493
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Comprehensive molecular docking and dynamic simulations for drug repurposing of clinical drugs against multiple cancer kinase targets

, , , &
Pages 7735-7743 | Received 08 Mar 2022, Accepted 08 Sep 2022, Published online: 22 Sep 2022

References

  • Acharya, R., Chacko, S., Bose, P., Lapenna, A., & Pattanayak, S. P. (2019). Structure-based multitargeted molecular docking analysis of selected furanocoumarins against. Scientific Reports, 9(1), 15743. https://doi.org/10.1038/s41598-019-52162-0[PMC][31673107
  • Adeniyi, A. A., & Ajibade, P. A. (2013). Comparing the suitability of autodock, gold and glide for the docking and predicting the possible targets of Ru (II)-based complexes as anticancer agents. Molecules (Basel, Switzerland), 18(4), 3760–3778. https://doi.org/10.3390/molecules18043760
  • Bharatham, N., Bharatham, K., Shelat, A. A., & Bashford, D. (2014). Ligand binding mode prediction by docking: mdm2/mdmx inhibitors as a case study. Journal of Chemical Information & Modeling, 54(2), 648–659. https://doi.org/10.1021/ci4004656
  • Bhullar, K. S., Lagarón, N. O., McGowan, E. M., Parmar, I., Jha, A., Hubbard, B. P., & Rupasinghe, H. (2018). Kinase-targeted cancer therapies: progress, challenges and future directions. Molecular Cancer, 17(1), 48. https://doi.org/10.1186/s12943-018-0804-2 [PMC][29455673
  • Bradley, D., & Beltrao, P. (2019). Evolution of protein kinase substrate recognition at the active site. PLoS Biology, 17(6), e3000341. https://doi.org/10.1371/journal.pbio.300034[PMC][31233486
  • Casalvieri, K. A., Matheson, C. J., Backos, D. S., & Reigan, P. (2020). Molecular docking of substituted pteridinones and pyrimidines to the ATP-binding site of the N-terminal domain of RSK2 and associated MM/GBSA and molecular field datasets. Data in Brief, 29, 105347. https://doi.org/10.1016/j.dib.2020.105347
  • Chate, A. V., Tagad, P. A., Bondle, G. M., Sarkate, A. P., Tiwari, S. V., & Azad, R. (2021). Design, synthesis and biological evaluation of tetrahydrodibenzo[b,g][1,8]napthyridinones as potential anticancer agents and novel aurora kinases inhibitors. Chemistry Select, 6(14), 3444–3452. https://doi.org/10.1002/slct.202004666
  • Chenna, R., Sugawara, H., Koike, T., Lopez, R., Gibson, T. J., Higgins, D. G., & Thompson, J. D. (2003). Multiple sequence alignment with the Clustal series of programs. Nucleic Acids Research, 31(13), 3497–3500. https://doi.org/10.1093/nar/gkg500
  • Chien, S. T., Kumar, A., Pandey, S., Yen, C. K., Wang, S. Y., Wen, Z. H., Kaushik, A. C., Shiue, Y. L., & Pan, C. T. (2018). Cancer biology aspects of computational methods and applications in drug discovery. Current Pharmaceutical Design, 24(32), 3758–3766. https://doi.org/10.2174/1381612824666181112104921
  • Cui, W., Aouidate, A., Wang, S., Yu, Q., Li, Y., & Yuan, S. (2020). Discovering anti-cancer drugs via computational methods. Frontiers in Pharmacology, 11, 733. https://doi.org/10.3389/fphar.2020.00733
  • Du, R., Huang, C., Liu, K., Li, X., & Dong, Z. (2021). Targeting AURKA in cancer: Molecular mechanisms and opportunities for cancer therapy. Molecular Cancer, 20(1), 15. https://doi.org/10.1186/s12943-020-01305-3[PMC][33451333
  • Esfahani, K., Roudaia, L., Buhlaiga, N., Del Rincon, S. V., Papneja, N., & Miller, W. H. Jr (2020). A review of cancer immunotherapy: From the past to the present, to the future. Current Oncology (Toronto, Ont.), 27(Suppl 2), S87–S97. https://doi.org/10.3747/co.27.5223
  • Forli, S., Huey, R., Pique, M. E., Sanner, M. F., Goodsell, D. S., & Olson, A. J. (2016). Computational protein–ligand docking and virtual drug screening with the AutoDock suite. Nature Protocols, 11(5), 905–919. https://doi.org/10.1038/nprot.2016.051
  • Giuliani, A. (2017). The application of principal component analysis to drug discovery and biomedical data. Drug Discovery Today, 22(7), 1069–1076. https://doi.org/10.1016/j.drudis.2017.01.005
  • Govindaraj, R. G., & Brylinski, M. (2018). Comparative assessment of strategies to identify similar ligand-binding pockets in proteins. BMC Bioinformatics, 19(1), 91. https://doi.org/10.1186/s12859-018-2109-2
  • Kannaiyan, R., & Mahadevan, D. (2018). A comprehensive review of protein kinase inhibitors for cancer therapy. Expert Review of Anticancer Therapy, 18(12), 1249–1270. https://doi.org/10.1080/14737140.2018.1527688
  • Karthigeyan, D., Siddhanta, S., Kishore, A. H., Perumal, S. S., Ågren, H., Sudevan, S., Bhat, A. V., Balasubramanyam, K., Subbegowda, R. K., Kundu, T. K., & Narayana, C. (2014). SERS and MD simulation studies of a kinase inhibitor demonstrate the emergence of a potential drug discovery tool. Proceedings of the National Academy of Sciences of the United States of America, 111(29), 10416–10421. https://doi.org/10.1073/pnas.1402695111
  • Karthikeyan, M., & Vyas, R. (2016). ChemEngine: Harvesting 3D chemical structures of supplementary data from PDF files. Journal of Cheminformatics, 8, 73. https://doi.org/10.1186/s13321-016-0175-x[PMC][28090216
  • Kim, S., Chen, J., Cheng, T., Gindulyte, A., He, J., He, S., Li, Q., Shoemaker, B. A., Thiessen, P. A., Yu, B., Zaslavsky, L., Zhang, J., & Bolton, E. E. (2021). PubChem in 2021: New data content and improved web interfaces. Nucleic Acids Research, 49(D1), D1388–D1395. https://doi.org/10.1093/nar/gkaa971
  • Kontoyianni, M. (2017). Docking and virtual screening in drug discovery. Methods in Molecular Biology (Clifton, NJ), 1647, 255–266. https://doi.org/10.1007/978-1-4939-7201-2_18
  • Lewandowska, A. M., Lewandowski, T., Rudzki, M., Rudzki, S., & Laskowska, B. (2021). Cancer prevention – A review paper. Annals of Agricultural & Environmental Medicine: AAEM, 28(1), 11–19. https://doi.org/10.26444/aaem/116906
  • Lokhande, K. B., Ghosh, P., Nagar, S., & Venkateswara Swamy, K. (2021). Novel B, C-ring truncated deguelin derivatives reveals as potential inhibitors of cyclin D1 and cyclin E using molecular docking and molecular dynamic simulation. Molecular Diversity, 2295-2309. https://doi.org/10.1007/s11030-021-10334-z
  • Malik, M., Bieńko, D. C., Komarnicka, U. K., Kyzioł, A., Dryś, M., Świtlicka, A., Dyguda-Kazimierowicz, E., & Jedwabny, W. (2021). Synthesis, structural characterization, docking simulation and in vitro antiproliferative activity of the new gold (III) complex with 2-pyridineethanol. Journal of Inorganic Biochemistry, 215, 111311. https://doi.org/10.1016/j.jinorgbio.2020.111311
  • Modi, V., & Dunbrack, R. L. Jr (2019). A structurally-validated multiple sequence alignment of 497 human protein kinase domains. Scientific Reports, 9(1), 19790. https://doi.org/10.1038/s41598-019-56499-4[PMC][31875044
  • Mollica, A., Zengin, G., Durdagi, S., Ekhteiari Salmas, R., Macedonio, G., Stefanucci, A., Dimmito, M. P., & Novellino, E. (2019). Combinatorial peptide library screening for discovery of diverse α-glucosidase inhibitors using molecular dynamics simulations and binary QSAR models. Journal of Biomolecular Structure & Dynamics, 37(3), 726–740. https://doi.org/10.1080/07391102.2018.1439403
  • Mottini, C., Napolitano, F., Li, Z., Gao, X., & Cardone, L. (2021). Computer-aided drug repurposing for cancer therapy: Approaches and opportunities to challenge anticancer targets. Seminars in Cancer Biology, 68, 59–74. https://doi.org/10.1016/j.semcancer.2019.09.023
  • Pagadala, N. S., Syed, K., & Tuszynski, J. (2017). Software for molecular docking: A review. Biophysical Reviews, 9(2), 91–102. https://doi.org/10.1007/s12551-016-0247-1
  • Perez-Regidor, L., Zarioh, M., Ortega, L., & Martín-Santamaría, S. (2016). Virtual screening approaches towards the discovery of toll-like receptor modulators. International Journal of Molecular Sciences, 17(9), 1508. https://doi.org/10.3390/ijms17091508
  • Pradhan, T., Gupta, O., Singh, G., & Monga, V. (2021). Aurora kinase inhibitors as potential anticancer agents: Recent advances. European Journal of Medicinal Chemistry, 221, 113495. https://doi.org/10.1016/j.ejmech.2021.113495
  • Quintal Bojorquez, N., & Campos, M. (2022). Traditional and novel computer-aided drug design (CADD) approaches in the anticancer drug discovery process computer-aided drug design (CADD) approaches in the development of anticancer drugs. Current Cancer Drug Targets, 22. Advance online publication. https://doi.org/10.2174/1568009622666220705104249
  • Sahayarayan, J. J., Rajan, K. S., Vidhyavathi, R., Nachiappan, M., Prabhu, D., Alfarraj, S., Arokiyaraj, S., & Daniel, A. N. (2021). In-silico protein–ligand docking studies against the estrogen protein of breast cancer using pharmacophore-based virtual screening approaches. Saudi Journal of Biological Sciences, 28(1), 400–407. https://doi.org/10.1016/j.sjbs.2020.10.023
  • Shah, H. D., Saranath, D., & Murthy, V. (2020). A molecular dynamic and docking study to screen anti-cancer compounds targeting mutated p53. Journal of Biomolecular Structure & Dynamics, 2407-2416. https://doi.org/10.1080/07391102.2020.1839559
  • Singh, A., Kumari, P., Raghuvanshi, A., Mobin, S. M., & Mathur, P. (2018). Ferrocene-substituted bis(ethynyl)anthracene compounds as anticancer agents. Applied Organometallic Chemistry, 32(2), e4071. https://doi.org/10.1002/aoc.4071
  • Sleire, L., Førde, H. E., Netland, I. A., Leiss, L., Skeie, B. S., & Enger, P. Ø. (2017). Drug repurposing in cancer. Pharmacological Research, 124, 74–91. https://doi.org/10.1016/j.phrs.2017.07.013
  • Wang, Z., Ren, J., Jin, N., Liu, X., & Li, X. (2020). Is crocin a potential anti-tumor candidate targeting microtubules? Computational insights from molecular docking and dynamics simulations. Frontiers in Molecular Biosciences, 7, 586970. https://doi.org/10.3389/fmolb.2020.586970
  • Warner, S. L., Bashyam, S., Vankayalapati, H., Bearss, D. J., Han, H., Mahadevan, D., Von Hoff, D. D., & Hurley, L. H. (2006). Identification of a lead small-molecule inhibitor of the Aurora kinases using a structure-assisted, fragment-based approach. Molecular Cancer Therapeutics, 5(7), 1764–1773. https://doi.org/10.1158/1535-7163.MCT-05-0524
  • Wishart, D. S., Knox, C., Guo, A. C., Shrivastava, S., Hassanali, M., Stothard, P., Chang, Z., & Woolsey, J. (2006). DrugBank: A comprehensive resource for in silico drug discovery and exploration. Nucleic Acids Research, 34(Database issue), D668–D672. https://doi.org/10.1093/nar/gkj067
  • Zhang, Z., Zhou, L., Xie, N., Nice, E. C., Zhang, T., Cui, Y., & Huang, C. (2020). Overcoming cancer therapeutic bottleneck by drug repurposing. Signal Transduction & Targeted Therapy, 5(1), 113. https://doi.org/10.1038/s41392-020-00213-8[PMC][32616710

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.