201
Views
2
CrossRef citations to date
0
Altmetric
Research Articles

Structural communication fingerprinting and dynamic investigation of RBD-hACE2 complex from BA.1 × AY.4 recombinant variant (Deltacron) of SARS-CoV-2 to decipher the structural basis for enhanced transmission

, , , ORCID Icon, , , , ORCID Icon, , , & ORCID Icon show all
Pages 7665-7676 | Received 26 Jul 2022, Accepted 05 Sep 2022, Published online: 21 Sep 2022

References

  • Annavajhala, M. K., Mohri, H., Wang, P., Nair, M., Zucker, J. E., Sheng, Z., Gomez-Simmonds, A., Kelley, A. L., Tagliavia, M., Huang, Y., Bedford, T., Ho, D. D., & Uhlemann, A.-C. (2021). Emergence and expansion of SARS-CoV-2 B. 1.526 after identification in New York. Nature, 597(7878), 703–708. https://doi.org/10.1038/s41586-021-03908-2
  • Bornot, A., Etchebest, C., & de Brevern, A. G. (2011). Predicting protein flexibility through the prediction of local structures. Proteins, 79(3), 839–852. https://doi.org/10.1002/prot.22922
  • Chen, D., Oezguen, N., Urvil, P., Ferguson, C., Dann, S. M., & Savidge, T. C. (2016). Regulation of protein-ligand binding affinity by hydrogen bond pairing. Science Advances, 2(3), e1501240. https://doi.org/10.1126/sciadv.1501240
  • Chodera, J. D., & Mobley, D. L. (2013). Entropy-enthalpy compensation: role and ramifications in biomolecular ligand recognition and design. Annual Review of Biophysics, 42, 121–142. https://doi.org/10.1146/annurev-biophys-083012-130318
  • Colson, P. (2022). Culture and identification of a Deltamicron SARS-CoV-2 in a three cases cluster in southern France. medRxiv,
  • da Silva Júnior, O. S., Franco, C. d J. P., de Moraes, A. A. B., Cruz, J. N., da Costa, K. S., do Nascimento, L. D., & Andrade, E. H. d A. (2021). In silico analyses of toxicity of the major constituents of essential oils from two Ipomoea L. species. Toxicon : official Journal of the International Society on Toxinology, 195, 111–118. https://doi.org/10.1016/j.toxicon.2021.02.015
  • DeLano, W. L. (2002). Pymol: An open-source molecular graphics tool. CCP4 Newsletter on Protein Crystallography, 40(1), 82–92.
  • Hussain, I., Pervaiz, N., Khan, A., Saleem, S., Shireen, H., Wei, D.-Q., Labrie, V., Bao, Y., & Abbasi, A. A. (2020). Evolutionary and structural analysis of SARS-CoV-2 specific evasion of host immunity. Genes & Immunity, 21(6–8), 409–419. https://doi.org/10.1038/s41435-020-00120-6
  • Kannan, S. R., Spratt, A. N., Cohen, A. R., Naqvi, S. H., Chand, H. S., Quinn, T. P., Lorson, C. L., Byrareddy, S. N., & Singh, K. (2021). Evolutionary analysis of the Delta and Delta Plus variants of the SARS-CoV-2 viruses. Journal of Autoimmunity, 124, 102715.
  • Khan, A. (XXXX). Preliminary structural data revealed that the SARS-CoV-2 B. 1.617 variant’s RBD binds to ACE2 receptor stronger than the wild type to enhance the infectivity. ChemBioChem, 22, 2641–2649.
  • Khan, A., Gui, J., Ahmad, W., Haq, I., Shahid, M., Khan, A. A., Shah, A., Khan, A., Ali, L., Anwar, Z., Safdar, M., Abubaker, J., Uddin, N. N., Cao, L., Wei, D.-Q., & Mohammad, A. (2021). The SARS-CoV-2 B. 1.618 variant slightly alters the spike RBD–ACE2 binding affinity and is an antibody escaping variant: a computational structural perspective. RSC Advances, 11(48), 30132–30147. https://doi.org/10.1039/d1ra04694b
  • Khan, A., Tahir Khan, M., Saleem, S., Junaid, M., Ali, A., Shujait Ali, S., Khan, M., & Wei, D.-Q. (2020). Structural Insights into the mechanism of RNA recognition by the N-terminal RNA-binding domain of the SARS-CoV-2 nucleocapsid phosphoprotein. Computational and Structural Biotechnology Journal, 18, 2174–2184. https://doi.org/10.1016/j.csbj.2020.08.006
  • Khan, A., Waris, H., Rafique, M., Suleman, M., Mohammad, A., Ali, S. S., Khan, T., Waheed, Y., Liao, C., & Wei, D.-Q. (2022). The Omicron (B. 1.1. 529) variant of SARS-CoV-2 binds to the hACE2 receptor more strongly and escapes the antibody response: Insights from structural and simulation data. International Journal of Biological Macromolecules, 200, 438–448. https://doi.org/10.1016/j.ijbiomac.2022.01.059
  • Khan, A., Zia, T., Suleman, M., Khan, T., Ali, S. S., Abbasi, A. A., Mohammad, A., & Wei, D.-Q. (2021). Higher infectivity of the SARS-CoV-2 new variants is associated with K417N/T, E484K, and N501Y mutants: An insight from structural data. Journal of Cellular Physiology, 236(10), 7045–7057. https://doi.org/10.1002/jcp.30367
  • Laskowski, R. A. (2001). PDBsum: Summaries and analyses of PDB structures. Nucleic Acids Research, 29(1), 221–222. https://doi.org/10.1093/nar/29.1.221
  • Lata, S., & Akif, M. (2022). Probing structural basis for enhanced binding of SARS‐CoV‐2 P. 1 variant spike protein with the human ACE2 receptor. Journal of Cellular Biochemistry, 123, 1207-1221.
  • Lima, A. d M., Siqueira, A. S., Möller, M. L. S., Souza, R. C. d., Cruz, J. N., Lima, A. R. J., Silva, R. C. d., Aguiar, D. C. F., Junior, J. L. d S. G. V., & Gonçalves, E. C. (2022). In silico improvement of the cyanobacterial lectin microvirin and mannose interaction. Journal of Biomolecular Structure & Dynamics, 40(3), 1064–1073. https://doi.org/10.1080/07391102.2020.1821782
  • Liu, Z., VanBlargan, L. A., Bloyet, L.-M., Rothlauf, P. W., Chen, R. E., Stumpf, S., Zhao, H., Errico, J. M., Theel, E. S., Liebeskind, M. J., Alford, B., Buchser, W. J., Ellebedy, A. H., Fremont, D. H., Diamond, M. S., & Whelan, S. P. J. (2021). Identification of SARS-CoV-2 spike mutations that attenuate monoclonal and serum antibody neutralization. Cell Host & Microbe, 29(3), 477–488. e4. https://doi.org/10.1016/j.chom.2021.01.014
  • Messali, S., Bertelli, A., Campisi, G., Zani, A., Ciccozzi, M., Caruso, A., & Caccuri, F. (2021). A cluster of the new SARS‐CoV‐2 B. 1.621 lineage in Italy and sensitivity of the viral isolate to the BNT162b2 vaccine. Journal of Medical Virology, 93(12), 6468–6470. https://doi.org/10.1002/jmv.27247
  • Moelling, K. (2021). Within-host and between-host evolution in SARS-CoV-2-new variant’s source. Viruses, 13(5), 751. https://doi.org/10.3390/v13050751
  • Olsson, T. S. G., Ladbury, J. E., Pitt, W. R., & Williams, M. A. (2011). Extent of enthalpy–entropy compensation in protein–ligand interactions. Protein Science, 20(9), 1607–1618. https://doi.org/10.1002/pro.692
  • Patil, R., Das, S., Stanley, A., Yadav, L., Sudhakar, A., & Varma, A. K. (2010). Optimized hydrophobic interactions and hydrogen bonding at the target-ligand interface leads the pathways of drug-designing. PloS One, 5(8), e12029. https://doi.org/10.1371/journal.pone.0012029
  • Pearson, K. (1901). LIII. On lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 2(11), 559–572. https://doi.org/10.1080/14786440109462720
  • Pinto, V., Araújo, J., Silva, R., da Costa, G., Cruz, J., De A. Neto, M., Campos, J., Santos, C., Leite, F., & Junior, M. (2019). In silico study to identify new antituberculosis molecules from natural sources by hierarchical virtual screening and molecular dynamics simulations. Pharmaceuticals, 12(1), 36. https://doi.org/10.3390/ph12010036
  • Plante, J. A., Mitchell, B. M., Plante, K. S., Debbink, K., Weaver, S. C., & Menachery, V. D. (2021). The variant gambit: COVID-19's next move. Cell Host & Microbe, 29(4), 508–515. https://doi.org/10.1016/j.chom.2021.02.020
  • Roe, D. R., & Cheatham, T. E. III, (2013). PTRAJ and CPPTRAJ: Software for processing and analysis of molecular dynamics trajectory data. Journal of Chemical Theory and Computation, 9(7), 3084–3095. https://doi.org/10.1021/ct400341p
  • Salomon-Ferrer, R., Case, D. A., & Walker, R. C. (2013). An overview of the Amber biomolecular simulation package. Wiley Interdisciplinary Reviews: Computational Molecular Science, 3(2), 198–210. https://doi.org/10.1002/wcms.1121
  • Salomon-Ferrer, R., Götz, A. W., Poole, D., Le Grand, S., & Walker, R. C. (2013). Routine microsecond molecular dynamics simulations with AMBER on GPUs. 2. Explicit solvent particle mesh Ewald. Journal of Chemical Theory and Computation, 9(9), 3878–3888. https://doi.org/10.1021/ct400314y
  • Scheepers, C. (2021). Emergence and phenotypic characterization of C. 1.2, a globally detected lineage that rapidly accumulated mutations of concern. medRxiv, p. 2021.08. 20.21262342.
  • Starr, T. N., Greaney, A. J., Hilton, S. K., Ellis, D., Crawford, K. H. D., Dingens, A. S., Navarro, M. J., Bowen, J. E., Tortorici, M. A., Walls, A. C., King, N. P., Veesler, D., & Bloom, J. D. (2020). Deep mutational scanning of SARS-CoV-2 receptor binding domain reveals constraints on folding and ACE2 binding. Cell, 182(5), 1295–1310. e20. https://doi.org/10.1016/j.cell.2020.08.012
  • Wang, C., Horby, P. W., Hayden, F. G., & Gao, G. F. (2020). A novel coronavirus outbreak of global health concern. Lancet (London, England), 395(10223), 470–473. https://doi.org/10.1016/S0140-6736(20)30185-9
  • Wink, P. L., Volpato, F. C. Z., Monteiro, F. L., Willig, J. B., Zavascki, A. P., Barth, A. L., & Martins, A. F. (2021). First identification of SARS-CoV-2 Lambda (C. 37) variant in southern Brazil. Infection Control & Hospital Epidemiology, 1–2. https://doi.org/10.1017/ice.2021.390
  • Wold, S., Esbensen, K., & Geladi, P. (1987). Principal component analysis. Chemometrics and Intelligent Laboratory Systems, 2(1–3), 37–52. https://doi.org/10.1016/0169-7439(87)80084-9
  • Yang, T.-J. (2021). Structure-activity relationships of B. 1.617 and other SARS-CoV-2 spike variants. bioRxiv.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.