385
Views
4
CrossRef citations to date
0
Altmetric
Research Articles

Flavonoids as promising anticancer agents: an in silico investigation of ADMET, binding affinity by molecular docking and molecular dynamics simulations

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 7835-7846 | Received 07 Feb 2022, Accepted 11 Sep 2022, Published online: 27 Sep 2022

References

  • Abotaleb, M., Samuel, S., Varghese, E., Varghese, S., Kubatka, P., Liskova, A., & Büsselberg, D. (2018). Flavonoids in cancer and apoptosis. Cancers, 11(1), 28. https://doi.org/10.3390/cancers11010028
  • Babich, H., Zuckerbraun, H. L., & Weinerman, S. M. (2007). In vitro cytotoxicity of (−)-catechin gallate, a minor polyphenol in green tea. Toxicology Letters, 171(3), 171–180. https://doi.org/10.1016/j.toxlet.2007.05.125
  • Bajracharya, G. B., Paudel, M., Rajendra, K., & Shyaula, S. L. (2020). Structure-activity relationship and MM2 energy minimized conformational analysis of quercetin and its derivatives in the DPPH• radical scavenging capacity. BIBECHANA, 17, 20–27. https://doi.org/10.3126/bibechana.v17i0.25208
  • Banjare, L., Jain, A. K., & Thareja, S. (2021). Dual aromatase-sulphatase inhibitors (dasis) for the treatment of hormone dependent breast cancer. Mini Reviews in Medicinal Chemistry, 21(20), 3144–3165.
  • Banjare, L., Verma, S. K., Jain, A. K., & Thareja, S. (2019). Structure guided molecular docking assisted alignment dependent 3DQSAR study on steroidal aromatase inhibitors (SAIs) as anti-breast cancer agents. Letters in Drug Design & Discovery, 16(7), 808–817. https://doi.org/10.2174/1570180815666181010101024
  • Banjare, L., Verma, S. K., Jain, A. K., & Thareja, S. (2020). Design and pharmacophoric identification of flavonoid scaffold‐based aromatase inhibitors. Journal of Heterocyclic Chemistry, 57(9), 3483–3492.
  • Banjare, L., Verma, S. K., Jain, A. K., & Thareja, S. (2020). Lead molecules as novel aromatase inhibitors: In silico de novo designing and binding affinity studies. Letters in Drug Design & Discovery, 17(5), 655–665. https://doi.org/10.2174/1570180816666190703152659
  • Bitencourt-Ferreira, G., & de Azevedo, W. F. (2019). Molegro virtual docker for docking. Docking screens for drug discovery. Springer, p. 149–167.
  • Cecchelli, R., Berezowski, V., Lundquist, S., Culot, M., Renftel, M., Dehouck, M.-P., & Fenart, L. (2007). Modelling of the blood–brain barrier in drug discovery and development. Nature Reviews. Drug Discovery, 6(8), 650–661. https://doi.org/10.1038/nrd2368
  • Chae, H.-S., Xu, R., Won, J.-Y., Chin, Y.-W., & Yim, H. (2019). Molecular targets of genistein and its related flavonoids to exert anticancer effects. International Journal of Molecular Sciences, 20(10), 2420. https://doi.org/10.3390/ijms20102420
  • Cho, H.-D., Lee, J.-H., Moon, K.-D., Park, K.-H., Lee, M.-K., & Seo, K.-I. (2018). Auriculasin-induced ROS causes prostate cancer cell death via induction of apoptosis. Food and Chemical Toxicology: An International Journal Published for the British Industrial Biological Research Association, 111, 660–669. https://doi.org/10.1016/j.fct.2017.12.007
  • Daina, A., Michielin, O., & Zoete, V. (2017). Swissadme: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Scientific Reports, 7(1), 42717. https://doi.org/10.1038/srep42717
  • Devi, N., Kaur, K., Biharee, A., & Jaitak, V. (2021). Recent development in indole derivatives as anticancer agent: A mechanistic approach. Anti-Cancer Agents in Medicinal Chemistry, 21(14), 1802–1824. https://doi.org/10.2174/1871520621999210104192644
  • Fromm, M. (2003). Importance of P‐glycoprotein for drug disposition in humans. European Journal of Clinical Investigation, 33, 6–9. https://doi.org/10.1046/j.1365-2362.33.s2.4.x
  • Harris, R. Z., Jang, G. R., & Tsunoda, S. (2003). Dietary effects on drug metabolism and transport. Clinical Pharmacokinetics, 42(13), 1071–1088.
  • Hazafa, A., Rehman, K.-U., Jahan, N., & Jabeen, Z. (2020). The role of polyphenol (flavonoids) compounds in the treatment of cancer cells. Nutrition and Cancer, 72(3), 386–397. https://doi.org/10.1080/01635581.2019.1637006
  • Holmes, F. A., Walters, R. S., Theriault, R. L., Forman, A. D., Newton, L. K., Raber, M. N., Buzdar, A. U., Frye, D. K., & Hortobagyi, G. N. (1991). Phase II trial of taxol, an active drug in the treatment of metastatic breast cancer. Journal of the National Cancer Institute, 83(24), 1797–1805. https://doi.org/10.1093/jnci/83.24.1797-a
  • Jain, A. K., Mishra, K., & Thareja, S. (2021). In silico docking of anti cancerous drugs with β-cyclodextrin polymer as a prominent approach to improve the bioavailability. Anti-Cancer Agents in Medicinal Chemistry, 21(10), 1275–1283. https://doi.org/10.2174/1871520620666201013145725
  • Jain, A. K., Sahu, H., Mishra, K., & Thareja, S. (2021). Mannose conjugated starch nanoparticles for preferential targeting of liver cancer. Current Drug Delivery, 18(3), 369–380.
  • Jiang, H., Chen, H., Jin, C., Mo, J., & Wang, H. (2020). Nobiletin flavone inhibits the growth and metastasis of human pancreatic cancer cells via induction of autophagy, G0/G1 cell cycle arrest and inhibition of Nf-kB signalling pathway. Journal of Buon, 25(2), 1070–1075.
  • Jusko, W. J., & Gretch, M. (1976). Plasma and tissue protein binding of drugs in pharmacokinetics. Drug Metabolism Reviews, 5(1), 43–140. https://doi.org/10.3109/03602537608995839
  • Kaur, H., & Bansal, T. (2020). Role of flavonoids in cancer prevention: Chemistry and mode of action. European Journal of Molecular & Clinical Medicine, 7(7), 3608–3625.
  • Khan, H., Ullah, H., & Martorell, M. (Eds.). (2019). Flavonoids nanoparticles in cancer: Treatment, prevention and clinical prospects. Seminars in Cancer Biology. Elsevier.
  • Kopustinskiene, D. M., Jakstas, V., Savickas, A., & Bernatoniene, J. (2020). Flavonoids as anticancer agents. Nutrients, 12(2), 457. https://doi.org/10.3390/nu12020457
  • Koziara, J. M., Lockman, P. R., Allen, D. D., & Mumper, R. J. (2003). In situ blood–brain barrier transport of nanoparticles. Pharmaceutical Research, 20(11), 1772–1778. https://doi.org/10.1023/B:PHAM.0000003374.58641.62
  • Kumar, S., & Pandey, A. K. (2013). Chemistry and biological activities of flavonoids: An overview. Scientific World Journal, 2013, 1–16. https://doi.org/10.1155/2013/162750
  • Lackova, Z., Buchtelova, H., Buchtova, Z., Klejdus, B., Heger, Z., Brtnicky, M., Kynicky, J., Zitka, O., & Adam, V. (2017). Anticarcinogenic effect of spices due to phenolic and flavonoid compounds—In vitro evaluation on prostate cells. Molecules, 22(10), 1626. https://doi.org/10.3390/molecules22101626
  • Lai, C.-H., Kuo, K.-H., & Leo, J. M. (2005). Critical role of actin in modulating BBB permeability. Brain Research. Brain Research Reviews, 50(1), 7–13. https://doi.org/10.1016/j.brainresrev.2005.03.007
  • Li, J., Chen, F., Cona, M. M., Feng, Y., Himmelreich, U., Oyen, R., Verbruggen, A., & Ni, Y. (2012). A review on various targeted anticancer therapies. Targeted Oncology, 7(1), 69–85. https://doi.org/10.1007/s11523-012-0212-2
  • Lin, J., Sahakian, D. C., De Morais, S., Xu, J. J., Polzer, R. J., & Winter, S. M. (2003). The role of absorption, distribution, metabolism, excretion and toxicity in drug discovery. Current Topics in Medicinal Chemistry, 3(10), 1125–1154. https://doi.org/10.2174/1568026033452096
  • Lipinski, C. A., Lombardo, F., Dominy, B. W., & Feeney, P. J. (1997). Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Advanced Drug Delivery Reviews, 23(1–3), 3–25. https://doi.org/10.1016/S0169-409X(96)00423-1
  • López-Lázaro, M., Martin-Cordero, C., Toro, M., & Ayuso, M. (2002). Flavonoids as DNA topoisomerase I poisons. Journal of Enzyme Inhibition and Medicinal Chemistry, 17(1), 25–29. https://doi.org/10.1080/14756360290011744
  • Lu, Y., Chen, J., Xiao, M., Li, W., & Miller, D. D. (2012). An overview of tubulin inhibitors that interact with the colchicine binding site. Pharmaceutical Research, 29(11), 2943–2971. https://doi.org/10.1007/s11095-012-0828-z
  • Molinspiration. (2021). Molinspiration cheminformatics [Internet]. https://www.molinspiration.com/cgi-bin/properties
  • Mourad, F. H., & Saadé, N. E. (2011). Neural regulation of intestinal nutrient absorption. Progress in Neurobiology, 95(2), 149–162. https://doi.org/10.1016/j.pneurobio.2011.07.010
  • Mukhtar, E., Adhami, V. M., Sechi, M., & Mukhtar, H. (2015). Dietary flavonoid fisetin binds to β-tubulin and disrupts microtubule dynamics in prostate cancer cells. Cancer Letters, 367(2), 173–183. https://doi.org/10.1016/j.canlet.2015.07.030
  • Mwakalukwa, R., Ashour, A., Amen, Y., Niwa, Y., Tamrakar, S., Miyamoto, T., & Shimizu, K. (2019). Anti-allergic activity of polyphenolic compounds isolated from olive mill wastes. Journal of Functional Foods, 58, 207–217. https://doi.org/10.1016/j.jff.2019.04.058
  • Niazi, S. (1976). Volume of distribution as a function of time. Journal of Pharmaceutical Sciences, 65(3), 452–454. https://doi.org/10.1002/jps.2600650339
  • Pang, X., Zhang, X., Jiang, Y., Su, Q., Li, Q., & Li, Z. (2021). Autophagy: Mechanisms and therapeutic potential of flavonoids in cancer. Biomolecules, 11(2), 135. https://doi.org/10.3390/biom11020135
  • Paudel, K. S., Milewski, M., Swadley, C. L., Brogden, N. K., Ghosh, P., & Stinchcomb, A. L. (2010). Challenges and opportunities in dermal/transdermal delivery. Therapeutic Delivery, 1(1), 109–131. https://doi.org/10.4155/tde.10.16
  • Pires, D. E., Blundell, T. L., & Ascher, D. B. (2015). pkCSM: Predicting small-molecule pharmacokinetic and toxicity properties using graph-based signatures. Journal of Medicinal Chemistry, 58(9), 4066–4072.
  • Raffa, D., Maggio, B., Raimondi, M. V., Plescia, F., & Daidone, G. (2017). Recent discoveries of anticancer flavonoids. European Journal of Medicinal Chemistry, 142, 213–228. https://doi.org/10.1016/j.ejmech.2017.07.034
  • Rodríguez-García, C., Sánchez-Quesada, C., & Gaforio, J. J. (2019). Dietary flavonoids as cancer chemopreventive agents: An updated review of human studies. Antioxidants, 8(5), 137. https://doi.org/10.3390/antiox8050137
  • Russo, G. L. R., Usso, M., Spagnuolo, C., & Moccia, S. (2017). Ins and outs of flavonoids in cancer prevention vs. cancer therapy: A lesson from quercetin in leukemia. Multidisciplinary Digital Publishing Institute Proceedings, 1(10), 977.
  • Saini, R. K., Chouhan, R., Bagri, L. P., & Bajpai, A. (2012). Strategies of targeting tumors and cancers. Journal of Cancer Research Updates, 1(1), 173–179.
  • Seth, R., Kushwaha, S., Luqman, S., & Meena, A. (2021). Flavonoids as prospective aromatase inhibitors in breast cancer prevention/therapy. Current Molecular Pharmacology, 14(6), 1112–1124.
  • Shah, U., Patel, S., Patel, M., & Upadhayay, J. (2017). Molecular docking and in silico admet study reveals flavonoids as a potential inhibitor of aromatase. Letters in Drug Design & Discovery, 14(11), 1267–1276.
  • Singh, I. P., Ahmad, F., Chatterjee, D., Bajpai, R., & Sengar, N. (2021). Natural products: Drug discovery and development. In R. Poduri (Ed.), Drug discovery from natural products (pp. 11–65). Springer Nature.
  • Tabeshpour, J., Sahebkar, A., Zirak, M. R., Zeinali, M., Hashemzaei, M., Rakhshani, S., & Rakhshani, S. (2018). Computer-aided drug design and drug pharmacokinetic prediction: A mini-review. Current Pharmaceutical Design, 24(26), 3014–3019. https://doi.org/10.2174/1381612824666180903123423
  • Veber, D. F., Johnson, S. R., Cheng, H.-Y., Smith, B. R., Ward, K. W., & Kopple, K. D. (2002). Molecular properties that influence the oral bioavailability of drug candidates. Journal of Medicinal Chemistry, 45(12), 2615–2623.
  • Veeramuthu, D., Raja, W. R. T., Al-Dhabi, N. A., & Savarimuthu, I. (2017). Flavonoids: Anticancer properties. In Flavonoids: From biosynthesis to human health (pp. 287). Intech Open.
  • Verma, S. K., Ratre, P., Jain, A. K., Liang, C., Gupta, G. D., & Thareja, S. (2021). De novo designing, assessment of target affinity and binding interactions against aromatase: Discovery of novel leads as anti-breast cancer agents. Structural Chemistry, 32(2), 847–858. https://doi.org/10.1007/s11224-020-01673-y
  • Won, Y.-S., Kim, J.-H., Lizardo, R. C. M., Min, H.-J., Cho, H.-D., Hong, S.-M., & Seo, K.-I. (2020). The flavonol isoquercitrin promotes mitochondrial-dependent apoptosis in SK-Mel-2 melanoma cell via the PI3K/AKT/mTOR pathway. Nutrients, 12(12), 3683. https://doi.org/10.3390/nu12123683
  • Yan, W., Wu, T. H., Leung, S. S., & To, K. K. (2020). Flavonoids potentiated anticancer activity of cisplatin in non-small cell lung cancer cells in vitro by inhibiting histone deacetylases. Life Sciences, 258, 118211. https://doi.org/10.1016/j.lfs.2020.118211
  • Yang, J., Wen, L., Jiang, Y., & Yang, B. (2019). Natural estrogen receptor modulators and their heterologous biosynthesis. Trends in Endocrinology and Metabolism: TEM, 30(1), 66–76. https://doi.org/10.1016/j.tem.2018.11.002
  • Zakaryan, H., Arabyan, E., Oo, A., & Zandi, K. (2017). Flavonoids: Promising natural compounds against viral infections. Archives of Virology, 162(9), 2539–2551. https://doi.org/10.1007/s00705-017-3417-y
  • Zhang, H.-W., Hu, J.-J., & Fu, R.-Q. (2018). Flavonoids inhibit cell proliferation and induce apoptosis and autophagy through downregulation of PI3Kγ mediated PI3K/AKT/mTOR/p70s6K/ULK signaling pathway in human breast cancer cells. Scientific Reports, 8(1), 1–13.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.