niu, L., Hou, Y., Jiang, M., & Bai, G. (2021). The rich pharmacological activities of Magnolia officinalis and secondary effects based on significant intestinal contributions. J Ethnopharmacol, 281, 13.
  • Noor, S., Mohammad, T., Rub, M. A., Raza, A., Azum, N., Yadav, D. K., Hassan, M. I., & Asiri, A. M. (2022). Biomedical features and therapeutic potential of rosmarinic acid. Arch Pharm Res, 7, 1–24.
  • Normanno, N., De Luca, A., Bianco, C., Strizzi, L., Mancino, M., Maiello, M. R., Carotenuto, A., De Feo, G., Caponigro, F., & Salomon, D. S. (2006). Epidermal growth factor receptor (EGFR) signaling in cancer. Gene, 366(1), 2–16. https://doi.org/10.1016/j.gene.2005.10.018
  • Nowell, C. S., & Radtke, F. (2017). Notch as a tumour suppressor. Nature Reviews. Cancer, 17(3), 145–159. https://doi.org/10.1038/nrc.2016.145
  • Ong, C. P., Lee, W. L., Tang, Y. Q., & Yap, W. H. (2020). Honokiol: A review of its anticancer potential and mechanisms. Cancers, 12(1), 48. https://doi.org/10.3390/cancers12010048
  • Onselaer, M. B., Nagy, M., Pallini, C., Pike, J. A., Perrella, G., Quintanilla, L. G., Eble, J. A., Poulter, N. S., Heemskerk, J. W. M., & Watson, S. P. (2020). Comparison of the GPVI inhibitors losartan and honokiol. Platelets, 31(2), 187–197. https://doi.org/10.1080/09537104.2019.1585526
  • Pacifici, F., Rovella, V., Pastore, D., Bellia, A., Abete, P., Donadel, G., Santini, S., Beck, H., Ricordi, C., Daniele, N. D., Lauro, D., & Della-Morte, D. (2021). Polyphenols and ischemic stroke: Insight into one of the best strategies for prevention and treatment. Nutrients, 13(6), 1967. https://doi.org/10.3390/nu13061967
  • Pan, J., Lee, Y., Cheng, G., Zielonka, J., Zhang, Q., Bajzikova, M., Xiong, D., Tsaih, S.-W., Hardy, M., Flister, M., Olsen, C. M., Wang, Y., Vang, O., Neuzil, J., Myers, C. R., Kalyanaraman, B., & You, M. (2018). Mitochondria-targeted honokiol confers a striking inhibitory effect on lung cancer via inhibiting complex I activity. iScience, 3, 192–207. https://doi.org/10.1016/j.isci.2018.04.013
  • Pan, J., Lee, Y., Zhang, Q., Xiong, D., Wan, T. C., Wang, Y., & You, M. (2017). Honokiol decreases lung cancer metastasis through inhibition of the STAT3 signaling pathway. Cancer Prevention Research (Philadelphia, Pa.), 10(2), 133–141. https://doi.org/10.1158/1940-6207.CAPR-16-0129
  • Park, C. H., Cho, S. Y., Du Ha, J., Jung, H., Kim, H. R., Lee, C. O., Jang, I.-Y., Chae, C. H., Lee, H. K., & Choi, S. U. (2016). Novel c-Met inhibitor suppresses the growth of c-Met-addicted gastric cancer cells. BMC Cancer, 16(1), 9. https://doi.org/10.1186/s12885-016-2058-y
  • Park, E.-J., Min, H.-Y., Chung, H.-J., Hong, J.-Y., Kang, Y.-J., Hung, T. M., Youn, U. J., Kim, Y. S., Bae, K., Kang, S. S., & Lee, S. K. (2009a). Down-regulation of c-Src/EGFR-mediated signaling activation is involved in the honokiol-induced cell cycle arrest and apoptosis in MDA-MB-231 human breast cancer cells. Cancer Letters, 277(2), 133–140. https://doi.org/10.1016/j.canlet.2008.11.029
  • Park, H. J., Carr, J. R., Wang, Z., Nogueira, V., Hay, N., Tyner, A. L., Lau, L. F., Costa, R. H., & Raychaudhuri, P. (2009b). FoxM1, a critical regulator of oxidative stress during oncogenesis. The EMBO Journal, 28(19), 2908–2918. https://doi.org/10.1038/emboj.2009.239
  • Patel, S. (2017a). Disruption of aromatase homeostasis as the cause of a multiplicity of ailments: A comprehensive review. The Journal of Steroid Biochemistry and Molecular Biology, 168, 19–25. https://doi.org/10.1016/j.jsbmb.2017.01.009
  • Patel, S. (2017b). Inflammasomes, the cardinal pathology mediators are activated by pathogens, allergens and mutagens: A critical review with focus on NLRP3. Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie, 92, 819–825. https://doi.org/10.1016/j.biopha.2017.05.126
  • Patel, S. (2017c). Stressor-driven extracellular acidosis as tumor inducer via aberrant enzyme activation: A review on the mechanisms and possible prophylaxis. Gene, 626, 209–214. https://doi.org/10.1016/j.gene.2017.05.043
  • Patel, S., Homaei, A., Raju, A. B., & Meher, B. R. (2018). Estrogen: The necessary evil for human health, and ways to tame it. Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie, 102, 403–411. https://doi.org/10.1016/j.biopha.2018.03.078
  • Pezzuto, A., & Carico, E. (2018). Role of HIF-1 in cancer progression: Novel insights. A review. Current Molecular Medicine, 18(6), 343–351. https://doi.org/10.2174/1566524018666181109121849
  • Ponnurangam, S., Mammen, J. M., Ramalingam, S., He, Z., Zhang, Y., Umar, S., Subramaniam, D., & Anant, S. (2012). Honokiol in combination with radiation targets notch signaling to inhibit colon cancer stem cells. Molecular Cancer Therapeutics, 11(4), 963–972. https://doi.org/10.1158/1535-7163.MCT-11-0999
  • Prasad, R., & Katiyar, S. K. (2016). Honokiol, an active compound of magnolia plant, inhibits growth, and progression of cancers of different organs. Anti-Inflammatory Nutraceuticals and Chronic Diseases, 928, 245–265. https://doi.org/10.1007/978-3-319-41334-1_11
  • Qayyum, S., Mohammad, T., Slominski, R. M., Hassan, M. I., Tuckey, R. C., Raman, C., & Slominski, A. T. (2021). Vitamin D and lumisterol novel metabolites can inhibit SARS-CoV-2 replication machinery enzymes. American Journal of Physiology. Endocrinology and Metabolism, 321(2), E246–E251. https://doi.org/10.1152/ajpendo.00174.2021
  • Qin, Q., Xu, Y., He, T., Qin, C., & Xu, J. (2012). Normal and disease-related biological functions of Twist1 and underlying molecular mechanisms. Cell Research, 22(1), 90–106. https://doi.org/10.1038/cr.2011.144
  • Qin, T., Li, J., Xiao, Y., Wang, X., Gong, M., Wang, Q., Zhu, Z., Zhang, S., Zhang, W., & Cao, F. (2021). Honokiol suppresses perineural invasion of pancreatic cancer by inhibiting SMAD2/3 signaling. Frontiers in Oncology, 11, 728583. https://doi.org/10.3389/fonc.2021.728583.
  • Qiu, L., Xu, R., Wang, S., Li, S., Sheng, H., Wu, J., & Qu, Y. (2015). Honokiol ameliorates endothelial dysfunction through suppression of PTX3 expression, a key mediator of IKK/IκB/NF-κB, in atherosclerotic cell model. Experimental & Molecular Medicine, 47(7), e171–e171. https://doi.org/10.1038/emm.2015.37
  • Qiu, N., Cai, L-l., Xie, D., Wang, G., Wu, W., Zhang, Y., Song, H., Yin, H., & Chen, L. (2010). Synthesis, structural and in vitro studies of well-dispersed monomethoxy-poly (ethylene glycol)–honokiol conjugate micelles. Biomedical Materials (Bristol, England), 5(6), 065006. https://doi.org/10.1088/1748-6041/5/6/065006
  • Qu, C., Li, Q.-P., Su, Z.-R., Ip, S.-P., Yuan, Q.-J., Xie, Y.-L., Xu, Q.-Q., Yang, W., Huang, Y.-F., Xian, Y.-F., & Lin, Z.-X. (2022). Nano-Honokiol ameliorates the cognitive deficits in TgCRND8 mice of Alzheimer’s disease via inhibiting neuropathology and modulating gut microbiota. Journal of Advanced Research, 35, 231–243. https://doi.org/10.1016/j.jare.2021.03.012
  • Raja, S. M., Chen, S., Yue, P., Acker, T. M., Lefkove, B., Arbiser, J. L., Khuri, F. R., & Sun, S.-Y. (2008). The natural product honokiol preferentially inhibits cellular FLICE-inhibitory protein and augments death receptor–induced apoptosis. Molecular Cancer Therapeutics, 7(7), 2212–2223. https://doi.org/10.1158/1535-7163.MCT-07-2409
  • Rajendran, P., Li, F., Shanmugam, M. K., Vali, S., Abbasi, T., Kapoor, S., Ahn, K. S., Kumar, A. P., & Sethi, G. (2012). Honokiol inhibits signal transducer and activator of transcription‐3 signaling, proliferation, and survival of hepatocellular carcinoma cells via the protein tyrosine phosphatase SHP‐1. Journal of Cellular Physiology, 227(5), 2184–2195. https://doi.org/10.1002/jcp.22954
  • Rauf, A., Olatunde, A., Imran, M., Alhumaydhi, F. A., Aljohani, A. S. M., Khan, S. A., Uddin, M. S., Mitra, S., Emran, T. B., Khayrullin, M., Rebezov, M., Kamal, M. A., & Shariati, M. A. (2021). Honokiol: A review of its pharmacological potential and therapeutic insights. Phytomedicine: International Journal of Phytotherapy and Phytopharmacology, 90, 153647. https://doi.org/10.1016/j.phymed.2021.153647
  • Rauf, A., Patel, S., Imran, M., Maalik, A., Arshad, M. U., Saeed, F., Mabkhot, Y. N., Al-Showiman, S. S., Ahmad, N., & Elsharkawy, E. (2018). Honokiol: An anticancer lignan. Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie, 107, 555–562. https://doi.org/10.1016/j.biopha.2018.08.054
  • Ríos, J. L., Francini, F., & Schinella, G. R. (2015). Natural products for the treatment of type 2 diabetes mellitus. Planta Medica, 81(12–13), 975–994. https://doi.org/10.1055/s-0035-1546131
  • Robinon, M., & Zhang, X. (2011). The world medicine situation (traditional medicines: Global situation, issues and challenges). World Health Organization.
  • Roy, S., Mohammad, T., Gupta, P., Dahiya, R., Parveen, S., Luqman, S., Hasan, G. M., & Hassan, M. I. (2020). Discovery of harmaline as a potent inhibitor of sphingosine kinase-1: A chemopreventive role in lung cancer. ACS Omega, 5(34), 21550–21560. https://doi.org/10.1021/acsomega.0c02165
  • Salgia, R. (2009). Role of c-Met in cancer: Emphasis on lung cancer. Paper presented at: Seminars in oncology (Elsevier). https://doi.org/10.1053/j.seminoncol.2009.02.008
  • Samarajeewa, N. U., Yang, F., Docanto, M. M., Sakurai, M., McNamara, K. M., Sasano, H., Fox, S. B., Simpson, E. R., & Brown, K. A. (2013). HIF-1α stimulates aromatase expression driven by prostaglandin E 2 in breast adipose stroma. Breast Cancer Research, 15(2), 1–12. https://doi.org/10.1186/bcr3410
  • Sanches-Silva, A., Testai, L., Nabavi, S. F., Battino, M., Pandima Devi, K., Tejada, S., Sureda, A., Xu, S., Yousefi, B., & Majidinia, M. (2020). Therapeutic potential of polyphenols in cardiovascular diseases: Regulation of mTOR signaling pathway. Pharmacol Res,.152, 2.
  • Sasaki, T., Hiroki, K., & Yamashita, Y. (2013). The role of epidermal growth factor receptor in cancer metastasis and microenvironment. BioMed Research International, 2013, 546318. https://doi.org/10.1155/2013/546318
  • Sauzeau, V., Beignet, J., Vergoten, G., & Bailly, C. (2022). Overexpressed or hyperactivated Rac1 as a target to treat hepatocellular carcinoma. Pharmacol Res, 179, 9.
  • Schaper, K. J., Kunz, B., & Raevsky, O. A. (2003). Analysis of water solubility data on the basis of HYBOT descriptors: Part 2. Solubility of liquid chemicals and drugs. QSAR & Combinatorial Science, 22(9-10), 943–958. https://doi.org/10.1002/qsar.200330840
  • Semenza, G. L. (2003). Targeting HIF-1 for cancer therapy. Nature Reviews. Cancer, 3(10), 721–732. https://doi.org/10.1038/nrc1187
  • Sengupta, S., Nagalingam, A., Muniraj, N., Bonner, M. Y., Mistriotis, P., Afthinos, A., Kuppusamy, P., Lanoue, D., Cho, S., Korangath, P., Shriver, M., Begum, A., Merino, V. F., Huang, C.-Y., Arbiser, J. L., Matsui, W., Győrffy, B., Konstantopoulos, K., Sukumar, S., … Sharma, D. (2017). Activation of tumor suppressor LKB1 by honokiol abrogates cancer stem-like phenotype in breast cancer via inhibition of oncogenic Stat3. Oncogene, 36(41), 5709–5721. https://doi.org/10.1038/onc.2017.164
  • Seok, Y. M., Cho, H. J., Cha, B.-Y., Woo, J.-T., & Kim, I. K. (2011). Honokiol attenuates vascular contraction through the inhibition of the RhoA/Rho-kinase signalling pathway in rat aortic rings. The Journal of Pharmacy and Pharmacology, 63(9), 1244–1251. https://doi.org/10.1111/j.2042-7158.2011.01332.x
  • Shamsi, A., Mohammad, T., Anwar, S., Amani, S., Khan, M. S., Husain, F. M., Rehman, M. T., Islam, A., & Hassan, M. I. (2021). Potential drug targets of SARS-CoV-2: From genomics to therapeutics. International Journal of Biological Macromolecules, 177, 1–9. https://doi.org/10.1016/j.ijbiomac.2021.02.071
  • Shen, L., Zhang, F., Huang, R., Yan, J., & Shen, B. (2017). Honokiol inhibits bladder cancer cell invasion through repressing SRC‑3 expression and epithelial‑mesenchymal transition. Oncology Letters, 14(4), 4294–4300. https://doi.org/10.3892/ol.2017.6665
  • Sheng, Y.-L., Xu, J.-H., Shi, C.-H., Li, W., Xu, H.-Y., Li, N., Zhao, Y.-Q., & Zhang, X.-R. (2014). UPLC-MS/MS-ESI assay for simultaneous determination of magnolol and honokiol in rat plasma: Application to pharmacokinetic study after administration emulsion of the isomer. Journal of Ethnopharmacology, 155(3), 1568–1574. https://doi.org/10.1016/j.jep.2014.07.052
  • Shi, X., Zhang, T., Lou, H., Song, H., Li, C., & Fan, P. (2020). Anticancer effects of honokiol via mitochondrial dysfunction are strongly enhanced by the mitochondria-targeting carrier berberine. Journal of Medicinal Chemistry, 63(20), 11786–11800. https://doi.org/10.1021/acs.jmedchem.0c00881
  • Shirley, S., & Micheau, O. (2013). Targeting c-FLIP in cancer. Cancer Letters, 332(2), 141–150. https://doi.org/10.1016/j.canlet.2010.10.009
  • Silver, D. L., Naora, H., Liu, J., Cheng, W., & Montell, D. J. (2004). Activated signal transducer and activator of transcription (STAT) 3: Localization in focal adhesions and function in ovarian cancer cell motility. Cancer Research, 64(10), 3550–3558. https://doi.org/10.1158/0008-5472.CAN-03-3959
  • Singh, T., Gupta, N. A., Xu, S., Prasad, R., Velu, S. E., & Katiyar, S. K. (2015). Honokiol inhibits the growth of head and neck squamous cell carcinoma by targeting epidermal growth factor receptor. Oncotarget, 6(25), 21268–21282. https://doi.org/10.18632/oncotarget.4178
  • Singh, T., & Katiyar, S. K. (2013). Honokiol inhibits non-small cell lung cancer cell migration by targeting PGE2-mediated activation of β-catenin signaling. PloS One, 8(4), e60749. https://doi.org/10.1371/journal.pone.0060749
  • Snow, W. M., Stoesz, B. M., Kelly, D. M., & Albensi, B. C. (2014). Roles for NF-κB and gene targets of NF-κB in synaptic plasticity, memory, and navigation. Molecular Neurobiology, 49(2), 757–770. https://doi.org/10.1007/s12035-013-8555-y
  • Song, J. M., Anandharaj, A., Upadhyaya, P., Kirtane, A. R., Kim, J.-H., Hong, K. H., Panyam, J., & Kassie, F. (2016). Honokiol suppresses lung tumorigenesis by targeting EGFR and its downstream effectors. Oncotarget, 7(36), 57752–57769. https://doi.org/10.18632/oncotarget.10759
  • Soni, S., & Padwad, Y. S. (2017). HIF-1 in cancer therapy: Two decade long story of a transcription factor. Acta Oncologica (Stockholm, Sweden), 56(4), 503–515. https://doi.org/10.1080/0284186X.2017.1301680
  • Stattin, P., Björ, O., Ferrari, P., Lukanova, A., Lenner, P., Lindahl, B., Hallmans, G., & Kaaks, R. (2007). Prospective study of hyperglycemia and cancer risk. Diabetes Care, 30(3), 561–567. https://doi.org/10.2337/dc06-0922
  • Sulakhiya, K., Kumar, P., Jangra, A., Dwivedi, S., Hazarika, N. K., Baruah, C. C., & Lahkar, M. (2014). Honokiol abrogates lipopolysaccharide-induced depressive like behavior by impeding neuroinflammation and oxido-nitrosative stress in mice. European Journal of Pharmacology, 744, 124–131. https://doi.org/10.1016/j.ejphar.2014.09.049
  • Surmacz, E. (2007). Obesity hormone leptin: A new target in breast cancer? Breast Cancer Research, 9(1), 2. https://doi.org/10.1186/bcr1638
  • Suryavanshi, S. V., & Kulkarni, Y. A. (2017). NF-κβ: A potential target in the management of vascular complications of diabetes. Frontiers in Pharmacology, 8, 798. https://doi.org/10.3389/fphar.2017.00798
  • Talarek, S., Listos, J., Barreca, D., Tellone, E., Sureda, A., Nabavi, S. F., Braidy, N., & Nabavi, S. M. (2017). Neuroprotective effects of honokiol: From chemistry to medicine. BioFactors (Oxford, England), 43(6), 760–769. https://doi.org/10.1002/biof.1385
  • Tan, Z., Liu, H., Song, X., Ling, Y., He, S., Yan, Y., Yan, J., Wang, S., Wang, X., & Chen, A. (2019). Honokiol post-treatment ameliorates myocardial ischemia/reperfusion injury by enhancing autophagic flux and reducing intracellular ROS production. Chemico-Biological Interactions, 307, 82–90. https://doi.org/10.1016/j.cbi.2019.04.032
  • Tang, P., Sun, Q., Yang, H., Tang, B., Pu, H., & Li, H. (2018). Honokiol nanoparticles based on epigallocatechin gallate functionalized chitin to enhance therapeutic effects against liver cancer. International Journal of Pharmaceutics, 545(1-2), 74–83. https://doi.org/10.1016/j.ijpharm.2018.04.060
  • Tanikawa, T., Hayashi, T., Suzuki, R., Kitamura, M., & Inoue, Y. (2022). Inhibitory effect of honokiol on furin-like activity and SARS-CoV-2 infection. Journal of Traditional and Complementary Medicine, 12(1), 69–72. https://doi.org/10.1016/j.jtcme.2021.09.005
  • Teponno, R. B., Kusari, S., & Spiteller, M. (2016). Recent advances in research on lignans and neolignans. Natural Product Reports, 33(9), 1044–1092. https://doi.org/10.1039/c6np00021e
  • Thews, O., Gassner, B., Kelleher, D. K., Schwerd, G., & Gekle, M. (2006). Impact of extracellular acidity on the activity of P-glycoprotein and the cytotoxicity of chemotherapeutic drugs. Neoplasia (New York, N.Y.), 8(2), 143–152. https://doi.org/10.1593/neo.05697
  • Tian, J., Zhang, X., Wu, H., Liu, C., Li, Z., Hu, X., Su, S., Wang, L.-F., & Qu, L. (2015). Blocking the PI3K/AKT pathway enhances mammalian reovirus replication by repressing IFN-stimulated genes. Frontiers in Microbiology, 6, 886. https://doi.org/10.3389/fmicb.2015.00886
  • Tian, W., Deng, Y., Li, L., He, H., Sun, J., & Xu, D. (2013). Honokiol synergizes chemotherapy drugs in multidrug resistant breast cancer cells via enhanced apoptosis and additional programmed necrotic death. International Journal of Oncology, 42(2), 721–732. https://doi.org/10.3892/ijo.2012.1739
  • Tian, W., Xu, D., & Deng, Y.-C. (2012). Honokiol, a multifunctional tumor cell death inducer. Die Pharmazie-An International Journal of Pharmaceutical Sciences, 67, 811–816.
  • Treviño-Saldaña, N., & García-Rivas, G. (2017). Regulation of sirtuin-mediated protein deacetylation by cardioprotective phytochemicals. Oxidative Medicine and Cellular Longevity, 2017, 1750306. https://doi.org/10.1155/2017/1750306
  • Tripathi, S., Chan, M. H., & Chen, C. (2012). An expedient synthesis of honokiol and its analogues as potential neuropreventive agents. Bioorganic & Medicinal Chemistry Letters, 22(1), 216–221. https://doi.org/10.1016/j.bmcl.2011.11.030
  • Tsai, T.-H., & Chen, C.-F. (1992). Identification and determination of honokiol and magnolol from Magnolia officinalis by high-performance liquid chromatography with phtodiode-array UV detection. Journal of Chromatography A, 598(1), 143–146. https://doi.org/10.1016/0021-9673(92)85125-D
  • Tsai, T.-H., Chou, C.-J., Cheng, F.-C., & Chen, C.-F. (1994). Pharmacokinetics of honokiol after intravenous administration in rats assessed using high performance liquid chromatography. Journal of Chromatography B: Biomedical Sciences and Applications, 655(1), 41–45. https://doi.org/10.1016/0378-4347(94)00031-X
  • Tse, A. K.-W., Wan, C.-K., Shen, X.-L., Yang, M., & Fong, W.-F. (2005). Honokiol inhibits TNF-α-stimulated NF-κB activation and NF-κB-regulated gene expression through suppression of IKK activation. Biochemical Pharmacology, 70(10), 1443–1457. https://doi.org/10.1016/j.bcp.2005.08.011
  • Vavilala, D. T., Ponnaluri, V. C., Kanjilal, D., & Mukherji, M. (2014). Evaluation of anti-HIF and anti-angiogenic properties of honokiol for the treatment of ocular neovascular diseases. PloS One, 9(11), e113717. https://doi.org/10.1371/journal.pone.0113717
  • Venkatesh, V., Nataraj, R., Thangaraj, G. S., Karthikeyan, M., Gnanasekaran, A., Kaginelli, S. B., Kuppanna, G., Kallappa, C. G., & Basalingappa, K. M. (2018). Targeting Notch signalling pathway of cancer stem cells. Stem Cell Investigation, 5, 5. https://doi.org/10.21037/sci.2018.02.02
  • Waghray, D., & Zhang, Q. (2018). Inhibit or evade multidrug resistance P-glycoprotein in cancer treatment: Miniperspective. Journal of Medicinal Chemistry, 61(12), 5108–5121. https://doi.org/10.1021/acs.jmedchem.7b01457
  • Walls, A. C., Park, Y.-J., Tortorici, M. A., Wall, A., McGuire, A. T., & Veesler, D. (2020). Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein. Cell, 181(2), 281–292.e6. e286. https://doi.org/10.1016/j.cell.2020.02.058
  • Wan, R., Fan, J., Song, H., Sun, W., & Yin, Y. (2022). Oxygen-glucose deprivation/reperfusion-induced Sirt3 reduction facilitated neuronal injuries in an apoptosis-dependent manner during prolonged reperfusion. Neurochemical Research, 47(4), 1012–1024. https://doi.org/10.1007/s11064-021-03502-y
  • Wang, H., Liao, Z., Sun, X., Shi, Q., Huo, G., Xie, Y., Tang, X., Zhi, X., & Tang, Z. (2014a). Intravenous administration of Honokiol provides neuroprotection and improves functional recovery after traumatic brain injury through cell cycle inhibition. Neuropharmacology, 86, 9–21. https://doi.org/10.1016/j.neuropharm.2014.06.018
  • Wang, H. H., Chen, Y., Changchien, C. Y., Chang, H. H., Lu, P. J., Mariadas, H., Cheng, Y. C., & Wu, S. T. (2020a). Pharmaceutical evaluation of honokiol and magnolol on apoptosis and migration inhibition in human bladder cancer cells. Front Pharmacol, 11, 549338. https://doi.org/10.3389/fphar.2020.549338
  • Wang, J., Ma, Q., Li, Y., Li, P., Wang, M., Wang, T., Wang, C., Wang, T., & Zhao, B. (2020b). Research progress on traditional Chinese medicine syndromes of diabetes mellitus. Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie, 121, 109565. https://doi.org/10.1016/j.biopha.2019.109565
  • Wang, T.-E. J., Liu, H.-T., Lai, Y.-H., Jan, T.-R., Nomura, N., Chang, H.-W., Chou, C.-C., Lee, Y.-J., & Tsai, P.-S. J. (2018a). Honokiol, a polyphenol natural compound, attenuates cisplatin-induced acute cytotoxicity in renal epithelial cells through cellular oxidative stress and cytoskeleton modulations. Frontiers in Pharmacology, 9, 357. https://doi.org/10.3389/fphar.2018.00357
  • Wang, T., Wang, H., Yang, F., Gao, K., Luo, S., Bai, L., Ma, K., Liu, M., Wu, S., Wang, H., Chen, Z., & Xiao, Q. (2021). Honokiol inhibits proliferation of colorectal cancer cells by targeting anoctamin 1/TMEM16A Ca(2+) -activated Cl(-) channels. British Journal of Pharmacology, 178(20), 4137–4154. https://doi.org/10.1111/bph.15606
  • Wang, W. D., Shang, Y., Li, Y., & Chen, S. Z. (2019a). Honokiol inhibits breast cancer cell metastasis by blocking EMT through modulation of Snail/Slug protein translation. Acta Pharmacologica Sinica, 40(9), 1219–1227. https://doi.org/10.1038/s41401-019-0240-x
  • Wang, X.-H., Cai, L.-L., Zhang, X.-Y., Deng, L.-Y., Zheng, H., Deng, C.-Y., Wen, J.-L., Zhao, X., Wei, Y.-Q., & Chen, L.-J. (2011a). Improved solubility and pharmacokinetics of PEGylated liposomal honokiol and human plasma protein binding ability of honokiol. International Journal of Pharmaceutics, 410(1–2), 169–174. https://doi.org/10.1016/j.ijpharm.2011.03.003
  • Wang, X., Beitler, J. J., Huang, W., Chen, G., Qian, G., Magliocca, K., Patel, M. R., Chen, A. Y., Zhang, J., Nannapaneni, S., Kim, S., Chen, Z., Deng, X., Saba, N. F., Chen, Z. G., Arbiser, J. L., & Shin, D. M. (2018b). Honokiol radiosensitizes squamous cell carcinoma of the head and neck by downregulation of survivin. Clinical Cancer Research: An Official Journal of the American Association for Cancer Research, 24(4), 858–869. https://doi.org/10.1158/1078-0432.CCR-17-0345
  • Wang, X., Beitler, J. J., Wang, H., Lee, M. J., Huang, W., Koenig, L., Nannapaneni, S., Amin, A. R. M. R., Bonner, M., Shin, H. J. C., Chen, Z. G., Arbiser, J. L., & Shin, D. M. (2014b). Honokiol enhances paclitaxel efficacy in multi-drug resistant human cancer model through the induction of apoptosis. PloS One, 9(2), e86369. https://doi.org/10.1371/journal.pone.0086369
  • Wang, X., Chen, Z., Arbiser, J., & Shin, D. (2007). Honokiol reduces drug resistance by inhibition of P-glycoprotein expression in multidrug resistant (MDR) squamous cell carcinoma of the head and neck (SCCHN) (AACR). Cancer Research, 67(9_Supplement), 2776–2776.
  • Wang, X., Duan, X., Yang, G., Zhang, X., Deng, L., Zheng, H., Deng, C., Wen, J., Wang, N., Peng, C., Zhao, X., Wei, Y., & Chen, L. (2011b). Honokiol crosses BBB and BCSFB, and inhibits brain tumor growth in rat 9L intracerebral gliosarcoma model and human U251 xenograft glioma model. PLoS One,.6(4), e18490. https://doi.org/10.1371/journal.pone.0018490
  • Wang, X., Xiao, D., Ma, C., Zhang, L., Duan, Q., Zheng, X., Mao, M., Zhu, D., & Li, Q. (2019b). The effect of honokiol on pulmonary artery endothelium cell autophagy mediated by cyclophilin A in hypoxic pulmonary arterial hypertension. Journal of Pharmacological Sciences, 139(3), 158–165. https://doi.org/10.1016/j.jphs.2019.01.005
  • Wang, Y., Liu, Z., Liu, Q., Han, Y., Zang, Y., Zhang, H., Du, X., Qin, T., & Wu, Y. (2020c). Honokiol suppressed pancreatic cancer progression via miR-101/Mcl-1 axis. Cancer Management and Research, 12, 5243–5254. https://doi.org/10.2147/CMAR.S237323
  • Wang, Y., Zhao, D., Sheng, J., & Lu, P. (2018c). Local honokiol application inhibits intimal thickening in rabbits following carotid artery balloon injury. Molecular Medicine Reports, 17(1), 1683–1689.
  • Watanabe, K., Watanabe, H., Goto, Y., Yamaguchi, M., Yamamoto, N., & Hagino, K. (1983). Pharmacological properties of magnolol and hōnokiol extracted from Magnolia officinalis: Central depressant effects. Planta Medica, 49(2), 103–108. https://doi.org/10.1055/s-2007-969825
  • Wei, X. Q., Zhang, H. S., Wei, G. H., Zhang, J. G., Du, Y. Y., Tan, H. Y., & Yang, J. (2018). Honokiol protects against anti-β1-adrenergic receptor autoantibody-induced myocardial dysfunction via activation of autophagy. Oxidative Medicine and Cellular Longevity, 2018, 1–10. https://doi.org/10.1155/2018/1640804
  • Woldaregay, A. Z., Årsand, E., Botsis, T., Albers, D., Mamykina, L., & Hartvigsen, G. (2019). Data-driven blood glucose pattern classification and anomalies detection: Machine-learning applications in type 1 diabetes. Journal of Medical Internet Research, 21(5), e11030. https://doi.org/10.2196/11030
  • Woodbury, A., Yu, S. P., Chen, D., Gu, X., Lee, J. H., Zhang, J., Espinera, A., García, P. S., & Wei, L. (2015). Honokiol for the treatment of neonatal pain and prevention of consequent neurobehavioral disorders. Journal of Natural Products, 78(11), 2531–2536. https://doi.org/10.1021/acs.jnatprod.5b00225
  • Woodbury, A., Yu, S. P., Wei, L., & García, P. (2013). Neuro-modulating effects of honokiol: A review. Frontiers in Neurology, 4, 130. https://doi.org/10.3389/fneur.2013.00130
  • Wu, G.-J., Lin, C.-J., Lin, Y.-W., & Chen, R.-M. (2016). Data analyses of honokiol-induced autophagy of human glioma cells in vitro and in vivo. Data in Brief, 9, 667–672. https://doi.org/10.1016/j.dib.2016.09.045
  • Wu, H., Chen, X., Xiong, J., Li, Y., Li, H., Ding, X., Liu, S., Chen, S., Gao, S., & Zhu, B. (2011). Histone methyltransferase G9a contributes to H3K27 methylation in vivo. Cell Research, 21(2), 365–367. https://doi.org/10.1038/cr.2010.157
  • Wu, J.-P., Zhang, W., Wu, F., Zhao, Y., Cheng, L.-F., Xie, J.-J., & Yao, H.-P. (2010). Honokiol: An effective inhibitor of high-glucose-induced upregulation of inflammatory cytokine production in human renal mesangial cells. Inflammation Research: Official Journal of the European Histamine Research Society., 59(12), 1073–1079. https://doi.org/10.1007/s00011-010-0227-z
  • Wu, X., Chen, X., & Hu, Z. (2003). High-performance liquid chromatographic method for simultaneous determination of honokiol and magnolol in rat plasma. Talanta, 59(1), 115–121. https://doi.org/10.1016/S0039-9140(02)00470-8
  • Wynn, M. L., Consul, N., Merajver, S. D., & Schnell, S. (2014). Inferring the effects of honokiol on the notch signaling pathway in SW480 colon cancer cells. Cancer Informatics, 13(Suppl 5), 1–12. https://doi.org/10.4137/CIN.S14060
  • Xia, L., Tan, S., Zhou, Y., Lin, J., Wang, H., Oyang, L., Tian, Y., Liu, L., Su, M., Wang, H., Cao, D., & Liao, Q. (2018). Role of the NFkappaB-signaling pathway in cancer. OncoTargets and Therapy, 11, 2063–2073. https://doi.org/10.2147/OTT.S161109
  • Xia, Y., Shen, S., & Verma, I. M. (2014). NF-κB, an active player in human cancers. Cancer Immunology Research, 2(9), 823–830. https://doi.org/10.1158/2326-6066.CIR-14-0112
  • Xian, Y. F., Ip, S. P., Mao, Q. Q., & Lin, Z. X. (2016). Neuroprotective effects of honokiol against beta-amyloid-induced neurotoxicity via GSK-3β and β-catenin signaling pathway in PC12 cells. Neurochemistry International, 97, 8–14. https://doi.org/10.1016/j.neuint.2016.04.014
  • Xie, L., Jiang, F., Zhang, X., Alitongbieke, G., Shi, X., Meng, M., Xu, Y., Ren, A., Wang, J., Cai, L., Zhou, Y., Xu, Y., Su, Y., Liu, J., Zeng, Z., Wang, G., Zhou, H., Chen, Q. C., & Zhang, X.-K. (2016). Honokiol sensitizes breast cancer cells to TNF‐α induction of apoptosis by inhibiting Nur77 expression. British Journal of Pharmacology, 173(2), 344–356. https://doi.org/10.1111/bph.13375
  • Xu, D., Lu, Q., & Hu, X. (2006). Down-regulation of P-glycoprotein expression in MDR breast cancer cell MCF-7/ADR by honokiol. Cancer Letters, 243(2), 274–280. https://doi.org/10.1016/j.canlet.2005.11.031
  • Yang, S.-E., Hsieh, M.-T., Tsai, T.-H., & Hsu, S.-L. (2002). Down-modulation of Bcl-XL, release of cytochrome c and sequential activation of caspases during honokiol-induced apoptosis in human squamous lung cancer CH27 cells. Biochemical Pharmacology, 63(9), 1641–1651. https://doi.org/10.1016/S0006-2952(02)00894-8
  • Ye, H., & Meng, Y. (2021). Honokiol regulates endoplasmic reticulum stress by promoting the activation of the sirtuin 1-mediated protein kinase B pathway and ameliorates high glucose/high fat-induced dysfunction in human umbilical vein endothelial cells. Endocrine Journal, 68(8), 981–992. https://doi.org/10.1507/endocrj.EJ20-0747
  • Ye, J. S., Chen, L., Lu, Y. Y., Lei, S. Q., Peng, M., & Xia, Z. Y. (2019). Honokiol-mediated mitophagy ameliorates postoperative cognitive impairment induced by surgery/sevoflurane via inhibiting the activation of NLRP3 inflammasome in the Hippocampus. Oxidative Medicine and Cellular Longevity, 2019, 1–13. https://doi.org/10.1155/2019/8639618
  • Yeh, P.-S., Wang, W., Chang, Y.-A., Lin, C.-J., Wang, J.-J., & Chen, R.-M. (2016). Honokiol induces autophagy of neuroblastoma cells through activating the PI3K/Akt/mTOR and endoplasmic reticular stress/ERK1/2 signaling pathways and suppressing cell migration. Cancer Letters, 370(1), 66–77. https://doi.org/10.1016/j.canlet.2015.08.030
  • Yewale, C., Baradia, D., Vhora, I., Patil, S., & Misra, A. (2013). Epidermal growth factor receptor targeting in cancer: A review of trends and strategies. Biomaterials, 34(34), 8690–8707. https://doi.org/10.1016/j.biomaterials.2013.07.100
  • Yi, X., Qi, M., Huang, M., Zhou, S., & Xiong, J. (2022). Honokiol inhibits HIF-1α-mediated glycolysis to halt breast cancer growth. Front Pharmacol, 13, 796763. https://doi.org/10.3389/fphar.2022.796763.
  • Yousuf, M., Khan, P., Shamsi, A., Shahbaaz, M., Hasan, G. M., Haque, Q. M. R., Christoffels, A., Islam, A., & Hassan, M. I. (2020a). Inhibiting CDK6 activity by quercetin is an attractive strategy for cancer therapy. ACS Omega, 5(42), 27480–27491. https://doi.org/10.1021/acsomega.0c03975
  • Yousuf, M., Shamsi, A., Khan, P., Shahbaaz, M., Alajmi, M. F., Hussain, A., Hassan, G. M., Islam, A., Haque, Q. M. R., & Hassan, M. I. (2020b). Ellagic acid controls cell proliferation and induces apoptosis in breast cancer cells via inhibition of cyclin-dependent kinase 6. International Journal of Molecular Sciences, 21(10), 3526. https://doi.org/10.3390/ijms21103526
  • Yu, C., Zhang, Q., Zhang, H. Y., Zhang, X., Huo, X., Cheng, E., Wang, D. H., Arbiser, J. L., Spechler, S. J., & Souza, R. F. (2012). Targeting the intrinsic inflammatory pathway: Honokiol exerts proapoptotic effects through STAT3 inhibition in transformed Barrett’s cells. American Journal of Physiology. Gastrointestinal and Liver Physiology, 303(5), G561–G569. https://doi.org/10.1152/ajpgi.00033.2012
  • Yu, H., Pardoll, D., & Jove, R. (2009). STATs in cancer inflammation and immunity: A leading role for STAT3. Nature Reviews. Cancer, 9(11), 798–809. https://doi.org/10.1038/nrc2734
  • Yu, L., Li, S., Tang, X., Li, Z., Zhang, J., Xue, X., Han, J., Liu, Y., Zhang, Y., Zhang, Y., Xu, Y., Yang, Y., & Wang, H. (2017). Diallyl trisulfide ameliorates myocardial ischemia–reperfusion injury by reducing oxidative stress and endoplasmic reticulum stress-mediated apoptosis in type 1 diabetic rats: Role of SIRT1 activation. Apoptosis: An International Journal on Programmed Cell Death, 22(7), 942–954. https://doi.org/10.1007/s10495-017-1378-y
  • Zbidah, M., Lupescu, A., Herrmann, T., Yang, W., Foller, M., Jilani, K., & Lang, F. (2013). Effect of honokiol on erythrocytes. Toxicology in Vitro: An International Journal Published in Association with BIBRA, 27(6), 1737–1745. https://doi.org/10.1016/j.tiv.2013.05.003
  • Zhang, B., Zhai, M., Li, B., Liu, Z., Li, K., Jiang, L., Zhang, M., Yi, W., Yang, J., Yi, D., Liang, H., Jin, Z., Duan, W., & Yu, S. (2018a). Honokiol ameliorates myocardial ischemia/reperfusion injury in type 1 diabetic rats by reducing oxidative stress and apoptosis through activating the SIRT1-Nrf2 signaling pathway. Oxidative Medicine and Cellular Longevity, 2018, 3159801. https://doi.org/10.1155/2018/3159801
  • Zhang, B., Zhai, M., Li, B., Liu, Z., Li, K., Jiang, L., Zhang, M., Yi, W., Yang, J., Yi, D., Liang, H., Jin, Z., Duan, W., & Yu, S. (2018b). Honokiol ameliorates myocardial ischemia/reperfusion injury in type 1 diabetic rats by reducing oxidative stress and apoptosis through activating the SIRT1-Nrf2 signaling pathway. Oxidative Medicine and Cellular Longevity, 2018, 1–16. https://doi.org/10.1155/2018/3159801
  • Zhang, G.-S., Wang, R.-J., Zhang, H.-N., Zhang, G.-P., Luo, M.-S., & Luo, J.-D. (2010). Effects of chronic treatment with honokiol in spontaneously hypertensive rats. Biological & Pharmaceutical Bulletin, 33(3), 427–431. https://doi.org/10.1248/bpb.33.427
  • Zhang, M.-W., Xu, X.-J., Fan, J.-X., Hung, Y.-X., Ye, Y.-B., Wang, J., & Guo, K.-Y. (2014). Honokiol combined with Gemcitabine synergistically inhibits the proliferation of human Burkitt lymphoma cells and induces their apoptosis. Zhongguo Shi Yan Xue ye Xue za Zhi, 22, 93–98.
  • Zhang, P., Liu, X., Zhu, Y., Chen, S., Zhou, D., & Wang, Y. (2013). Honokiol inhibits the inflammatory reaction during cerebral ischemia reperfusion by suppressing NF-κB activation and cytokine production of glial cells. Neuroscience Letters, 534, 123–127. https://doi.org/10.1016/j.neulet.2012.11.052
  • Zhang, Q., Wang, J., Liu, D., Zhu, W., Guan, S., Fan, L., & Cai, D. (2020). Targeted delivery of honokiol by zein/hyaluronic acid core-shell nanoparticles to suppress breast cancer growth and metastasis. Carbohydrate Polymers, 240, 116325. https://doi.org/10.1016/j.carbpol.2020.116325
  • Zhang, Q., Zhao, W., Ye, C., Zhuang, J., Chang, C., Li, Y., Huang, X., Shen, L., Li, Y., Cui, Y., Song, J., Shen, B., Eliaz, I., Huang, R., Ying, H., Guo, H., & Yan, J. (2015a). Honokiol inhibits bladder tumor growth by suppressing EZH2/miR-143 axis. Oncotarget, 6(35), 37335–37348. https://doi.org/10.18632/oncotarget.6135
  • Zhang, Y-d., Yang, Q., Jiang, Z-m., Ma, W., Zhou, S-w., & Xie, D-r (2011). Overall survival of patients with advanced pancreatic cancer improved with an increase in second-line chemotherapy after gemcitabine-based therapy. JOP Journal of the Pancreas, 12, 131–137.
  • Zhang, Y., Chen, T., Yuan, P., Tian, R., Hu, W., Tang, Y., Jia, Y., & Zhang, L. (2015b). Encapsulation of honokiol into self-assembled pectin nanoparticles for drug delivery to HepG2 cells. Carbohydrate Polymers, 133, 31–38. https://doi.org/10.1016/j.carbpol.2015.06.102
  • Zhu, X., Wang, Z., Hu, C., Li, Z., & Hu, J. (2014). Honokiol suppresses TNF-α-induced migration and matrix metalloproteinase expression by blocking NF-κB activation via the ERK signaling pathway in rat aortic smooth muscle cells. Acta Histochemica, 116(4), 588–595. https://doi.org/10.1016/j.acthis.2013.11.005

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.