472
Views
2
CrossRef citations to date
0
Altmetric
Research Articles

3D QSAR pharmacophore based lead identification of G9a lysine methyltransferase towards epigenetic therapeutics

, , & ORCID Icon
Pages 8635-8653 | Received 06 Jul 2022, Accepted 08 Oct 2022, Published online: 20 Oct 2022

References

  • Baell, J. B., & Holloway, G. A. (2010). New substructure filters for removal of pan assay interference compounds (PAINS) from screening libraries and for their exclusion in bioassays. Journal of Medicinal Chemistry, 53(7), 2719–2740. https://doi.org/10.1021/jm901137j
  • Banerjee, D. R., Deckard, I. C., Zeng, Y., & Sczepanski, J. T. (2019). Acetylation of the histone H3 tail domain regulates base excision repair on higher-order chromatin structures. Scientific Reports, 9(1), 15972. https://doi.org/10.1038/s41598-019-52340-0
  • Banerjee, D. R., Deckard, III, C. E., Elinski, M. B., Buzbee, M. L., Wang, W. W., Batteas, J. D., & Sczepanski, J. T. (2018). Plug-and-play approach for preparing chromatin containing site-specific DNA modifications: The influence of chromatin structure on base excision repair. Journal of the American Chemical Society, 140(26), 8260–8267. https://doi.org/10.1021/jacs.8b04063
  • Bannister, A. J., & Kouzarides, T. (2011). Regulation of chromatin by histone modifications. Cell Research, 21(3), 381–395. https://doi.org/10.1038/cr.2011.22
  • Bellver-Sanchis, A., Singh Choudhary, B., Companys-Alemany, J., Ávila-López, P. A., Martínez Rodríguez, A. L., Brea Floriani, J. M., Malik, R., Pallàs, M., Pérez, B., & Griñán-Ferré, C. (2022). Structure-based virtual screening and in vitro and in vivo analyses revealed potent methyltransferase G9a inhibitors as prospective anti-Alzheimer’s agents. ChemMedChem, 17(13), e202200002. https://doi.org/10.1002/cmdc.202200002
  • BIOVIA. (2022). Dassault Systèmes. BIOVIA Discovery Studio Academic Research Suite. Dassault Systèmes.
  • Biswas, S., & Rao, C. M. (2018). Epigenetic tools (The Writers, The Readers and The Erasers) and their implications in cancer therapy. European Journal of Pharmacology, 837, 8–24. https://doi.org/10.1016/j.ejphar.2018.08.021
  • Bock, C., & Lengauer, T. (2008). Computational epigenetics. Bioinformatics (Oxford, England), 24(1), 1–10. https://doi.org/10.1093/bioinformatics/btm546
  • Bowers, K. J., Chow, D. E., Xu, H., Dror, R. H., Eastwood, M. P., Gregersen, B. A., Klepeis, J. L., Kolossvary, I., Moraes, M. A., Sacerdoti, F. D., Salmon, J. K., Shan, Y., & Shaw, D. E. (2006). Scalable Algorithms for Molecular Dynamics Simulations on Commodity Clusters [Paper presentation].ACM/IEEE SC 2006 Conference (SC’06), in IEEE (pp. 43–43). https://doi.org/10.1109/SC.2006.54
  • Cao, Y. P., Sun, J. Y., Li, M. Q., Dong, Y., Zhang, Y. H., Yan, J., Huang, R. M., & Yan, X. (2019). Inhibition of G9a by a small molecule inhibitor, UNC0642, induces apoptosis of human bladder cancer cells. Acta Pharmacologica Sinica, 40(8), 1076–1084. https://doi.org/10.1038/s41401-018-0205-5
  • Charles, M. R. C., Dhayalan, A., Hsieh, H. P., & Coumar, M. S. (2019). Insights for the design of protein lysine methyltransferase G9a inhibitors. Future Medicinal Chemistry, 11(9), 993–1014. https://doi.org/10.4155/fmc-2018-0396
  • Charles, M. R. C., Hsieh, H. P., & Coumar, M. S. (2019). Delineating the active site architecture of G9a lysine methyltransferase through substrate and inhibitor binding mode analysis: A molecular dynamics study. Journal of Biomolecular Structure & Dynamics, 37(10), 2581–2592. https://doi.org/10.1080/07391102.2018.1491422
  • Charles, M. R. C., Li, M. C., Hsieh, H. P., & Coumar, M. S. (2021). Mimicking H3 substrate arginine in the design of G9a lysine methyltransferase inhibitors for cancer therapy: A computational study for structure-based drug design. ACS Omega, 6(9), 6100–6111. https://doi.org/10.1021/acsomega.0c04710
  • Chen, J., Lin, X., Park, K. J., Lee, K. R., & Park, H. (2018). Identification of protoberberine alkaloids as novel histone methyltransferase G9a inhibitors by structure-based virtual screening. Journal of Computer-Aided Molecular Design, 32(9), 917–928. https://doi.org/10.1007/s10822-018-0156-4
  • Chen, M., Hua, K., Kao, H., Chi, C., Wei, L., Johansson, G., Shiah, S., Chen, P., Jeng, Y., Cheng, T., Lai, T., Chang, J., Jan, Y., Chien, M., Yang, C., Huang, M., Hsiao, M., & Kuo, M. (2010). H3K9 histone methyltransferase G9a promotes lung cancer invasion and metastasis by silencing the cell adhesion molecule Ep-CAM. Cancer Research, 70(20), 7830–7840. https://doi.org/10.1158/0008-5472.CAN-10-0833
  • Chen, W. L., Wang, Z. H., Feng, T. T., Li, D. D., Wang, C. H., Xu, X. L., Zhang, X. J., You, Q. D., & Guo, X. K. (2016). Discovery, design and synthesis of 6H-anthra[1,9-cd] isoxazol-6-one scaffold as G9a inhibitor through a combination of shape-based virtual screening and structure-based molecular modification. Bioorganic & Medicinal Chemistry, 24(22), 6102–6108. https://doi.org/10.1016/j.bmc.2016.09.071
  • Daina, A., Michielin, O., & Zoete, V. (2017). SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Scientific Reports, 7, 42717. https://doi.org/10.1038/srep42717
  • Debnath, A. K. (2002). Pharmacophore mapping of a series of 2,4-diamino-5-deazapteridine inhibitors of Mycobacterium avium complex dihydrofolate reductase. Journal of Medicinal Chemistry, 45(1), 41–53. https://doi.org/10.1021/jm010360c
  • Deckard, III, C. E., Banerjee, D. R., & Sczepanski, J. T. (2019). Chromatin structure and the pioneering transcription factor FOXA1 regulate TDG-mediated removal of 5-formylcytosine from DNA. Journal of the American Chemical Society, 141(36), 14110–14114. https://doi.org/10.1021/jacs.9b07576
  • Desmond Molecular Dynamics System, version 4.1, D.E. Shaw Research, N.Y. New York. (2015). Maestro-Desmond Interoperability Tools, version 4.1, Schrodinger, New York, NY. (2015).
  • Devkota, K., Lohse, B., Liu, Q., Wang, M. W., Staerk, D., Berthelsen, J., & Clausen, R. P. (2014). Analogues of the natural product sinefungin as inhibitors of EHMT1 and EHMT2. ACS Medicinal Chemistry Letters, 5(4), 293–−297. https://doi.org/10.1021/ml4002503
  • Dong, X., & Weng, Z. (2013). The correlation between histone modifications and gene expression. Epigenomics, 5(2), 113–116. https://doi.org/10.2217/epi.13.13
  • Douglas, E. V. P., Blundell, T. L., & Ascher, D. B. (2015). pkCSM: Predicting small-molecule pharmacokinetic properties using graph-based signatures. Journal of Medicinal Chemistry, 58(9), 4066–4072. https://doi.org/10.1021/acs.jmedchem.5b00104
  • Du, S., Yang, B., Wang, X., Li, W. Y., Lu, X. H., Zheng, Z. H., Ma, Y., & Wang, R. L. (2020). Identifcation of potential leukocyte antigen-related protein (PTP-LAR) inhibitors through 3D QSAR pharmacophore-based virtual screening and molecular dynamics simulation. Journal of Biomolecular Structure & Dynamics, 38(14), 4232–4245. https://doi.org/10.1080/07391102.2019.1676825
  • Essmann, U., Perera, L., Berkowitz, M. L., Darden, T., Lee, H., & Pedersen, L. G. (1995). A smooth particle mesh Ewald method. The Journal of Chemical Physics, 103(19), 8577–8593. https://doi.org/10.1063/1.470117
  • Fan, C., & Huang, Y. (2017). Identification of novel potential scaffold for class I HDACs inhibition: An in-silico protocol based on virtual screening, molecular dynamics, mathematical analysis and machine learning. Biochemical and Biophysical Research Communications, 491(3), 800–806. https://doi.org/10.1016/j.bbrc.2017.07.051
  • Fischer, R. (1966). The principle of experimentation illustrated by a psychophysical Expe. The design of experiments (8th ed.). Hafner Publishing Co.
  • FOG, C. K., JENSEN, K. T., & LUND, A. H. (2007). Chromatin-modifying proteins in cancer. APMIS: acta pathologica, microbiologica, et immunologica Scandinavica, 115(10), 1060–1089. https://doi.org/10.1111/j.1600-0463.2007.apm_776.xml.x
  • Genheden, S., & Ryde, U. (2015). The MM/PBSA and MM/GBSA methods to estimate ligand-binding affinities. Expert Opinion on Drug Discovery, 10(5), 449–461. https://doi.org/10.1517/17460441.2015.1032936
  • Gibney, E. R., & Nolan, C. M. (2010). Epigenetics and gene expression. Heredity, 105(1), 4–13. https://doi.org/10.1038/hdy.2010.54
  • Gillette, T. G., & Hill, J. A. (2015). Readers, writers, and erasers chromatin as the whiteboard of heart disease. Circulation Research, 116(7), 1245–1253. https://doi.org/10.1161/CIRCRESAHA.116.303630
  • Griñán-Ferré, C., Marsal-García, L., Bellver-Sanchis, A., Kondengaden, S. M., Turga, R. C., Vázquez, S., & Pallàs, M. (2019). Pharmacological inhibition of G9a/GLP restores cognition and reduces oxidative stress, neuroinflammation and β-Amyloid plaques in an early-onset Alzheimer’s disease mouse model. Aging, ). 11(23), 11591–11608. https://doi.org/10.18632/aging.102558
  • Gupta, C. L., Khan, M. B., Ampasala, D. R., Akhtar, S., Dwivedi, U. N., & Bajpai, P. (2019). Pharmacophore-based virtual screening approach for identification of potent natural modulatory compounds of human toll-like receptor 7. Journal of Biomolecular Structure & Dynamics, 37(18), 4721–4736. https://doi.org/10.1080/07391102.2018.1559098
  • Hoover, W. G. (1985). Canonical dynamics: Equilibrium phase-space distributions. Physical Review. A, General Physics, 31(3), 1695–1697. https://doi.org/10.1103/PhysRevA.31.1695
  • Hua, K. T., Wang, M. Y., Chen, M. W., Wei, L. H., Chen, C. K., Ko, C. H., Jeng, Y. M., Sung, P. L., Jan, Y. H., Hsiao, M., Kuo, M. L., & Yen, M. L. (2014). The H3K9 methyltransferase G9a is a marker of aggressive ovarian cancer that promotes peritoneal metastasis. Molecular Cancer, 13, 189. https://doi.org/10.1186/1476-4598-13-189
  • Huang, J., Dorsey, J., Chuikov, S., Zhang, X., Jenuwein, T., Reinberg, D., & Berger, S. L. (2010). G9a and Glp methylate lysine 373 in the tumor suppressor p53. The Journal of Biological Chemistry, 285(13), 9636–9641. https://doi.org/10.1074/jbc.M109.062588
  • Humphreys, D. A., Friesner, R. A., & Berne, D. J. (1994). A multiple-time-step molecular dynamics algorithm for macromolecules. The Journal of Physical Chemistry, 98(27), 6885–6892. https://doi.org/10.1021/j100078a035
  • Jacobson, M. P., Friesner, R. A., Xiang, Z., & Honig, B. (2002). On the role of the crystal environment in determining protein side-chain conformations. Journal of Molecular Biology, 320(3), 597–608. https://doi.org/10.1016/s0022-2836(02)00470-9
  • Jacobson, M. P., Pincus, D. L., Rapp, C. S., Day, T. J. F., Honig, B., Shaw, D. E., & Friesner, R. A. (2004). A hierarchical approach to all-atom protein loop prediction. Proteins, 55(2), 351–367. https://doi.org/10.1002/prot.10613
  • Jiang, H., Zhang, Y., Wu, Y., Cheng, J., Feng, S., Wang, J., Wang, X., & Cheng, M. (2022). Identification of Montelukast as flavivirus NS2B-NS3 protease inhibitor by inverse virtual screening and experimental validation. Biochemical and Biophysical Research Communications, 606, 87–93. https://doi.org/10.1016/j.bbrc.2022.03.064
  • Jin, Y., Park, S., Park, S. Y., Lee, C. Y., Eum, D. Y., Shim, J. W., Choi, S. H., Choi, Y. J., Park, S. J., & Heo, K. (2022). G9a knockdown suppresses cancer aggressiveness by facilitating Smad protein phosphorylation through increasing BMP5 expression in luminal A type breast cancer. International Journal of Molecular Sciences, 23(2), 589. https://doi.org/10.3390/ijms23020589
  • John, S., Thangapandian, S., Arooj, M., Hong, J. C., Kim, K. D., & Lee, K. W. (2011). Development, evaluation and application of 3D QSAR pharmacophore model in the discovery of potential human renin inhibitors. BMC Bioinformatics, 12(S14), S4. https://doi.org/10.1186/1471-2105-12-S14-S4
  • Jorgensen, W. L., Chandrasekhar, J., Madura, J. D., Impey, R. W., & Klein, M. L. (1983). Comparison of simple potential functions for simulating liquid water. The Journal of Chemical Physics, 79(2), 926–935. https://doi.org/10.1063/1.445869
  • Jorgensen, W. L., Maxwell, D. S., & Tirado-Rives, J. (1996). Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids. Journal of the American Chemical Society, 118(45), 11225–11236. https://doi.org/10.1021/ja9621760
  • Kaniskan, H. U., Martini, M. L., & Jin, J. (2018). Inhibitors of protein methyltransferases and demethylases. Chemical Reviews, 118(3), 989–1068. https://doi.org/10.1021/acs.chemrev.6b00801
  • Katayama, K., Ishii, K., Terashima, H., Tsuda, E., Suzuki, M., Yotsumoto, K., Hiramoto, K., Yasumatsu, I., Torihata, M., Ishiyama, T., Muto, T., & Katagiri, T. (2021). Discovery of DS79932728: A potent, orally available G9a/GLP inhibitor for treating β-thalassemia and sickle cell disease. ACS Medicinal Chemistry Letters, 12(1), 121–128. https://doi.org/10.1021/acsmedchemlett.0c00572
  • Katayama, K., Ishii, K., Tsuda, E., Yotsumoto, K., Hiramoto, K., Suzuki, M., Yasumatsu, I., Igarashi, W., Torihata, M., Ishiyama, T., & Katagiri, T. (2020). Discovery of novel histone lysine methyltransferase G9a/GLP (EHMT2/1) inhibitors: Design, synthesis, and structure-activity relationships of 2,4-diamino-6-methylpyrimidines. Bioorganic & Medicinal Chemistry Letters, 30(20), 127475. https://doi.org/10.1016/j.bmcl.2020.127475
  • Ke, X. X., Zhang, R., Zhong, X., Zhang, L., & Cui, H. (2020). Deficiency of G9a inhibits cell proliferation and activates autophagy via transcriptionally regulating c-Myc expression in glioblastoma. Frontiers in Cell and Developmental Biology, 8, 593964. https://doi.org/10.3389/fcell.2020.593964
  • Kondo, Y., Shen, L., Ahmed, S., Boumber, Y., Sekido, Y., Haddad, B. R., & Issa, J. I. (2008). Downregulation of histone H3 lysine 9 methyltransferase G9a induces centrosome disruption and chromosome instability in cancer cells. Plos One, 3(4), e2037. https://doi.org/10.1371/journal.pone.0002037
  • Kubicek, S., O'Sullivan, R. J., August, E. M., Hickey, E. R., Zhang, Q., Teodoro, M. L., Rea, S., Mechtler, K., Kowalski, J. A., Homon, C. A., Kelly, T. A., & Jenuwein, T. (2007). Reversal of H3K9me2 by a small-molecule inhibitor for the G9a histone methyltransferase. Molecular Cell, 25(3), 473–481. https://doi.org/10.1016/j.molcel.2007.01.017
  • Lipinski, C. A., Lombardo, F., Dominy, B. W., & Feeney, P. J. (2001). Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Advanced Drug Delivery Reviews, 46(1–3), 3–26. https://doi.org/10.1016/S0169-409X(00)00129-0
  • Liu, F., Barsyte-Lovejoy, D., Allali-Hassani, A., He, Y., Herold, J. M., Chen, X., Yates, C. M., Frye, S. V., Brown, P. J., Huang, J., Vedadi, M., Arrowsmith, C. H., & Jin, J. (2011). Optimization of cellular activity of G9a inhibitors 7-aminoalkoxy-quinazolines. Journal of Medicinal Chemistry, 54(17), 6139–−6150. https://doi.org/10.1021/jm200903z
  • Lopez-Lopez, E., Rabal, O., Oyarzabal, J., & Medina-Franco, J. L. (2020). Towards the understanding of the activity of G9a inhibitors: An activity landscape and molecular modeling approach. Journal of Computer-Aided Molecular Design, 34(6), 659–669. https://doi.org/10.1007/s10822-020-00298-x
  • Lu, Y., Chan, Y. T., Tan, H. Y., Li, S., Wang, N., & Feng, Y. (2020). Epigenetic regulation in human cancer: The potential role of epi-drug in cancer therapy. Molecular Cancer, 19(1), 79. https://doi.org/10.1186/s12943-020-01197-3
  • Luger, K., Mäder, A. W., Richmond, R. K., Sargent, D. F., & Richmond, T. J. (1997). Crystal structure of the nucleosome core particle at 2.8 Å resolution. Nature, 389(6648), 251–260. https://doi.org/10.1038/38444
  • Luise, C., Robaa, D., & Sipp, W. (2021). Exploring aromatic cage flexibility of the histone methyllysine reader protein Spindlin1 and its impact on binding mode prediction: An in-silico study. Journal of Computer-Aided Molecular Design, 35(6), 695–706. https://doi.org/10.1007/s10822-021-00391-9
  • Ma, Y., Li, H., Chen, X., Jin, W., Zhou, H., Ma, Y., & Wang, R. (2018). 3D QSAR pharmacophore based virtual screening for the identification of potential inhibitors for CDC25B. Computational Biology and Chemistry, 73, 1–12. https://doi.org/10.1016/j.compbiolchem.2018.01.005
  • Maestro version 10.1. (2015). Schrodinger, LLC. New York, NY.
  • Martyna, G. J., Tobias, D. J., & Klein, M. L. (1994). Constant pressure molecular dynamics algorithms. The Journal of Chemical Physics, 101(5), 4177–4189. https://doi.org/10.1063/1.467468
  • McGarvey, K. M., Fahrner, J. A., Greene, E., Martens, J., Jenuwein, T., & Baylin, S. B. (2006). Silenced tumor suppressor genes reactivated by DNA demethylation do not return to a fully euchromatic chromatin state. Cancer Research, 66(7), 3541–3549. https://doi.org/10.1158/0008-5472.CAN-05-2481
  • Millán-Zambrano, G., Burton, A., Bannister, A. J., & Schneider, R. (2022). Histone post-translational modifications—Cause and consequence of genome function. Nature Reviews Genetics, 23(9), 563–580. https://doi.org/10.1038/s41576-022-00468-7
  • Ogawa, H., Ishiguro, K. I., Gaubatz, S., Livingston, D. M., & Nakatani, Y. A. (2002). Complex with chromatin modifiers that occupies E2F- and Myc-responsive genes in G0 cells. Science (New York, N.Y.), 296(5570), 1132–1136. https://doi.org/10.1126/science.1069861
  • Opo, F. A. D. M., Rahman, M. M., Ahammad, F., Ahmed, I., Bhuiyan, M. A., & Asiri, A. M. (2021). Structure based pharmacophore modeling, virtual screening, molecular docking and ADMET approaches for identification of natural anti-cancer agents targeting XIAP protein. Scientific Reports, 11(1), 4049. https://doi.org/10.1038/s41598-021-83626-x
  • Pal, S., Kumar, V., Kundu, B., Bhattacharya, D., Preethy, N., Reddy, M. P., & Talukdar, A. (2019). Ligand-based pharmacophore modeling, virtual screening and molecular docking studies for discovery of potential topoisomerase I inhibitors. Computational and Structural Biotechnology Journal, 17, 291–310. https://doi.org/10.1016/j.csbj.2019.02.006
  • Sakkiah, S., Arullaperumal, V., Hwang, S., & Lee, K. W. (2014). Ligand-based pharmacophore modeling and Bayesian approaches to identify c-Src inhibitors. Journal of Enzyme Inhibition and Medicinal Chemistry, 29(1), 69–80. https://doi.org/10.3109/14756366.2012.753881
  • Schuster, D., Laggner, C., Steindl, T. M., Palusczak, A., Hartmann, R. W., & Langer, T. (2006). Pharmacophore modeling and in silico screening for new P450 19 (aromatase) inhibitors. Journal of Chemical Information and Modeling, 46(3), 1301–1311. https://doi.org/10.1021/ci050237k
  • Shankar, S. R., Bahirvani, A. G., Rao, V. K., Bharathy, N., Ow, J. R., & Taneja, R. (2013). G9a, a multipotent regulator of gene expression. Epigenetics, 8(1), 16–22. https://doi.org/10.4161/epi.23331
  • Sorokina, M., Merseburger, P., Rajan, K., Yirik, M. A., & Steinbeck, C. (2021). COCONUT online: Collection of open natural products database. Journal of Cheminformatics, 13(1), 2. https://doi.org/10.1186/s13321-020-00478-9
  • Souza, B. K., Freire, N. H., Jaeger, M., de Farias, C. B., Brunetto, A. L., Brunetto, A. T., & Roesler, R. (2021). EHMT2/G9a as an epigenetic target in pediatric and adult brain tumors. International Journal of Molecular Sciences, 22(20), 11292. https://doi.org/10.3390/ijms222011292
  • Spassov, V. Z., Yan, L., & Flook, P. K. (2007). The dominant role of side-chain backbone interactions in structural realization of amino acid code. ChiRotor: A side-chain prediction algorithm based on side-chain backbone interactions. Protein Science: A Publication of the Protein Society, 16(3), 494–506. https://doi.org/10.1110/ps.062447107
  • Sweis, R. F., Pliushchev, M., Brown, P. J., Guo, J., Li, F., Maag, D., Petros, A. M., Soni, N. B., Tse, C., Vedadi, M., Michaelides, M. R., Chiang, G. G., & Pappano, W. N. (2014). Discovery and development of potent and selective inhibitors of histone methyltransferase G9a. ACS Medicinal Chemistry Letters, 5(2), 205–209. https://doi.org/10.1021/ml400496h
  • Tachibana, M., Sugimoto, K., Fukushima, T., & Shinkai, Y. (2001). SET domain-containing protein, G9a, is a novel lysine-preferring mammalian histone methyltransferase with hyperactivity and specific selectivity to lysines 9 and 27 of histone H3. The Journal of Biological Chemistry, 276(27), 25309–25317. https://doi.org/10.1074/jbc.M101914200
  • Tachibana, M., Ueda, J., Fukuda, M., Takeda, N., Ohta, T., Iwanari, H., Sakihama, T., Kodama, T., Hamakubo, T., & Shinka, Y. (2005). Histone methyltransferases G9a and GLP form heteromeric complexes and are both crucial for methylation of euchromatin at H3-K9. Genes & Development, 19(7), 815–826. https://doi.org/10.1101/gad.1284005
  • Tough, D. F., Tak, P. P., Tarakhovsky, A., & Prinjha, R. K. (2016). Epigenetic drug discovery: Breaking through the immune barrier. Nature Reviews. Drug Discovery, 15(12), 835–853. https://doi.org/10.1038/nrd.2016.185
  • Veber, D. F., Johnson, S. R., Cheng, H. Y., Smith, S. R., Ward, K. W., & Kopple, K. D. (2002). Molecular properties that influence the oral bioavailability of drug candidates. Journal of Medicinal Chemistry, 45(12), 2615–2623. https://doi.org/10.1021/jm020017n
  • Watanabe, H., Soejima, K., Yasuda, H., Kawada, I., Nakachi, I., Yoda, S., Naoki, K., & Ishizaka, A. (2008). Deregulation of histone lysine methyltransferases contributes to oncogenic transformation of human bronchoepithelial cells. Cancer Cell International, 8, 15. https://doi.org/10.1186/1475-2867-8-15
  • Wu, G., Robertson, D. H., Brooks, C. L., & Vieth, M. (2003). Detailed analysis of grid-based molecular docking: A case study of CDOCKER-A CHARMm-based MD docking algorithm. Journal of Computational Chemistry, 24(13), 1549–1562. https://doi.org/10.1002/jcc.10306
  • Zoghbi, H. Y., & Beaudet, A. L. (2016). Epigenetics and human disease. Cold Spring Harbor Perspectives in Biology, 8(2), a019497. https://doi.org/10.1101/cshperspect.a019497

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.