1,490
Views
11
CrossRef citations to date
0
Altmetric
Research Articles

An integrative reverse vaccinology, immunoinformatic, docking and simulation approaches towards designing of multi-epitopes based vaccine against monkeypox virus

, , , , , , , , & ORCID Icon show all
Pages 7821-7834 | Received 13 Jul 2022, Accepted 11 Sep 2022, Published online: 21 Sep 2022

References

  • Amer, H., Alqahtani, A. S., Alaklobi, F., Altayeb, J., & Memish, Z. A. (2018). Healthcare worker exposure to Middle East respiratory syndrome coronavirus (MERS-CoV): Revision of screening strategies urgently needed. International Journal of Infectious Diseases: IJID: Official Publication of the International Society for Infectious Diseases, 71, 113–116. https://doi.org/10.1016/j.ijid.2018.04.001
  • Antonio-Herrera, L., Badillo-Godinez, O., Medina-Contreras, O., Tepale-Segura, A., García-Lozano, A., Gutierrez-Xicotencatl, L., Soldevila, G., Esquivel-Guadarrama, F. R., Idoyaga, J., & Bonifaz, L. C. (2018). The nontoxic cholera B subunit is a potent adjuvant for intradermal DC-targeted vaccination. Frontiers in Immunology, 9, 2212.
  • Beer, E. M., & Rao, V. B. (2019). A systematic review of the epidemiology of human monkeypox outbreaks and implications for outbreak strategy. PLoS Neglected Tropical Diseases, 13(10), e0007791. https://doi.org/10.1371/journal.pntd.0007791
  • Benson, D., Lipman, D. J., & Ostell, J. (1993). GenBank. Nucleic Acids Research, 21(13), 2963–2965. and https://doi.org/10.1093/nar/21.13.2963
  • Biotech, G. (2020). Snapgene viewer. Glick editor, 3(3).
  • Borkotoky, S., Banerjee, M., Modi, G. P., & Dubey, V. K. (2021). Identification of high affinity and low molecular alternatives of boceprevir against SARS-CoV-2 main protease: A virtual screening approach. Chemical Physics Letters, 770, 138446.
  • Bui, H.-H., Sidney, J., Dinh, K., Southwood, S., Newman, M. J., & Sette, A. (2006). Predicting population coverage of T-cell epitope-based diagnostics and vaccines. BMC Bioinformatics, 7(1), 153–155. https://doi.org/10.1186/1471-2105-7-153
  • Bunge, E. M., Hoet, B., Chen, L., Lienert, F., Weidenthaler, H., Baer, L. R., & Steffen, R. (2022). The changing epidemiology of human monkeypox—A potential threat? A systematic review. PLoS Neglected Tropical Diseases, 16(2), e0010141. https://doi.org/10.1371/journal.pntd.0010141
  • Chastel, C. (2009). Human monkeypox. Pathologie-biologie, 57(2), 175–183. https://doi.org/10.1016/j.patbio.2008.02.006
  • Chatterjee, R., Sahoo, P., Mahapatra, S. R., Dey, J., Ghosh, M., Kushwaha, G. S., Misra, N., Suar, M., Raina, V., & Son, Y.-O. (2021). Development of a conserved chimeric vaccine for induction of strong immune response against Staphylococcus aureus using immunoinformatics approaches. Vaccines, 9(9), 1038. https://doi.org/10.3390/vaccines9091038
  • Chauhan, V., & Singh, M. P. (2020). Immuno-informatics approach to design a multi-epitope vaccine to combat cytomegalovirus infection. European Journal of Pharmaceutical Sciences: Official Journal of the European Federation for Pharmaceutical Sciences, 147, 105279.
  • Cheng, J., Randall, A. Z., Sweredoski, M. J., & Baldi, P. (2005). SCRATCH: A protein structure and structural feature prediction server. Nucleic Acids Research, 33(Web Server issue), W72–W76. https://doi.org/10.1093/nar/gki396
  • Cheung, G., & Sundram, F. (2017). Understanding the progression from physical illness to suicidal behavior: A case study based on a newly developed conceptual model. Clinical Gerontologist, 40(2), 124–129. https://doi.org/10.1080/07317115.2016.1217962
  • Control, C.f.D. and Prevention. (2001). Vaccinia (smallpox) vaccine, recommendations of the Advisory Committee on Immunization Practices (ACIP), 2001. Morbidity and Mortality Weekly Report, 50, 1–25.
  • Craig, D. B., & Dombkowski, A. A. (2013). Disulfide by Design 2.0: A web-based tool for disulfide engineering in proteins. BMC Bioinformatics, 14(1), 346–347. https://doi.org/10.1186/1471-2105-14-346
  • Cunha, B. E. (2004). Monkeypox in the United States: An occupational health look at the first cases. AAOHN Journal, 52(4), 164–168. https://doi.org/10.1177/216507990405200422
  • Dar, A. M., & Mir, S. (2017). Molecular docking: Approaches, types, applications and basic challenges. Journal of Analytical & Bioanalytical Techniques, 08(02), 1–3. https://doi.org/10.4172/2155-9872.1000356
  • Desta, I. T., Porter, K. A., Xia, B., Kozakov, D., & Vajda, S. (2020). Performance and its limits in rigid body protein-protein docking. Structure (London, England: 1993), 28(9), 1071–1081. e3. https://doi.org/10.1016/j.str.2020.06.006
  • Dey, J., Mahapatra, S. R., Lata, S., Patro, S., Misra, N., & Suar, M. (2022). Exploring Klebsiella pneumoniae capsule polysaccharide proteins to design multiepitope subunit vaccine to fight against pneumonia. Expert Review of Vaccines, 21(4), 569–587. https://doi.org/10.1080/14760584.2022.2021882
  • Dey, J., Mahapatra, S. R., Patnaik, S., Lata, S., Kushwaha, G. S., Panda, R. K., Misra, N., & Suar, M. (2022). Molecular characterization and designing of a novel multiepitope vaccine construct against Pseudomonas aeruginosa. International Journal of Peptide Research and Therapeutics, 28(2), 1–19. https://doi.org/10.1007/s10989-021-10356-z
  • Dey, J., Mahapatra, S. R., Raj, T. K., Kaur, T., Jain, P., Tiwari, A., Patro, S., Misra, N., & Suar, M. (2022). Designing a novel multi-epitope vaccine to evoke a robust immune response against pathogenic multidrug-resistant Enterococcus faecium bacterium. Gut Pathogens, 14(1), 1–20. https://doi.org/10.1186/s13099-022-00495-z
  • Dey, J., Mahapatra, S. R., Singh, P., Patro, S., Kushwaha, G. S., Misra, N., & Suar, M. (2021). B and T cell epitope-based peptides predicted from clumping factor protein of Staphylococcus aureus as vaccine targets. Microbial Pathogenesis, 160, 105171. https://doi.org/10.1016/j.micpath.2021.105171
  • Dhanda, S. K., Mahajan, S., Paul, S., Yan, Z., Kim, H., Jespersen, M. C., Jurtz, V., Andreatta, M., Greenbaum, J. A., Marcatili, P., Sette, A., Nielsen, M., & Peters, B. (2019). IEDB-AR: Immune epitope database—Analysis resource in 2019. Nucleic Acids Research, 47(W1), W502–W506. https://doi.org/10.1093/nar/gkz452
  • Dimitrov, I., Flower, D. R., & Doytchinova, I. (2013). AllerTOP—A server for in silico prediction of allergens. In BMC bioinformatics. BioMed Central. https://doi.org/10.1186/1471-2105-14-S6-S4
  • Dong, R., Chu, Z., Yu, F., & Zha, Y. (2020). Contriving multi-epitope subunit of vaccine for COVID-19: Immunoinformatics approaches. Frontiers in Immunology, 11, 1784.
  • Doytchinova, I. A., & Flower, D. R. (2007). VaxiJen: A server for prediction of protective antigens, tumour antigens and subunit vaccines. BMC Bioinformatics, 8(1), 4. https://doi.org/10.1186/1471-2105-8-4
  • Fine, P. E., Jezek, Z., Grab, B., & Dixon, H. (1988). The transmission potential of monkeypox virus in human populations. International Journal of Epidemiology, 17(3), 643–650. https://doi.org/10.1093/ije/17.3.643
  • Garg, V. K., Avashthi, H., Tiwari, A., Jain, P. A., Ramkete, P. W., Kayastha, A. M., & Singh, V. K. (2016). MFPPI–multi FASTA ProtParam interface. Bioinformation, 12(2), 74–77. https://doi.org/10.6026/97320630012074
  • Genheden, S., & Ryde, U. (2015). The MM/PBSA and MM/GBSA methods to estimate ligand-binding affinities. Expert Opinion on Drug Discovery, 10(5), 449–461. https://doi.org/10.1517/17460441.2015.1032936
  • Geourjon, C., & Deleage, G. (1995). SOPMA: Significant improvements in protein secondary structure prediction by consensus prediction from multiple alignments. Computer Applications in the Biosciences: CABIOS, 11(6), 681–684. https://doi.org/10.1093/bioinformatics/11.6.681
  • Grote, A., Hiller, K., Scheer, M., Münch, R., Nörtemann, B., Hempel, D. C., & Jahn, D. (2005). JCat: A novel tool to adapt codon usage of a target gene to its potential expression host. Nucleic Acids Research, 33(Web Server issue), W526–W531. https://doi.org/10.1093/nar/gki376
  • Gupta, S., Kapoor, P., Chaudhary, K., Gautam, A., Kumar, R., & Raghava, G. P. S. (2013). In silico approach for predicting toxicity of peptides and proteins. PLoS One. 8(9), e73957. https://doi.org/10.1371/journal.pone.0073957
  • Guruprasad, K., Reddy, B. B., & Pandit, M. W. (1990). Correlation between stability of a protein and its dipeptide composition: A novel approach for predicting in vivo stability of a protein from its primary sequence. Protein Engineering, 4(2), 155–161. https://doi.org/10.1093/protein/4.2.155
  • Hammarlund, E., Lewis, M. W., Carter, S. V., Amanna, I., Hansen, S. G., Strelow, L. I., Wong, S. W., Yoshihara, P., Hanifin, J. M., & Slifka, M. K. (2005). Multiple diagnostic techniques identify previously vaccinated individuals with protective immunity against monkeypox. Nature Medicine, 11(9), 1005–1011. https://doi.org/10.1038/nm1273
  • Heraud, J.-M., Edghill-Smith, Y., Ayala, V., Kalisz, I., Parrino, J., Kalyanaraman, V. S., Manischewitz, J., King, L. R., Hryniewicz, A., Trindade, C. J., Hassett, M., Tsai, W.-P., Venzon, D., Nalca, A., Vaccari, M., Silvera, P., Bray, M., Graham, B. S., Golding, H., Hooper, J. W., & Franchini, G. (2006). Subunit recombinant vaccine protects against monkeypox. Journal of Immunology (Baltimore, Md.: 1950), 177(4), 2552–2564. https://doi.org/10.4049/jimmunol.177.4.2552
  • Heymann, D. L., Szczeniowski, M., & Esteves, K. (1998). Re-emergence of monkeypox in Africa: A review of the past six years. British Medical Bulletin, 54(3), 693–702. https://doi.org/10.1093/oxfordjournals.bmb.a011720
  • Hooper, J. W., Thompson, E., Wilhelmsen, C., Zimmerman, M., Ichou, M. A., Steffen, S. E., Schmaljohn, C. S., Schmaljohn, A. L., & Jahrling, P. B. (2004). Smallpox DNA vaccine protects nonhuman primates against lethal monkeypox. Journal of Virology, 78(9), 4433–4443. https://doi.org/10.1128/jvi.78.9.4433-4443.2004
  • Huang, Y., Niu, B., Gao, Y., Fu, L., & Li, W. (2010). CD-HIT Suite: A web server for clustering and comparing biological sequences. Bioinformatics (Oxford, England), 26(5), 680–682. https://doi.org/10.1093/bioinformatics/btq003
  • Ismail, S., Shahid, F., Khan, A., Bhatti, S., Ahmad, S., Naz, A., Almatroudi, A., & Tahir Ul Qamar, M. (2021). Pan-vaccinomics approach towards a universal vaccine candidate against WHO priority pathogens to address growing global antibiotic resistance. Computers in Biology and Medicine, 136, 104705.
  • Jain, P., Joshi, A., Akhtar, N., Krishnan, S., & Kaushik, V. (2021). An immunoinformatics study: Designing multivalent T-cell epitope vaccine against canine circovirus. Journal of Genetic Engineering and Biotechnology, 19(1), 1–11. https://doi.org/10.1186/s43141-021-00220-4
  • Johnson, R. F., Dyall, J., Ragland, D. R., Huzella, L., Byrum, R., Jett, C., St Claire, M., Smith, A. L., Paragas, J., Blaney, J. E., & Jahrling, P. B. (2011). Comparative analysis of monkeypox virus infection of cynomolgus macaques by the intravenous or intrabronchial inoculation route. Journal of Virology, 85(5), 2112–2125. https://doi.org/10.1128/JVI.01931-10
  • Khanmohammadi, S., & Rezaei, N. (2021). Role of Toll‐like receptors in the pathogenesis of COVID‐19. Journal of Medical Virology, 93(5), 2735–2739. https://doi.org/10.1002/jmv.26826
  • Khatoon, N., Pandey, R. K., & Prajapati, V. K. (2017). Exploring Leishmania secretory proteins to design B and T cell multi-epitope subunit vaccine using immunoinformatics approach. Scientific Reports, 7(1), 1–12. https://doi.org/10.1038/s41598-017-08842-w
  • Kräutler, V., van Gunsteren, W. F., & Hünenberger, P. H. (2001). A fast SHAKE algorithm to solve distance constraint equations for small molecules in molecular dynamics simulations. Journal of Computational Chemistry, 22(5), 501–508. https://doi.org/10.1002/1096-987X(20010415)22:5<501::AID-JCC1021>3.0.CO;2-V
  • Krogh, A., Larsson, B., von Heijne, G., & Sonnhammer, E. L. (2001). Predicting transmembrane protein topology with a hidden Markov model: Application to complete genomes. Journal of Molecular Biology, 305(3), 567–580. https://doi.org/10.1006/jmbi.2000.4315
  • Kupferschmidt, K. (2022). As monkeypox threat grows, scientists debate best vaccine strategy. Science, 376(6598)[ Mismatch
  • Li, W., Joshi, M. D., Singhania, S., Ramsey, K. H., & Murthy, A. K. (2014). Peptide vaccine: Progress and challenges. Vaccines, 2(3), 515–536. https://doi.org/10.3390/vaccines2030515
  • Li, Y., Olson, V. A., Laue, T., Laker, M. T., & Damon, I. K. (2006). Detection of monkeypox virus with real-time PCR assays. Journal of Clinical Virology: The Official Publication of the Pan American Society for Clinical Virology, 36(3), 194–203. https://doi.org/10.1016/j.jcv.2006.03.012
  • Li, Y., Zhao, H., Wilkins, K., Hughes, C., & Damon, I. K. (2010). Real-time PCR assays for the specific detection of monkeypox virus West African and Congo Basin strain DNA. Journal of Virological Methods, 169(1), 223–227. https://doi.org/10.1016/j.jviromet.2010.07.012
  • Lo, Y.-T., Pai, T.-W., Wu, W.-K., & Chang, H.-T. (2013). Prediction of conformational epitopes with the use of a knowledge-based energy function and geometrically related neighboring residue characteristics. BMC Bioinformatics, 14(S4), 1–10. https://doi.org/10.1186/1471-2105-14-S4-S3
  • Magnan, C. N., Zeller, M., Kayala, M. A., Vigil, A., Randall, A., Felgner, P. L., & Baldi, P. (2010). High-throughput prediction of protein antigenicity using protein microarray data. Bioinformatics (Oxford, England), 26(23), 2936–2943. https://doi.org/10.1093/bioinformatics/btq551
  • Mahapatra, S. R., Dey, J., Kaur, T., Sarangi, R., Bajoria, A. A., Kushwaha, G. S., Misra, N., & Suar, M. (2021). Immunoinformatics and molecular docking studies reveal a novel multi-epitope peptide vaccine against pneumonia infection. Vaccine, 39(42), 6221–6237. https://doi.org/10.1016/j.vaccine.2021.09.025
  • Mahapatra, S. R., Dey, J., Kushwaha, G. S., Puhan, P., Mohakud, N. K., Panda, S. K., Lata, S., Misra, N., & Suar, M. (2021). Immunoinformatic approach employing modeling and simulation to design a novel vaccine construct targeting MDR efflux pumps to confer wide protection against typhoidal Salmonella serovars. Journal of Biomolecular Structure and Dynamics, 1–13. https://doi.org/10.1080/07391102.2021.1964600
  • Mahmood, M., Javaid, A., Shahid, F., & Ashfaq, U. A. (2021). Rational design of multimeric based subunit vaccine against Mycoplasma pneumonia: Subtractive proteomics with immunoinformatics framework. Infection, Genetics and Evolution: Journal of Molecular Epidemiology and Evolutionary Genetics in Infectious Diseases, 91, 104795.
  • Maxwell, K. L., & Frappier, L. (2007). Viral proteomics. Microbiology and Molecular Biology Reviews: MMBR, 71(2), 398–411. https://doi.org/10.1128/MMBR.00042-06
  • Nalca, A., & Zumbrun, E. E. (2010). ACAM2000™: The new smallpox vaccine for United States Strategic National Stockpile. Drug Design, Development and Therapy, 4, 71.
  • Narang, P. K., Dey, J., Mahapatra, S. R., Ghosh, M., Misra, N., Suar, M., Kumar, V., & Raina, V. (2021). Functional annotation and sequence-structure characterization of a hypothetical protein putatively involved in carotenoid biosynthesis in microalgae. South African Journal of Botany, 141, 219–226. https://doi.org/10.1016/j.sajb.2021.04.014
  • Narang, P. K., Dey, J., Mahapatra, S. R., Roy, R., Kushwaha, G. S., Misra, N., Suar, M., & Raina, V. (2021). Genome-based identification and comparative analysis of enzymes for carotenoid biosynthesis in microalgae. World Journal of Microbiology & Biotechnology, 38(1), 8–22. https://doi.org/10.1007/s11274-021-03188-y
  • Nezafat, N., Ghasemi, Y., Javadi, G., Khoshnoud, M. J., & Omidinia, E. (2014). A novel multi-epitope peptide vaccine against cancer: An in silico approach. Journal of Theoretical Biology, 349, 121–134. https://doi.org/10.1016/j.jtbi.2014.01.018
  • Noor, F., Ahmad, S., Saleem, M., Alshaya, H., Qasim, M., Rehman, A., Ehsan, H., Talib, N., Saleem, H., Bin Jardan, Y. A., & Aslam, S. (2022). Designing a multi-epitope vaccine against Chlamydia pneumoniae by integrating the core proteomics, subtractive proteomics and reverse vaccinology-based immunoinformatics approaches. Computers in Biology and Medicine, 145, 105507.
  • Pandey, R. K., Ojha, R., Aathmanathan, V. S., Krishnan, M., & Prajapati, V. K. (2018). Immunoinformatics approaches to design a novel multi-epitope subunit vaccine against HIV infection. Vaccine, 36(17), 2262–2272. https://doi.org/10.1016/j.vaccine.2018.03.042
  • Parrino, J., & Graham, B. S. (2006). Smallpox vaccines: Past, present, and future. The Journal of Allergy and Clinical Immunology, 118(6), 1320–1326. https://doi.org/10.1016/j.jaci.2006.09.037
  • Pastor, R. W., Brooks, B. R., & Szabo, A. (1988). An analysis of the accuracy of Langevin and molecular dynamics algorithms. Molecular Physics, 65(6), 1409–1419. https://doi.org/10.1080/00268978800101881
  • Petersen, E., Zumla, A., Hui, D. S., Blumberg, L., Valdoleiros, S. R., Amao, L., Ntoumi, F., Asogun, D., Simonsen, L., Haider, N., Traore, T., Kapata, N., Dar, O., Nachega, J., Abbara, A., Al Balushi, A., Kock, R., Maeurer, M., Lee, S. S., … Koopmans, M. (2022). Vaccination for monkeypox prevention in persons with high-risk sexual behaviours to control on-going outbreak of monkeypox virus clade 3. International Journal of Infectious Diseases: IJID: Official Publication of the International Society for Infectious Diseases, 122, 569–571. https://doi.org/10.1016/j.ijid.2022.06.047
  • Rajkumari, J., Borkotoky, S., Murali, A., & Busi, S. (2018). Anti-quorum sensing activity of Syzygium jambos (L.) Alston against Pseudomonas aeruginosa PAO1 and identification of its bioactive components. South African Journal of Botany, 118, 151–157. https://doi.org/10.1016/j.sajb.2018.07.004
  • Rapin, N., Lund, O., Bernaschi, M., & Castiglione, F. (2010). Computational immunology meets bioinformatics: The use of prediction tools for molecular binding in the simulation of the immune system. PloS One, 5(4), e9862. https://doi.org/10.1371/journal.pone.0009862
  • Rizk, J. G., Lippi, G., Henry, B. M., Forthal, D. N., & Rizk, Y. (2022). Prevention and treatment of monkeypox. Drugs, 82, 1–7. https://doi.org/10.1007/s40265-022-01767-3
  • Roe, D. R., & Cheatham, T. E. (2013). Cheatham 3rd TE. 2013. PTRAJ and CPPTRAJ: Software for processing and analysis of molecular dynamics trajectory data. Journal of Chemical Theory and Computation, 9(7), 3084–3095. https://doi.org/10.1021/ct400341p
  • Saijo, M., Ami, Y., Suzaki, Y., Nagata, N., Iwata, N., Hasegawa, H., Ogata, M., Fukushi, S., Mizutani, T., Sata, T., Kurata, T., Kurane, I., & Morikawa, S. (2006). LC16m8, a highly attenuated vaccinia virus vaccine lacking expression of the membrane protein B5R, protects monkeys from monkeypox. Journal of Virology, 80(11), 5179–5188. https://doi.org/10.1128/JVI.02642-05
  • Saijo, M., Ami, Y., Suzaki, Y., Nagata, N., Iwata, N., Hasegawa, H., Ogata, M., Fukushi, S., Mizutani, T., Iizuka, I., Sakai, K., Sata, T., Kurata, T., Kurane, I., & Morikawa, S. (2008). Diagnosis and assessment of monkeypox virus (MPXV) infection by quantitative PCR assay: Differentiation of Congo Basin and West African MPXV strains. Japanese Journal of Infectious Diseases, 61(2), 140–142.
  • Salomon-Ferrer, R., Case, D. A., & Walker, R. C. (2013). An overview of the Amber biomolecular simulation package. Wiley Interdisciplinary Reviews: Computational Molecular Science, 3(2), 198–210. https://doi.org/10.1002/wcms.1121
  • Sikic, K., & Carugo, O. (2010). Protein sequence redundancy reduction: Comparison of various method. Bioinformation, 5(6), 234–239. https://doi.org/10.6026/97320630005234
  • Stittelaar, K. J., Neyts, J., Naesens, L., van Amerongen, G., van Lavieren, R. F., Holý, A., De Clercq, E., Niesters, H. G. M., Fries, E., Maas, C., Mulder, P. G. H., van der Zeijst, B. A. M., & Osterhaus, A. D. M. E. (2006). Antiviral treatment is more effective than smallpox vaccination upon lethal monkeypox virus infection. Nature, 439(7077), 745–748. https://doi.org/10.1038/nature04295
  • Stittelaar, K. J., van Amerongen, G., Kondova, I., Kuiken, T., van Lavieren, R. F., Pistoor, F. H. M., Niesters, H. G. M., van Doornum, G., van der Zeijst, B. A. M., Mateo, L., Chaplin, P. J., & Osterhaus, A. D. M. E. (2005). Modified vaccinia virus Ankara protects macaques against respiratory challenge with monkeypox virus. Journal of Virology, 79(12), 7845–7851. https://doi.org/10.1128/JVI.79.12.7845-7851.2005
  • Tahir Ul Qamar, M., Rehman, A., Tusleem, K., Ashfaq, U. A., Qasim, M., Zhu, X., Fatima, I., Shahid, F., & Chen, L.-L. (2020). Designing of a next generation multiepitope based vaccine (MEV) against SARS-COV-2: Immunoinformatics and in silico approaches. PloS One, 15(12), e0244176. https://doi.org/10.1371/journal.pone.0244176
  • Tahir ul Qamar, M., Shahid, F., Aslam, S., Ashfaq, U. A., Aslam, S., Fatima, I., Fareed, M. M., Zohaib, A., & Chen, L.-L. (2020). Reverse vaccinology assisted designing of multiepitope-based subunit vaccine against SARS-CoV-2. Infectious Diseases of Poverty, 9(1), 1–14. https://doi.org/10.1186/s40249-020-00752-w
  • Ullah, A., Ahmad, S., Ismail, S., Afsheen, Z., Khurram, M., Tahir ul Qamar, M., AlSuhaymi, N., Alsugoor, M. H., & Allemailem, K. S. (2021). Towards a novel multi-epitopes chimeric vaccine for simulating strong immune responses and protection against morganella morganii. International Journal of Environmental Research and Public Health, 18(20), 10961. https://doi.org/10.3390/ijerph182010961
  • Vita, R., Overton, J. A., Greenbaum, J. A., Ponomarenko, J., Clark, J. D., Cantrell, J. R., Wheeler, D. K., Gabbard, J. L., Hix, D., Sette, A., & Peters, B. (2015). The immune epitope database (IEDB) 3.0. Nucleic Acids Research, 43(Database issue), D405–D412. https://doi.org/10.1093/nar/gku938
  • Weinstein, R. A., Nalca, A., Rimoin, A. W., Bavari, S., & Whitehouse, C. A. (2005). Reemergence of monkeypox: Prevalence, diagnostics, and countermeasures. Clinical Infectious Diseases, 41(12), 1765–1771. https://doi.org/10.1086/498155
  • Yu, C.-S., Cheng, C.-W., Su, W.-C., Chang, K.-C., Huang, S.-W., Hwang, J.-K., & Lu, C.-H. (2014). CELLO2GO: A web server for protein subCELlular LOcalization prediction with functional gene ontology annotation. PloS One, 9(6), e99368. https://doi.org/10.1371/journal.pone.0099368
  • Zaucha, G. M., Jahrling, P. B., Geisbert, T. W., Swearengen, J. R., & Hensley, L. (2001). The pathology of experimental aerosolized monkeypox virus infection in cynomolgus monkeys (Macaca fascicularis). Laboratory Investigation; A Journal of Technical Methods and Pathology, 81(12), 1581–1600. https://doi.org/10.1038/labinvest.3780373
  • Zhang, L. (2018). Multi-epitope vaccines: A promising strategy against tumors and viral infections. Cellular & Molecular Immunology, 15(2), 182–184. https://doi.org/10.1038/cmi.2017.92
  • Zheng, J., Lin, X., Wang, X., Zheng, L., Lan, S., Jin, S., Ou, Z., & Wu, J. (2017). In silico analysis of epitope-based vaccine candidates against hepatitis B virus polymerase protein. Viruses, 9(5), 112. https://doi.org/10.3390/v9050112

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.