239
Views
3
CrossRef citations to date
0
Altmetric
Research Articles

Synthesis, crystallographic, DNA binding, and molecular docking/dynamic studies of a privileged chalcone-sulfonamide hybrid scaffold as a promising anticancer agent

ORCID Icon, ORCID Icon, ORCID Icon, , , & ORCID Icon show all
Pages 8876-8890 | Received 13 Jul 2022, Accepted 15 Oct 2022, Published online: 30 Oct 2022

References

  • Abdel-Aziz, A. A.-M., El-Azab, A. S., AlSaif, N. A., Obaidullah, A. J., Al-Obaid, A. M., & Al-Suwaidan, I. A. (2021). Synthesis, potential antitumor activity, cell cycle analysis, and multitarget mechanisms of novel hydrazones incorporating a 4-methylsulfonylbenzene scaffold: A molecular docking study. Journal of Enzyme Inhibition and Medicinal Chemistry, 36(1), 1521–1539. https://doi.org/10.1080/14756366.2021.1924698
  • Abdelrahman, M. A., Eldehna, W. M., Nocentini, A., Bua, S., Al-Rashood, S. T., Hassan, G. S., Bonardi, A., Almehizia, A. A., Alkahtani, H. M., Alharbi, A., Gratteri, P., & Supuran, C. T. (2019). Novel diamide-based benzenesulfonamides as selective carbonic anhydrase IX inhibitors endowed with antitumor activity: Synthesis, biological evaluation and in silico insights. International Journal of Molecular Sciences, 20(10), 2484–2416. https://doi.org/10.3390/ijms20102484
  • Abraham, M. J., Murtola, T., Schulz, R., Páll, S., Smith, J. C., Hess, B., & Lindahl, E. (2015). GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX, 1–2, 19–25. https://doi.org/10.1016/j.softx.2015.06.001
  • Ahmed, M. F., & Santali, E. Y. (2021). Discovery of pyridine-sulfonamide hybrids as a new scaffold for the development of potential VEGFR-2 inhibitors and apoptosis inducers. Bioorganic Chemistry, 111, 104842–104815. https://doi.org/10.1016/j.bioorg.2021.104842
  • Al-Karmalawy, A. A., Dahab, M. A., Metwaly, A. M., Elhady, S. S., Elkaeed, E. B., Eissa, I. H., & Darwish, K. M. (2021). Molecular docking and dynamics simulation revealed the potential inhibitory activity of ACEIs against SARS-CoV-2 targeting the hACE2 receptor. Frontiers in Chemistry, 9, 661230–661230. https://doi.org/10.3389/fchem.2021.661230
  • Alam, M. J., Alam, O., Perwez, A., Rizvi, M. A., Naim, M. J., Naidu, V., Imran, M., Ghoneim, M. M., Alshehri, S., & Shakeel, F. (2022). Design, synthesis, molecular docking, and biological evaluation of pyrazole hybrid chalcone conjugates as potential anticancer agents and tubulin polymerization inhibitors. Pharmaceuticals, 15(3), 280–222. https://doi.org/10.3390/ph15030280
  • Alex, S., & Dupuis, P. (1989). FT-IR and Raman investigation of cadmium binding by DNA. Inorganica Chimica Acta, 157(2), 271–281. https://doi.org/10.1016/S0020-1693(00)80552-6
  • Arakawa, H., Neault, J., & Tajmir-Riahi, H. (2001). Silver (I) complexes with DNA and RNA studied by Fourier transform infrared spectroscopy and capillary electrophoresis. Biophysical Journal, 81(3), 1580–1587. https://doi.org/10.1016/S0006-3495(01)75812-2
  • BIOVIA. (2021). Dassault Systèmes, [Discovery Studio client], [21.1.0.20298], San Diego: Dassault Systèmes.
  • Braga, T. C., Silva, M. M., Nascimento, E. O., Dantas da Silva, E. C., de Freitas Rego, Y., Mandal, M., Alves de Souza, Z., Tasca Góis Ruiz, A. L., Ernesto de Carvalho, J., Martins, F. T., Figueiredo, I. M., Mendonça de Aquino, T., Moreira da Silva, C., Mandal, B., Brahmachari, G., Caldas Santos, J. C., & de Fátima, Â. (2022). Synthesis, anticancer activities and experimental-theoretical DNA interaction studies of 2-Amino-4-Phenyl-4H-benzo [h] chromene-3-carbonitrile. European Journal of Medicinal Chemistry Reports, 4, 100030. https://doi.org/10.1016/j.ejmcr.2022.100030
  • Castaño, L. F., Cuartas, V., Bernal, A., Insuasty, A., Guzman, J., Vidal, O., Rubio, V., Puerto, G., Lukáč, P., Vimberg, V., Balíková-Novtoná, G., Vannucci, L., Janata, J., Quiroga, J., Abonia, R., Nogueras, M., Cobo, J., & Insuasty, B. (2019). New chalcone-sulfonamide hybrids exhibiting anticancer and antituberculosis activity. European Journal of Medicinal Chemistry, 176, 50–60. https://doi.org/10.1016/j.ejmech.2019.05.013
  • Chen, K.-Y., Zhou, K.-L., Lou, Y.-Y., & Shi, J.-H. (2019). Exploring the binding interaction of calf thymus DNA with lapatinib, a tyrosine kinase inhibitor: Multi-spectroscopic techniques combined with molecular docking. Journal of Biomolecular Structure & Dynamics, 37(3), 576–583. https://doi.org/10.1080/07391102.2018.1433067
  • Chen, Q-y., Li, D-h., Yang, H-h., Zhu, Q-z., Xu, J-g., & Zhao, Y. (1999). Interaction of a novel red-region fluorescent probe, Nile Blue, with DNA and its application to nucleic acids assay. The Analyst, 124(6), 901–906. https://doi.org/10.1039/a901174i
  • Chen, X. J., Wang, B. L., Zhou, K. L., Lou, Y. Y., Kou, S. B., Lin, Z. Y., & Shi, J. H. (2019). Characterizing the binding interaction between Erlotinib and Calf Thymus DNA in vitro using multi‐spectroscopic methodologies and viscosity measurement combined with molecular docking and DFT calculation. ChemistrySelect, 4(13), 3774–3781. https://doi.org/10.1002/slct.201900089
  • Custodio, J. M. F., Michelini, L. J., de Castro, M. R. C., Vaz, W. F., Neves, B. J., Cravo, P. V. L., Barreto, F. S., Filho, M. O. M., Perez, C. N., & Napolitano, H. B. (2018). Structural insights into a novel anticancer sulfonamide chalcone. New Journal of Chemistry, 42(5), 3426–3434. https://doi.org/10.1039/C7NJ03523C
  • Custodio, J. M., Moura, A. F., de Moraes, M. O., Perez, C. N., & Napolitano, H. B. (2020). On the in silico and in vitro anticancer activity of sulfonamide chalcones: Potential JNKK3 inhibitors. New Journal of Chemistry, 44(8), 3294–3309. https://doi.org/10.1039/C9NJ05612B
  • Dawood, D. H., Srour, A. M., Saleh, D. O., Huff, K. J., Greco, F., & Osborn, H. M. I. (2021). New pyridine and chromene scaffolds as potent vasorelaxant and anticancer agents. RSC Advances, 11(47), 29441–29452. https://doi.org/10.1039/D1RA04758B
  • Drew, H. R., Wing, R. M., Takano, T., Broka, C., Tanaka, S., Itakura, K., & Dickerson, R. E. (1981). Structure of a B-DNA dodecamer: Conformation and dynamics. Proceedings of the National Academy of Sciences of the United States of America, 78(4), 2179–2183. https://doi.org/10.1073/pnas.78.4.2179
  • Ejaz, S. A., Saeed, A., Siddique, M. N., Nisa, Z. U., Khan, S., Lecka, J., Sévigny, J., & Iqbal, J. (2017). Synthesis, characterization and biological evaluation of novel chalcone sulfonamide hybrids as potent intestinal alkaline phosphatase inhibitors. Bioorganic Chemistry, 70, 229–236. https://doi.org/10.1016/j.bioorg.2017.01.003
  • Eldehna, W. M., Abo-Ashour, M. F., Ibrahim, H. S., Al-Ansary, G. H., Ghabbour, H. A., Elaasser, M. M., Ahmed, H. Y. A., & Safwat, N. A. (2018). Novel [(3-indolylmethylene) hydrazono] indolin-2-ones as apoptotic anti-proliferative agents: Design, synthesis and in vitro biological evaluation. Journal of Enzyme Inhibition and Medicinal Chemistry, 33(1), 686–700. https://doi.org/10.1080/14756366.2017.1421181
  • Eldehna, W. M., El-Naggar, D. H., Hamed, A. R., Ibrahim, H. S., Ghabbour, H. A., & Abdel-Aziz, H. A. (2018). One-pot three-component synthesis of novel spirooxindoles with potential cytotoxic activity against triple-negative breast cancer MDA-MB-231 cells. Journal of Enzyme Inhibition and Medicinal Chemistry, 33(1), 309–318. https://doi.org/10.1080/14756366.2017.1417276
  • Grueso, E., López-Pérez, G., Castellano, M., & Prado-Gotor, R. (2012). Thermodynamic and structural study of phenanthroline derivative ruthenium complex/DNA interactions: Probing partial intercalation and binding properties. Journal of Inorganic Biochemistry, 106(1), 1–9. https://doi.org/10.1016/j.jinorgbio.2011.09.028
  • Hegde, A. H., Prashanth, S., & Seetharamappa, J. (2012). Interaction of antioxidant flavonoids with calf thymus DNA analyzed by spectroscopic and electrochemical methods. Journal of Pharmaceutical and Biomedical Analysis, 63, 40–46. https://doi.org/10.1016/j.jpba.2012.01.034
  • Helmy, M. T., Sroor, F. M., Mahrous, K. F., Mahmoud, K., Hassaneen, H. M., Saleh, F. M., Abdelhamid, I. A., & Mohamed Teleb, M. A. (2022). Anticancer activity of novel 3‐(furan‐2‐yl) pyrazolyl and 3‐(thiophen‐2‐yl) pyrazolyl hybrid chalcones: Synthesis and in vitro studies. Archiv Der Pharmazie, 355(3), 2100381–2100312. https://doi.org/10.1002/ardp.202100381
  • Hornak, V., Abel, R., Okur, A., Strockbine, B., Roitberg, A., & Simmerling, C. (2006). Comparison of multiple Amber force fields and development of improved protein backbone parameters. Proteins, 65(3), 712–725. https://doi.org/10.1002/prot.21123
  • Huang, G., Ma, J., Li, J., & Yan, L. (2022). Study on the interaction between aflatoxin M1 and DNA and its application in the removal of aflatoxin M1. Journal of Molecular Liquids, 355, 118938. https://doi.org/10.1016/j.molliq.2022.118938
  • Iqbal, H., Prabhakar, V., Sangith, A., Chandrika, B., & Balasubramanian, R. (2014). Synthesis, anti-inflammatory and antioxidant activity of ring-A-monosubstituted chalcone derivatives. Medicinal Chemistry Research, 23(10), 4383–4394. https://doi.org/10.1007/s00044-014-1007-z
  • Islam, M. M., Chakraborty, M., Pandya, P., Al Masum, A., Gupta, N., & Mukhopadhyay, S. (2013). Binding of DNA with Rhodamine B: Spectroscopic and molecular modeling studies. Dyes and Pigments, 99(2), 412–422. https://doi.org/10.1016/j.dyepig.2013.05.028
  • Jangir, D. K., Charak, S., Mehrotra, R., & Kundu, S. (2011). FTIR and circular dichroism spectroscopic study of interaction of 5-fluorouracil with DNA. Journal of Photochemistry and Photobiology. B, Biology, 105(2), 143–148. https://doi.org/10.1016/j.jphotobiol.2011.08.003
  • Jangir, D. K., Tyagi, G., Mehrotra, R., & Kundu, S. (2010). Carboplatin interaction with calf-thymus DNA: A FTIR spectroscopic approach. Journal of Molecular Structure, 969(1-3), 126–129. https://doi.org/10.1016/j.molstruc.2010.01.052
  • Jumaah, M., Khairuddean, M., Owaid, S. J., Zakaria, N., Mohd Arshad, N., Nagoor, N. H., & Mohamad Taib, M. N. A. (2022). Design, synthesis, characterization and cytotoxic activity of new ortho-hydroxy and indole-chalcone derivatives against breast cancer cells (MCF-7). Medicinal Chemistry Research, 31(3), 517–532. https://doi.org/10.1007/s00044-021-02834-2
  • Kashanian, S., Javanmardi, S., Chitsazan, A., Omidfar, K., & Paknejad, M. (2012). DNA-binding studies of fluoxetine antidepressant. DNA and Cell Biology, 31(7), 1349–1355. https://doi.org/10.1089/dna.2012.1657
  • Khanusiya, M., & Gadhawala, Z. (2019). Chalcones-sulphonamide hybrids: Synthesis, characterization and anticancer evaluation. Journal of the Korean Chemical Society, 63(2), 85–93.
  • Kim, K. H., & Sederstrom, J. M. (2015). Assaying cell cycle status using flow cytometry. Current Protocols in Molecular Biology, 111(1), 1–11. https://doi.org/10.1002/0471142727.mb2806s111
  • Klotz, I. M. (1973). Physicochemical aspects of drug‐protein interactions: A general perspective. Annals of the New York Academy of Sciences, 226(1), 18–35. https://doi.org/10.1111/j.1749-6632.1973.tb20465.x
  • Krymov, S. K., Scherbakov, A. M., Salnikova, D. I., Sorokin, D. V., Dezhenkova, L. G., Ivanov, I. V., Vullo, D., De Luca, V., Capasso, C., Supuran, C. T., & Shchekotikhin, A. E. (2022). Synthesis, biological evaluation, and in silico studies of potential activators of apoptosis and carbonic anhydrase inhibitors on isatin-5-sulfonamide scaffold. European Journal of Medicinal Chemistry, 228, 113997–113913. https://doi.org/10.1016/j.ejmech.2021.113997
  • Larsen, T. A., Kopka, M. L., & Dickerson, R. E. (1991). Crystal structure analysis of the B-DNA dodecamer CGTGAATTCACG. Biochemistry, 30(18), 4443–4449. https://doi.org/10.1021/bi00232a010
  • Li, J., & Dong, C. (2009). Study on the interaction of morphine chloride with deoxyribonucleic acid by fluorescence method. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy, 71(5), 1938–1943. https://doi.org/10.1016/j.saa.2008.07.033
  • Luo, Y.-J., Wang, B.-L., Kou, S.-B., Lin, Z.-Y., Zhou, K.-L., Lou, Y.-Y., & Shi, J.-H. (2020). Assessment on the binding characteristics of dasatinib, a tyrosine kinase inhibitor to calf thymus DNA: Insights from multi-spectroscopic methodologies and molecular docking as well as DFT calculation. Journal of Biomolecular Structure & Dynamics, 38(14), 4210–4220. https://doi.org/10.1080/07391102.2019.1676824
  • Magdy, G., Belal, F., Hakiem, A. F. A., & Abdel-Megied, A. M. (2021). Salmon sperm DNA binding study to cabozantinib, a tyrosine kinase inhibitor: Multi-spectroscopic and molecular docking approaches. International Journal of Biological Macromolecules, 182, 1852–1862. https://doi.org/10.1016/j.ijbiomac.2021.05.164
  • Mahadevan, S., & Palaniandavar, M. (1998). Spectroscopic and voltammetric studies on copper complexes of 2, 9-dimethyl-1, 10-phenanthrolines bound to calf thymus DNA. Inorganic Chemistry, 37(4), 693–700. https://doi.org/10.1021/ic961066r
  • Morris, G. M., Huey, R., Lindstrom, W., Sanner, M. F., Belew, R. K., Goodsell, D. S., & Olson, A. J. (2009). Autodock4 and AutoDockTools4: Automated docking with selective receptor flexiblity. Journal of Computational Chemistry, 30(16), 2785–2791. https://doi.org/10.1002/jcc.21256
  • Mostafa, A. S., & Selim, K. B. (2018). Synthesis and anticancer activity of new dihydropyrimidinone derivatives. European Journal of Medicinal Chemistry, 156, 304–315. https://doi.org/10.1016/j.ejmech.2018.07.004
  • Moura, A. F., de Castro, M. R. C., Naves, R. F., Araújo, A. J., Dos Santos, M. C. L., Filho, J. D. B. M., Noda-Perez, C., Terra Martins, F., do O Pessoa, C., & Filho, M. O. M. (2022). New synthetic sulfonamide chalcone induced cell cycle arrest and cell death in colorectal adenocarcinoma metastatic cells (SW-620). Anti-Cancer Agents in Medicinal Chemistry, 22(12), 2340–2351. https://doi.org/10.2174/1871520621666211213092121
  • Mphahlele, M. J. (2021). Synthesis, structural and biological properties of the ring-A sulfonamido substituted chalcones: A review. Molecules, 26(19), 5923–5915. https://doi.org/10.3390/molecules26195923
  • Musa, M. A., Gbadebo, A. J., Latinwo, L. M., & Badisa, V. L. (2018). 7, 8‐Dihydroxy‐3‐(4‐nitrophenyl) coumarin induces cell death via reactive oxygen species–independent S‐phase cell arrest. Journal of Biochemical and Molecular Toxicology, 32(12), e22203–801. https://doi.org/10.1002/jbt.22203
  • Nawaz, H., Rauf, S., Akhtar, K., & Khalid, A. M. (2006). Electrochemical DNA biosensor for the study of ciprofloxacin–DNA interaction. Analytical Biochemistry, 354(1), 28–34. https://doi.org/10.1016/j.ab.2006.04.004
  • Nemr, M. T., AboulMagd, A. M., Hassan, H. M., Hamed, A. A., Hamed, M. I., & Elsaadi, M. T. (2021). Design, synthesis and mechanistic study of new benzenesulfonamide derivatives as anticancer and antimicrobial agents via carbonic anhydrase IX inhibition. RSC Advances, 11(42), 26241–26257. https://doi.org/10.1039/d1ra05277b
  • Olmsted III, J., & Kearns, D. R. (1977). Mechanism of ethidium bromide fluorescence enhancement on binding to nucleic acids. Biochemistry, 16(16), 3647–3654. https://doi.org/10.1021/bi00635a022
  • Onur, S., Çeşme, M., Köse, M., & Tümer, F. (2021). New imino-methoxy derivatives: Design, synthesis, characterization, antimicrobial activity, DNA interaction and molecular docking studies. Journal of Biomolecular Structure and Dynamics, 39, 1–13. https://doi.org/10.1080/07391102.2021.1955741
  • Ouameur, A. A., & Tajmir-Riahi, H.-A. (2004). Structural analysis of DNA interactions with biogenic polyamines and cobalt (III) hexamine studied by Fourier transform infrared and capillary electrophoresis. The Journal of Biological Chemistry, 279(40), 42041–42054. https://doi.org/10.1074/jbc.M406053200
  • Palchaudhuri, R., & Hergenrother, P. J. (2007). DNA as a target for anticancer compounds: Methods to determine the mode of binding and the mechanism of action. Current Opinion in Biotechnology, 18(6), 497–503. https://doi.org/10.1016/j.copbio.2007.09.006
  • Peerzada, M. N., Khan, P., Ahmad, K., Hassan, M. I., & Azam, A. (2018). Synthesis, characterization and biological evaluation of tertiary sulfonamide derivatives of pyridyl-indole based heteroaryl chalcone as potential carbonic anhydrase IX inhibitors and anticancer agents. European Journal of Medicinal Chemistry, 155, 13–23. https://doi.org/10.1016/j.ejmech.2018.05.034
  • Pettersen, E. F., Goddard, T. D., Huang, C. C., Couch, G. S., Greenblatt, D. M., Meng, E. C., & TE, F. (2004). UCSF Chimera–a visualization system for exploratory research and analysis. Journal of Computational Chemistry, 25(13), 1605–1612. https://doi.org/10.1002/jcc.20084
  • Pfeffer, C. M., & Singh, A. T. (2018). Apoptosis: A target for anticancer therapy. International Journal of Molecular Sciences, 19(2), 448–410. https://doi.org/10.3390/ijms19020448
  • Qin, J.-L., Shen, W.-Y., Chen, Z.-F., Zhao, L.-F., Qin, Q.-P., Yu, Y.-C., & Liang, H. (2017). Oxoaporphine metal complexes (CoII, NiII, ZnII) with high antitumor activity by inducing mitochondria-mediated apoptosis and S-phase arrest in HepG2. Scientific Reports, 7(1), 1–18. https://doi.org/10.1038/srep46056
  • Ross, P. D., & Subramanian, S. (1981). Thermodynamics of protein association reactions: Forces contributing to stability. Biochemistry, 20(11), 3096–3102. https://doi.org/10.1021/bi00514a017
  • Sahoo, D., Bhattacharya, P., & Chakravorti, S. (2010). Quest for mode of binding of 2-(4-(dimethylamino) styryl)-1-methylpyridinium iodide with calf thymus DNA. The Journal of Physical Chemistry. B, 114(5), 2044–2050. https://doi.org/10.1021/jp910766q
  • Said, M. A., Eldehna, W. M., Nocentini, A., Fahim, S. H., Bonardi, A., Elgazar, A. A., Kryštof, V., Soliman, D. H., Abdel-Aziz, H. A., Gratteri, P., Abou-Seri, S. M., & Supuran, C. T. (2020). Sulfonamide-based ring-fused analogues for CAN508 as novel carbonic anhydrase inhibitors endowed with antitumor activity: Design, synthesis, and in vitro biological evaluation. European Journal of Medicinal Chemistry, 189, 112019–112014. https://doi.org/10.1016/j.ejmech.2019.112019
  • Saito, S. T., Silva, G., Pungartnik, C., & Brendel, M. (2012). Study of DNA–emodin interaction by FTIR and UV–vis spectroscopy. Journal of Photochemistry and Photobiology. B, Biology, 111, 59–63. https://doi.org/10.1016/j.jphotobiol.2012.03.012
  • Sarkar, D., Das, P., Basak, S., & Chattopadhyay, N. (2008). Binding interaction of cationic phenazinium dyes with calf thymus DNA: A comparative study. The Journal of Physical Chemistry. B, 112(30), 9243–9249. https://doi.org/10.1021/jp801659d
  • Saucier, J., Festy, B., & Le Pecq, J.-B. (1971). The change of the torsion of the DNA helix caused by intercalation: II—Measurement of the relative change of torsion induced by various intercalating drugs. Biochimie, 53(9), 973–980. https://doi.org/10.1016/S0300-9084(71)80065-2
  • Shahabadi, N., & Hadidi, S. (2012). Spectroscopic studies on the interaction of calf thymus DNA with the drug levetiracetam. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy, 96, 278–283. https://doi.org/10.1016/j.saa.2012.05.045
  • Shahabadi, N., & Moghadam, N. H. (2012). Determining the mode of interaction of calf thymus DNA with the drug sumatriptan using voltammetric and spectroscopic techniques. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy, 99, 18–22. https://doi.org/10.1016/j.saa.2012.09.022
  • Shakibapour, N., Dehghani Sani, F., Beigoli, S., Sadeghian, H., & Chamani, J. (2019). Multi-spectroscopic and molecular modeling studies to reveal the interaction between propyl acridone and calf thymus DNA in the presence of histone H1: Binary and ternary approaches. Journal of Biomolecular Structure & Dynamics, 37(2), 359–371. https://doi.org/10.1080/07391102.2018.1427629
  • Shaldam, M., Eldehna, W. M., Nocentini, A., Elsayed, Z. M., Ibrahim, T. M., Salem, R., El-Domany, R. A., Capasso, C., Abdel-Aziz, H. A., & Supuran, C. T. (2021). Development of novel benzofuran-based SLC-0111 analogs as selective cancer-associated carbonic anhydrase isoform IX inhibitors. European Journal of Medicinal Chemistry, 216, 113283–113212. https://doi.org/10.1016/j.ejmech.2021.113283
  • Shaldam, M., Nocentini, A., Elsayed, Z. M., Ibrahim, T. M., Salem, R., El-Domany, R. A., Capasso, C., Supuran, C. T., & Eldehna, W. M. (2021). Development of novel quinoline-based sulfonamides as selective cancer-associated carbonic anhydrase isoform IX inhibitors. International Journal of Molecular Sciences, 22(20), 11119–11116. https://doi.org/10.3390/ijms222011119
  • Sheldrick, G. M. (2015). Crystal structure refinement with SHELXL. Acta Crystallographica. Section C, Structural Chemistry, 71(Pt 1), 3–8. https://doi.org/10.1107/S2053229614024218
  • Shi, J.-H., Chen, J., Wang, J., & Zhu, Y.-Y. (2015). Binding interaction between sorafenib and calf thymus DNA: Spectroscopic methodology, viscosity measurement and molecular docking. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 136, 443–450. https://doi.org/10.1016/j.saa.2014.09.056
  • Shi, J.-H., Liu, T.-T., Jiang, M., Chen, J., & Wang, Q. (2015). Characterization of interaction of calf thymus DNA with gefitinib: Spectroscopic methods and molecular docking. Journal of Photochemistry and Photobiology B: Biology, 147, 47–55. https://doi.org/10.1016/j.jphotobiol.2015.03.005
  • Shi, J.-H., Pan, D.-Q., Zhou, K.-L., & Lou, Y.-Y. (2019). Exploring the binding interaction between herring sperm DNA and sunitinib: Insights from spectroscopic and molecular docking approaches. Journal of Biomolecular Structure & Dynamics, 37(4), 837–845. https://doi.org/10.1080/07391102.2018.1445033
  • Silva, L. S., Véras, J. H., Fernandes, A. S., de Melo Bisneto, A. V., de Castro, M. R. C., Naves, R. F., Carneiro, C. C., Pérez, C. N., Cardoso, C. G., Ribeiro e Silva, C., & Chen-Chen, L. (2022). Novel sulfonamide-chalcone hybrid stimulates inflammation, angiogenesis and upregulates vascular endothelial growth factor (VEGF) in vivo. Microvascular Research, 139, 104253–104257. https://doi.org/10.1016/j.mvr.2021.104253
  • Singh, U. C., & Kollman, P. A. (1984). An approach to computing electrostatic charges for molecules. Journal of Computational Chemistry, 5(2), 129–145. https://doi.org/10.1002/jcc.540050204
  • Sirajuddin, M., Ali, S., & Badshah, A. (2013). Drug–DNA interactions and their study by UV–Visible, fluorescence spectroscopies and cyclic voltametry. Journal of Photochemistry and Photobiology B: Biology, 124, 1–19. https://doi.org/10.1016/j.jphotobiol.2013.03.013
  • Structure, C. (2000). 3.5. 1: Crystal Structure Analysis Package, Rigaku and Rigaku/MSC, 9009 New Trails Dr. The Woodlands, TX, 77381, 2000–2003.
  • Tariq, M., Khan, R., Hussain, A., Batool, A., Rasool, F., Yar, M., Ayub, K., Sirajuddin, M., Ullah, F., Ali, S., Akhtar, A., Kausar, S., & Altaf, A. A. (2021). Synthesis, characterization, antimicrobial, cytotoxic, DNA-interaction, molecular docking and DFT studies of novel di-and tri-organotin (IV) carboxylates using 3-(3-nitrophenyl) 2-methylpropenoic acid. Journal of Coordination Chemistry, 74(14), 2407–2426. https://doi.org/10.1080/00958972.2021.1964019
  • Tawfik, H. O., Petreni, A., Supuran, C. T., & El-Hamamsy, M. H. (2022). Discovery of new carbonic anhydrase IX inhibitors as anticancer agents by toning the hydrophobic and hydrophilic rims of the active site to encounter the dual-tail approach. European Journal of Medicinal Chemistry, 232, 114190–114121. https://doi.org/10.1016/j.ejmech.2022.114190
  • Vermes, I., Haanen, C., Steffens-Nakken, H., & Reutelingsperger, C. (1995). A novel assay for apoptosis flow cytometric detection of phosphatidylserine expression on early apoptotic cells using fluorescein labelled annexin V. Journal of Immunological Methods, 184(1), 39–51. https://doi.org/10.1016/0022-1759(95)00072-i
  • Vilková, M., Michalková, R., Kello, M., Sabolová, D., Takáč, P., Kudličková, Z., Garberová, M., Tvrdoňová, M., Béres, T., & Mojžiš, J. (2022). Discovery of novel acridine-chalcone hybrids with potent DNA binding and antiproliferative activity against MDA-MB-231 and MCF-7 cells. Medicinal Chemistry Research,31,1323-1338.
  • Waring, M. (1965). Complex formation between ethidium bromide and nucleic acids. Journal of Molecular Biology, 13(1), 269–282. https://doi.org/10.1016/s0022-2836(65)80096-1
  • Wenceslau, P. R. S., de Paula, R. L. G., Duarte, V. S., D’Oliveira, G. D. C., Guimarães, L. M. M., Pérez, C. N., Borges, L. L., Martins, J. L. R., Fajemiroye, J. O., Franco, C. H. J., Perjesi, P., & Napolitano, H. B. (2021). Insights on a new sulfonamide chalcone with potential antineoplastic application. Journal of Molecular Modeling, 27(7), 1–15. https://doi.org/10.1007/s00894-021-04818-w
  • Weyesa, A., Eswaramoorthy, R., Melaku, Y., & Mulugeta, E. (2021). Antibacterial, docking, DFT and ADMET properties evaluation of chalcone-sulfonamide derivatives prepared using ZnO nanoparticle catalysis. Advances and Applications in Bioinformatics and Chemistry : AABC, 14, 133–144. https://doi.org/10.2147/AABC.S336450
  • Wilson, A. (1992). International tables for crystallography (Vol. C). Dordrecht, Netherlands: Kluwer Academic Publishers.
  • Zhang, D., Pan, J., Gong, D., & Zhang, G. (2022). Groove binding of indole-3-butyric acid to calf thymus DNA: Spectroscopic and in silico approaches. Journal of Molecular Liquids, 347, 118323. https://doi.org/10.1016/j.molliq.2021.118323
  • Zhong, S., Li, Y.-G., Ji, D.-F., Lin, T.-B., & Lv, Z.-Q. (2016). Protocatechualdehyde Induces S-Phase arrest and apoptosis by stimulating the p27KIP1-Cyclin A/D1-CDK2 and mitochondrial apoptotic pathways in HT-29 Cells. Molecules, 21(7), 934–912. https://doi.org/10.3390/molecules21070934

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.