460
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Computational analysis of immunogenic epitopes in the p30 and p54 proteins of African swine fever virus

, , , , ORCID Icon & ORCID Icon
Pages 7480-7489 | Received 18 Feb 2022, Accepted 02 Sep 2022, Published online: 23 Sep 2022

References

  • Abraham, M. J., Murtola, T., Schulz, R., Páll, S., Smith, J. C., Hess, B., & Lindahl, E. (2015). GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX, 1–2, 19–25. https://doi.org/10.1016/j.softx.2015.06.001
  • Adkins, J. C., & Wagstaff, A. J. (1998). Recombinant hepatitis B vaccine. BioDrugs, 10(2), 137–158. https://doi.org/10.2165/00063030-199810020-00005
  • Afonso, C. L., Alcaraz, C., Brun, A., Sussman, M. D., Onisk, D. V., Escribano, J. M., & Rock, D. L. (1992). Characterisation of P30, a highly antigenic membrane and secreted protein of African Swine Fever Virus. Virology, 189(1), 368–373. https://doi.org/10.1016/0042-6822(92)90718-5
  • Alonso, C., Borca, M., Dixon, L., Revilla, Y., Rodriguez, F., Escribano, J. M., & Consortium, I. R. (2018). ICTV virus taxonomy profile: Asfarviridae. The Journal of General Virology, 99(5), 613–614. https://doi.org/10.1099/jgv.0.001049
  • Andrés, G., Charro, D., Matamoros, T., Dillard, R. S., & Abrescia, N. G. A. (2020). The cryo-EM structure of African swine fever virus unravels a unique architecture comprising two icosahedral protein capsids and two lipoprotein membranes. The Journal of Biological Chemistry, 295(1), 1–12. https://doi.org/10.1074/jbc.AC119.011196
  • Bora, M., Bora, D. P., Manu, M., Barman, N. N., Dutta, L. J., Kumar, P. P., Poovathikkal, S., Suresh, K. P., & Nimmanapalli, R. (2020). Assessment of risk factors of African swine fever in India: Perspectives on future outbreaks and control strategies. Pathogens, 9(12), 1044–1018. https://doi.org/10.3390/pathogens9121044
  • Carmina, G., Luísa, R. A., Gladys, K.-Z., Joana, M., Alejandro, S., Esther, B., Parkhouse, R. M. E., Alexandre, L. (2009). Recombinant antigen targets for serodiagnosis of African swine fever. Clinical and Vaccine Immunology, 16(7), 1012–1020. https://doi.org/10.1128/CVI.00408-08
  • Chapman, D. A. G., Tcherepanov, V., Upton, C., & Dixon, L. K. (2008). Comparison of the genome sequences of non-pathogenic and pathogenic African swine fever virus isolates. The Journal of General Virology, 89(Pt 2), 397–408. https://doi.org/10.1099/vir.0.83343-0
  • Colovos, C., & Yeates, T. O. (1993). Verification of protein structures: Patterns of nonbonded atomic interactions. Protein Science, 2(9), 1511–1519. https://doi.org/10.1002/pro.5560020916
  • Cwynar, P., Stojkov, J., & Wlazlak, K. (2019). African swine fever status in Europe. Viruses, 11(4), 310–317. https://doi.org/10.3390/v11040310
  • Devi, Y. D., Devi, A., Gogoi, H., Dehingia, B., Doley, R., Buragohain, A. K., Singh, C. S., Borah, P. P., Rao, C. D., Ray, P., Varghese, G. M., Kumar, S., & Namsa, N. D. (2020). Exploring rotavirus proteome to identify potential B- and T-cell epitope using computational immunoinformatics. Heliyon, 6(12), e05760. https://doi.org/10.1016/j.heliyon.2020.e05760
  • Dixon, L. K., Chapman, D. A. G., Netherton, C. L., & Upton, C. (2013). African swine fever virus replication and genomics. Virus Research, 173(1), 3–14. https://doi.org/10.1016/j.virusres.2012.10.020
  • Gajula, M. N. V. P., Kumar, A., & Ijaq, J. (2016). Protocol for molecular dynamics simulations of proteins. BIO-PROTOCOL, 6(23), e2051. https://doi.org/10.21769/BioProtoc.2051
  • Galindo, I., Cuesta-Geijo, M. A., Hlavova, K., Muñoz-Moreno, R., Barrado-Gil, L., Dominguez, J., & Alonso, C. (2015). African swine fever virus infects macrophages, the natural host cells, via clathrin- and cholesterol-dependent endocytosis. Virus Research, 200, 45–55. https://doi.org/10.1016/j.virusres.2015.01.022
  • Garcia-Boronat, M., Diez-Rivero, C. M., Reinherz, E. L., & Reche, P. A. (2008). PVS: A web server for protein sequence variability analysis tuned to facilitate conserved epitope discovery. Nucleic Acids Research, 36(Web Server), W35–W41. https://doi.org/10.1093/nar/gkn211
  • Ge, S., Li, J., Fan, X., Liu, F., Li, L., Wang, Q., Ren, W., Bao, J., Liu, C., Wang, H., Liu, Y., Zhang, Y., Xu, T., Wu, X., & Wang, Z. (2018). Molecular characterisation of African swine fever virus, China, 2018. Emerging Infectious Diseases, 24(11), 2131–2133. https://doi.org/10.3201/eid2411.181274
  • Gómez-Puertas, P., Rodríguez, F., Oviedo, J. M., Brun, A., Alonso, C., & Escribano, J. M. (1998). The African swine fever virus proteins p54 and p30 are involved in two distinct steps of virus attachment and both contribute to the antibody-mediated protective immune response. Virology, 243(2), 461–471. https://doi.org/10.1006/viro.1998.9068
  • Gottlieb, T., & Ben-Yedidia, T. (2014). Epitope-based approaches to a universal influenza vaccine. Journal of Autoimmunity, 54, 15–20. https://doi.org/10.1016/j.jaut.2014.07.005
  • Govan, V. A. (2008). A novel vaccine for cervical cancer: quadrivalent human papillomavirus (types 6, 11, 16 and 18) recombinant vaccine (Gardasil®). Therapeutics and Clinical Risk Management, 4(1), 65–70. https://doi.org/10.2147/tcrm.s856
  • Hanlin, R. T. (1990). Illustrated genera of Ascomycetes. Aps Press.
  • Hart, K., Foloppe, N., Baker, C. M., Denning, E. J., Nilsson, L., & Mackerell, A. D. J. (2012). Optimisation of the CHARMM additive force field for DNA: Improved treatment of the BI/BII conformational equilibrium. Journal of Chemical Theory and Computation, 8(1), 348–362. https://doi.org/10.1021/ct200723y
  • Heinig, M., & Frishman, D. (2004). STRIDE: A web server for secondary structure assignment from known atomic coordinates of proteins. Nucleic Acids Research, 32(Web Server issue), W500–W502. https://doi.org/10.1093/nar/gkh429
  • Hernaez, B., & Alonso, C. (2010). Dynamin- and clathrin-dependent endocytosis in African swine fever virus entry. Journal of Virology, 84(4), 2100–2109. https://doi.org/10.1128/JVI.01557-09
  • Hernaez, B., Escribano, J. M., & Alonso, C. (2008). African swine fever virus protein p30 interaction with heterogeneous nuclear ribonucleoprotein K (hnRNP-K) during infection. FEBS Letters, 582(23–24), 3275–3280. https://doi.org/10.1016/j.febslet.2008.08.031
  • Jain, P., Joshi, A., Akhtar, N., Krishnan, S., & Kaushik, V. (2021). An immunoinformatics study: Designing multivalent T-cell epitope vaccine against canine circovirus. Journal, Genetic Engineering & Biotechnology, 19(1), 121. https://doi.org/10.1186/s43141-021-00220-4
  • Jespersen, M. C., Peters, B., Nielsen, M., & Marcatili, P. (2017). BepiPred-2.0: Improving sequence-based B-cell epitope prediction using conformational epitopes. Nucleic Acids Research, 45(W1), W24–W29. https://doi.org/10.1093/nar/gkx346
  • Kedkovid, R., Sirisereewan, C., & Thanawongnuwech, R. (2020). Major swine viral diseases: An Asian perspective after the African swine fever introduction. Porcine Health Management, 6(1), 20–11. https://doi.org/10.1186/s40813-020-00159-x
  • Kelley, L. A., Mezulis, S., Yates, C. M., Wass, M. N., & Sternberg, M. J. E. (2015). The Phyre2 web portal for protein modeling, prediction and analysis. Nature Protocols, 10(6), 845–858. https://doi.org/10.1038/nprot.2015.053
  • Kumar, S., Stecher, G., Li, M., Knyaz, C., & Tamura, K. (2018). MEGA X: Molecular evolutionary genetics analysis across computing platforms. Molecular Biology and Evolution, 35(6), 1547–1549. https://doi.org/10.1093/molbev/msy096
  • Laskowski, R. A., Rullmann, J. A. C., MacArthur, M. W., Kaptein, R., & Thornton, J. M. (1996). AQUA and PROCHECK-NMR: Programs for checking the quality of protein structures solved by NMR. Journal of Biomolecular NMR, 8(4), 477–486. https://doi.org/10.1007/BF00228148
  • Leszczynski, J., & Shukla, M. K. (2012). Practical aspects of computational chemistry. Springer.
  • Masujin, K., Kitamura, T., Kameyama, K.-ichiro., Okadera, K., Nishi, T., Takenouchi, T., Kitani, H., & Kokuho, T. (2021). An immortalised porcine macrophage cell line competent for the isolation of African swine fever virus. Scientific Reports, 11(1), 1–11. https://doi.org/10.1038/s41598-021-84237-2
  • Minkyung, B., Frank, D., Ivan, A., Justas, D., Sergey, O., Rie, L. G., Wang, J., Cong, Q., Kinch, L. N., Schaeffer, R. D., Millan, C., Park, H., Adams, C., Glassman, C. R., DeGiovanni, A., Pereira, H., Rodrigues, A. V., van Dijk, A. A., Ebrecht, A. C., … David, B. (2021). Accurate prediction of protein structures and interactions using a three-track neural network. Science, 373(6557), 871–876. https://doi.org/10.1126/science.abj8754
  • Moutaftsi, M., Peters, B., Pasquetto, V., Tscharke, D. C., Sidney, J., Bui, H.-H., Grey, H., & Sette, A. (2006). A consensus epitope prediction approach identifies the breadth of murine T(CD8+)-cell responses to vaccinia virus. Nature Biotechnology, 24(7), 817–819. https://doi.org/10.1038/nbt1215
  • Ojha, R., Pareek, A., Pandey, R. K., Prusty, D., & Prajapati, V. K. (2019). Strategic development of a next-generation multi-epitope vaccine to prevent nipah virus zoonotic infection. ACS Omega, 4(8), 13069–13079. https://doi.org/10.1021/acsomega.9b00944
  • Oviedo, J. M., Rodriguez, F., Gómez-Puertas, P., Brun, A., Gómez, N., Alonso, C., & Escribano, J. M. (1997). High level expression of the major antigenic African swine fever virus proteins p54 and p30 in baculovirus and their potential use as diagnostic reagents. Journal of Virological Methods, 64(1), 27–35. https://doi.org/10.1016/S0166-0934(96)02140-4
  • Patil, S. S., Suresh, K. P., Vashist, V., Pattnaik, B., Roy, P., & Prajapati, A. (2020). African swine fever : A permanent threat to Indian pigs. Veterinary World, 13(10), 2275–2285.
  • Pérez-Núñez, D., Sunwoo, S.-Y., Sánchez, E. G., Haley, N., García-Belmonte, R., Nogal, M., Morozov, I., Madden, D., Gaudreault, N. N., Mur, L., Shivanna, V., Richt, J. A., & Revilla, Y. (2019). Evaluation of a viral DNA-protein immunisation strategy against African swine fever in domestic pigs. Veterinary Immunology and Immunopathology, 208(October 2018), 34–43. https://doi.org/10.1016/j.vetimm.2018.11.018
  • Petrova, S. S., & Solov’ev, A. D. (1997). The origin of the method of steepest descent. Historia Mathematica, 24(4), 361–375. https://doi.org/10.1006/hmat.1996.2146
  • Petrovan, V., Murgia, M. V., Wu, P., Lowe, A. D., Jia, W., & Rowland, R. R. R. (2020). Epitope mapping of African swine fever virus (ASFV) structural protein, p54. Virus Research, 279, 197871. https://doi.org/10.1016/J.VIRUSRES.2020.197871
  • Petrovan, V., Yuan, F., Li, Y., Shang, P., Murgia, M. V., Misra, S., Rowland, R. R. R., & Fang, Y. (2019). Development and characterisation of monoclonal antibodies against p30 protein of African swine fever virus. Virus Research, 269(May), 197632. https://doi.org/10.1016/j.virusres.2019.05.010
  • Ponomarenko, J., Bui, H. H., Li, W., Fusseder, N., Bourne, P. E., Sette, A., & Peters, B. (2008). ElliPro: A new structure-based tool for the prediction of antibody epitopes. BMC Bioinformatics, 9, 514–518. https://doi.org/10.1186/1471-2105-9-514
  • Prados, F. J., Viñuela, E., & Alcamí, A. (1993). Sequence and characterisation of the major early phosphoprotein p32 of African swine fever virus. Journal of Virology, 67(5), 2475–2485. https://doi.org/10.1128/jvi.67.5.2475-2485.1993
  • Rodríguez, J. M., García-Escudero, R., Salas, M. L., & Andrés, G. (2004). African swine fever virus structural protein p54 is essential for the recruitment of envelope precursors to assembly sites. Journal of Virology, 78(8), 4299–1313. https://doi.org/10.1128/JVI.78.8.4299-4313.2004[PMC][15047843]
  • Roy, A., Kucukural, A., & Zhang, Y. (2010). I-TASSER: A unified platform for automated protein structure and function prediction. Nature Protocols, 5(4), 725–738. https://doi.org/10.1038/nprot.2010.5
  • Salas, M. L., & Andrés, G. (2013). African swine fever virus morphogenesis. Virus Research, 173(1), 29–41. https://doi.org/10.1016/j.virusres.2012.09.016
  • Sánchez-Vizcaíno, J. M., Mur, L., Gomez-Villamandos, J. C., & Carrasco, L. (2015). An update on the epidemiology and pathology of African swine fever. Journal of Comparative Pathology, 152(1), 9–21. https://doi.org/10.1016/j.jcpa.2014.09.003
  • Soria-Guerra, R. E., Nieto-Gomez, R., Govea-Alonso, D. O., & Rosales-Mendoza, S. (2015). An overview of bioinformatics tools for epitope prediction: Implications on vaccine development. Journal of Biomedical Informatics, 53, 405–414. https://doi.org/10.1016/j.jbi.2014.11.003
  • Srivastava, S., Kamthania, M., Singh, S., Saxena, A. K., & Sharma, N. (2018). Structural basis of development of multi-epitope vaccine against Middle East respiratory syndrome using in silico approach. Infection and Drug Resistance, 11, 2377–2391. https://doi.org/10.2147/IDR.S175114
  • Tahir ul Qamar, M., Saleem, S., Ashfaq, U. A., Bari, A., Anwar, F., & Alqahtani, S. (2019). Epitope‐based peptide vaccine design and target site depiction against Middle East Respiratory Syndrome Coronavirus: an immune-informatics study. Journal of Translational Medicine, 17(1), 362. https://doi.org/10.1186/s12967-019-2116-8
  • Vashi, Y., Jagrit, V., & Kumar, S. (2020). Understanding the B and T cell epitopes of spike protein of severe acute respiratory syndrome coronavirus-2: A computational way to predict the immunogens. Infection, Genetics and Evolution, 84(March), 104382. https://doi.org/10.1016/j.meegid.2020.104382
  • Walczak, M., Żmudzki, J., Mazur-Panasiuk, N., Juszkiewicz, M., & Woźniakowski, G. (2020). Analysis of the clinical course of experimental infection with highly pathogenic African swine fever strain, isolated from an outbreak in Poland. Aspects related to the disease suspicion at the farm level. Pathogens, 9(3), 237. https://doi.org/10.3390/pathogens9030237
  • Waterhouse, A., Bertoni, M., Bienert, S., Studer, G., Tauriello, G., Gumienny, R., Heer, F. T., de Beer, T. A. P., Rempfer, C., Bordoli, L., Lepore, R., & Schwede, T. (2018). SWISS-MODEL: Homology modelling of protein structures and complexes. Nucleic Acids Research, 46(W1), W296–W303. https://doi.org/10.1093/nar/gky427
  • Waterhouse, A. M., Procter, J. B., Martin, D. M. A., Clamp, M., & Barton, G. J. (2009). Jalview Version 2—A multiple sequence alignment editor and analysis workbench. Bioinformatics (Oxford, England), 25(9), 1189–1191. https://doi.org/10.1093/bioinformatics/btp033
  • Wiederstein, M., & Sippl, M. J. (2007). ProSA-web: Interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic Acids Research, 35(Web Server issue), W407–W410. https://doi.org/10.1093/nar/gkm290
  • Zimmermann, L., Stephens, A., Nam, S.-Z., Rau, D., Kübler, J., Lozajic, M., Gabler, F., Söding, J., Lupas, A. N., & Alva, V. (2018). A completely reimplemented MPI bioinformatics toolkit with a new HHpred server at its core. Journal of Molecular Biology, 430(15), 2237–2243. https://doi.org/10.1016/J.JMB.2017.12.007

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.