360
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Phytochemicals from African eggplants (Solanum macrocarpon L) and Black nightshade (Solanum nigrum L) leaves as acetylcholinesterase inhibitors: an in-silico study

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 7725-7734 | Received 27 Jun 2022, Accepted 07 Sep 2022, Published online: 27 Sep 2022

References

  • Ahmad, S., Ullah, F., Ayaz, M., Sadiq, A., & Imran, M. (2015). Antioxidant and anticholinesterase investigations of Rumex hastatus D. Don: Potential effectiveness in oxidative stress and neurological disorders. Biological Research, 48(1), 1-8. https://doi.org/10.1186/s40659-015-0010-2
  • Ajiboye, B. O., Akalabu, M. C., Ojo, O. A., Afolabi, O. B., Okesola, M. A., Olayide, I., & Oyinloye, B. E. (2018). Inhibitory effect of ethyl acetate fraction of Solanum macrocarpon L. leaves on cholinergic, monoaminergic, and purinergic enzyme activities. Journal of Food Biochemistry, 42(6), e12643. https://doi.org/10.1111/jfbc.12643
  • Berendsen, H. J. C., Postma, J. P. M., Van Gunsteren, W. F., Dinola, A., & Haak, J. R. (1984). Molecular dynamics with coupling to an external bath. The Journal of Chemical Physics, 81(8), 3684–3690. https://doi.org/10.1063/1.448118
  • BIOVIA, D. S. (2016). Discovery studio modeling environment, release 2017. San Diego: DassaultSystèmes, 2016. Accessed 1 September 2016.
  • Case, D. A., Babin, V., Berryman, J. T., Betz, R. M., Cai, Q., Cerutti, D. S., Cheatham, I. I. I., T. E., Darden, T. A., Duke, R. E., Gohlke, H., Goetz, A. W., Gusarov, S., Homeyer, N., Janowski, P., Kaus, J., Kolossváry, I., Kovalenko, A., Lee, T. S., LeGrand, S., … Kollman, P. A. (2014). AMBER 14.
  • Castro, A., & Martinez, A. (2001). Peripheral and dual binding site acetylcholinesterase inhibitors: Implications in treatment of Alzheimer’s disease. Mini Reviews in Medicinal Chemistry, 1(3), 267–272. https://doi.org/10.2174/1389557013406864
  • D'Avila da Silva, F., Nogara, P. A., Ochoa-Rodríguez, E., Nuñez-Figueredo, Y., Wong-Guerra, M., Rosemberg, D. B., & Rocha, J. B. T. d. (2020). Molecular docking and in vitro evaluation of a new hybrid molecule (JM-20) on cholinesterase activity from different sources. Biochimie, 168, 297–306. https://doi.org/10.1016/j.biochi.2019.11.011
  • Davidchack, R. L., Handel, R., & Tretyakov, M. V. (2009). Langevin thermostat for rigid body dynamics. The Journal of Chemical Physics, 130(23), 234101. https://doi.org/10.1063/1.3149788
  • Ellman, G. L., Courtney, K. D., Andres, V., & Featherstone, R. M. (1961). A new and rapid colorimetric determination of acetylcholinesterase activity. Biochemical Pharmacology, 7(2), 88–95. https://doi.org/10.1016/0006-2952(61)90145-9
  • Haliński, Ł. P., Paszkiewicz, M., Gołębiowski, M., & Stepnowski, P. (2012). The chemical composition of cuticular waxes from leaves of the gboma eggplant (Solanum macrocarpon L.). Journal of Food Composition and Analysis, 25(1), 74–78. https://doi.org/10.1016/j.jfca.2011.06.004
  • Hou, T., Wang, J., Li, Y., & Wang, W. (2011). Assessing the performance of the MM/PBSA and MM/GBSA methods. 1. The accuracy of binding free energy calculations based on molecular dynamics simulations. Journal of Chemical Information and Modeling, 51(1), 69–82. https://doi.org/10.1021/CI100275A
  • Humphrey, W., Dalke, A., & Schulten, K. (1996). VMD: Visual molecular dynamics. Journal of Molecular Graphics, 14(1), 33–38. https://doi.org/10.1016/0263-7855(96)00018-5
  • Jain, R., Sharma, A., Gupta, S., Sarethy, I. P., & Gabrani, R. (2011). Solanum nigrum: Current perspectives on therapeutic properties. Alternative Medicine Review, 16(1), 78–85. http://europepmc.org/article/MED/21438649
  • Jorgensen, W. L., Chandrasekhar, J., Madura, J. D., Impey, R. W., & Klein, M. L. (1983). Comparison of simple potential functions for simulating liquid water. The Journal of Chemical Physics, 79(2), 926–935. https://doi.org/10.1063/1.445869
  • Kim, S., Thiessen, P. A., Bolton, E. E., Chen, J., Fu, G., Gindulyte, A., Han, L., He, J., He, S., Shoemaker, B. A., Wang, J., Yu, B., Zhang, J., & Bryant, S. H. (2016). PubChem substance and compound databases. Nucleic Acids Research, 44(D1), D1202–D1213. https://doi.org/10.1093/nar/gkv951
  • Klafki, H. W., Staufenbiel, M., Kornhuber, J., & Wiltfang, J. (2006). Therapeutic approaches to Alzheimer’s disease. Brain, 129(11), 2840–2855. https://doi.org/10.1093/brain/awl280
  • Kryger, G., Silman, I., & Sussman, J. L. (1998). Three-dimensional structure of a complex of E2020 with acetylcholinesterase from Torpedo californica. Journal of Physiology, Paris, 92(3–4), 191–194. https://doi.org/10.1016/S0928-4257(98)80008-9
  • Kryger, G., Silman, I., & Sussman, J. L. (1999). Structure of acetylcholinesterase complexed with E2020 (Aricept®): Implications for the design of new anti-Alzheimer drugs. Structure, 7(3), 297–307. https://doi.org/10.1016/S0969-2126(99)80040-9
  • Madabeni, A., Nogara, P. A., Omage, F. B., Rocha, J. B. T., & Orian, L. (2021). Mechanistic insight into SARS-CoV-2 Mpro inhibition by organoselenides: The Ebselen case study. Applied Sciences, 11(14), 6291. https://doi.org/10.3390/app11146291
  • Maier, J. A., Martinez, C., Kasavajhala, K., Wickstrom, L., Hauser, K. E., & Simmerling, C. (2015). ff14SB: Improving the accuracy of protein side chain and backbone parameters from ff99SB. Journal of Chemical Theory and Computation, 11(8), 3696–3713. https://doi.org/10.1021/acs.jctc.5b00255
  • Mantoani, S. P., Chierrito, T. P. C., Vilela, A. F. L., Cardoso, C. L., Martínez, A., & Carvalho, I. (2016). Novel triazole-quinoline derivatives as selective dual binding site acetylcholinesterase inhibitors. Molecules, 21(2), 193. https://doi.org/10.3390/molecules21020193
  • Mehta, M., Adem, A., & Sabbagh, M. (2012). New acetylcholinesterase inhibitors for Alzheimer’s disease. International Journal of Alzheimer’s Disease, 2012, 728983. https://doi.org/10.1155/2012/728983
  • Ng, Y. P., Or, T. C. T., & Ip, N. Y. (2015). Plant alkaloids as drug leads for Alzheimer’s disease. Neurochemistry International, 89, 260–270. https://doi.org/10.1016/j.neuint.2015.07.018
  • Niu, C., Xu, Y., Xu, Y., Luo, X., Duan, W., Silman, I., Sussman, J. L., Zhu, W., Chen, K., Shen, J., & Jiang, H. (2005). Dynamic mechanism of E2020 binding to acetylcholinesterase: A steered molecular dynamics simulation. The Journal of Physical Chemistry. B, 109(49), 23730–23738. https://doi.org/10.1021/JP0552877
  • Nizri, E., Hamra-Amitay, Y., Sicsic, C., Lavon, I., & Brenner, T. (2006). Anti-inflammatory properties of cholinergic up-regulation: A new role for acetylcholinesterase inhibitors. Neuropharmacology, 50(5), 540–547. https://doi.org/10.1016/J.NEUROPHARM.2005.10.013
  • Oboh, G., Ekperigin, M. M., & Kazeem, M. I. (2005). Nutritional and haemolytic properties of eggplants (Solanum macrocarpon) leaves. Journal of Food Composition and Analysis, 18(2–3), 153–160. https://doi.org/10.1016/j.jfca.2003.12.013
  • Oehme, D. P., Brownlee, R. T. C., & Wilson, D. J. D. (2012). Effect of atomic charge, solvation, entropy, and ligand protonation state on MM-PB(GB)SA binding energies of HIV protease. Journal of Computational Chemistry, 33(32), 2566–2580. https://doi.org/10.1002/JCC.23095
  • Ogunsuyi, O. B., Ademiluyi, A. O., & Oboh, G. (2020). Solanum leaves extracts exhibit antioxidant properties and inhibit monoamine oxidase and acetylcholinesterase activities (in vitro) in Drosophila melanogaster. Journal of Basic and Clinical Physiology and Pharmacology, 31(3), 1-10. https://doi.org/10.1515/jbcpp-2019-0256
  • Ogunsuyi, O. B., Ademiluyi, A. O., Oboh, G., Oyeleye, S. I., & Dada, A. F. (2018). Green leafy vegetables from two Solanum spp. (Solanum nigrum L and Solanum macrocarpon L) ameliorate scopolamine-induced cognitive and neurochemical impairments in rats. Food Science & Nutrition, 6(4), 860–870. https://doi.org/10.1002/fsn3.628
  • Ogunsuyi, O. B., Oboh, G., Özek, G., & Göger, F. (2021). Solanum vegetable-based diets improve impairments in memory, redox imbalance, and altered critical enzyme activities in Drosophila melanogaster model of neurodegeneration. Journal of Food Biochemistry, 45(3), e13150. https://doi.org/10.1111/jfbc.13150
  • Pettersen, E. F., Goddard, T. D., Huang, C. C., Couch, G. S., Greenblatt, D. M., Meng, E. C., & Ferrin, T. E. (2004). UCSF Chimera - A visualization system for exploratory research and analysis. Journal of Computational Chemistry, 25(13), 1605–1612. https://doi.org/10.1002/jcc.20084
  • Reale, M., Iarlori, C., Gambi, F., Lucci, I., Salvatore, M., & Gambi, D. (2005). Acetylcholinesterase inhibitors effects on oncostatin-M, interleukin-1 beta and interleukin-6 release from lymphocytes of Alzheimer’s disease patients. Experimental Gerontology, 40(3), 165–171. https://doi.org/10.1016/J.EXGER.2004.12.003
  • Roe, D. R., & Cheatham, T. E. (2013). PTRAJ and CPPTRAJ: Software for processing and analysis of molecular dynamics trajectory data. Journal of Chemical Theory and Computation, 9(7), 3084–3095. https://doi.org/10.1021/ct400341p
  • Rosenberry, T. L., Brazzolotto, X., MacDonald, I. R., Wandhammer, M., Trovaslet-Leroy, M., Darvesh, S., & Nachon, F. (2017). Comparison of the binding of reversible inhibitors to human butyrylcholinesterase and acetylcholinesterase: A crystallographic, kinetic and calorimetric study. Molecules, 22(12), 2098. https://doi.org/10.3390/molecules22122098
  • Sabudak, T., Ozturk, M., & Alpay, E. (2017). New bioflavonoids from Solanum nigrum L. by anticholinesterase and anti-tyrosinase activities-guided fractionation. Records of Natural Products, 11(2), 130-140. https://doi.org/10.5072/ZENODO.58904
  • Saldanha, C., & Silva-Herdade, A. S. (2017). Physiological properties of human erythrocytes in inflammation. Journal of Cellular Biotechnology, 3(1), 15–20. https://doi.org/10.3233/JCB-179003
  • Stewart, J., J. P. (1990). MOPAC: A semiempirical molecular orbital program. Journal of Computer-Aided Molecular Design, 4(1), 1–103. https://doi.org/10.1007/BF00128336
  • Stierand, K., Maass, P. C., & Rarey, M. (2006). Molecular complexes at a glance: Automated generation of two-dimensional complex diagrams. Bioinformatics (Oxford, England), 22(14), 1710–1716. https://doi.org/10.1093/BIOINFORMATICS/BTL150
  • Trott, O., & Olson, A. J. (2009). AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal of Computational Chemistry, 31(2), 455-461. https://doi.org/10.1002/jcc.21334
  • Tsuno, N. (2009). Donepezil in the treatment of patients with Alzheimer’s disease. Expert Review of Neurotherapeutics, 9(5), 591–598. https://doi.org/10.1586/ERN.09.23
  • World Health Organization. (2019). Dementia Fact sheet. WHO.
  • Zambrano, P., Suwalsky, M., Jemiola-Rzeminska, M., Strzalka, K., Sepúlveda, B., Gallardo, M. J., & Aguilar, L. F. (2019). The acetylcholinesterase (AChE) inhibitor and anti-Alzheimer drug donepezil interacts with human erythrocytes. Biochimica et Biophysica Acta. Biomembranes, 1861(6), 1078–1085. https://doi.org/10.1016/J.BBAMEM.2019.03.014
  • Zueva, I., Dias, J., Lushchekina, S., Semenov, V., Mukhamedyarov, M., Pashirova, T., Babaev, V., Nachon, F., Petrova, N., Nurullin, L., Zakharova, L., Ilyin, V., Masson, P., & Petrov, K. (2019). New evidence for dual binding site inhibitors of acetylcholinesterase as improved drugs for treatment of Alzheimer’s disease. Neuropharmacology, 155, 131–141. https://doi.org/10.1016/j.neuropharm.2019.05.025

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.