531
Views
10
CrossRef citations to date
0
Altmetric
Research Articles

Design, synthesis and molecular docking and ADME studies of novel hydrazone derivatives for AChE inhibitory, BBB permeability and antioxidant effects

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 9022-9038 | Received 02 Aug 2022, Accepted 19 Oct 2022, Published online: 03 Nov 2022

References

  • Acar Çevik, U., Celik, I., Işık, A., Ahmad, I., Patel, H., Özkay, Y., & Kaplancıklı, Z. A. (2022). Design, synthesis, molecular modeling, DFT, ADME and biological evaluation studies of some new 1,3,4-oxadiazole linked benzimidazoles as anticancer agents and aromatase inhibitors. Journal of Biomolecular Structure and Dynamics, 1–15. https://doi.org/10.1080/07391102.2022.2025906
  • Acar Cevik, U., Saglik, B. N., Levent, S., Osmaniye, D., Kaya Cavuşoglu, B., Ozkay, Y., & Kaplancikli, Z. A. (2019). Synthesis and AChE-inhibitory activity of new benzimidazole derivatives. Molecules, 24(5), 861. https://doi.org/10.3390/molecules24050861
  • Akasofu, S., Kimura, M., Kosasa, T., Sawada, K., & Ogura, H. (2008). Study of neuroprotection of donepezil, a therapy for Alzheimer’s disease. Chemico-Biological Interactions, 175(1–3), 222–226. https://doi.org/10.1016/j.cbi.2008.04.045
  • Alipour, M., Khoobi, M., Foroumadi, A., Nadri, H., Moradi, A., Sakhteman, A., Ghandi, M., & Shafiee, A. (2012). Novel coumarin derivatives bearing N-benzyl pyridinium moiety: Potent and dual binding site acetylcholinesterase inhibitors. Bioorganic & Medicinal Chemistry, 20(24), 7214–7222. https://doi.org/10.1016/j.bmc.2012.08.052
  • Al-Rashid, Z. F., & Hsung, R. P. (2015). A computational view on the significance of E-ring in binding of (+)-arisugacin A to acetylcholinesterase. Bioorganic & Medicinal Chemistry Letters, 25(21), 4848–4853. https://doi.org/10.1016/j.bmcl.2015.06.047
  • Alzheimer's Association. (2019). 2019 Alzheimer’s disease facts and figures. Alzheimer’s & Dementia, 15, 321–387.
  • Arslan, T., Çakır, N., Keleş, T., Biyiklioglu, Z., & Senturk, M. (2019). Triazole substituted metal-free, metallo-phthalocyanines and their water soluble derivatives as potential cholinesterases inhibitors: Design, synthesis and in vitro inhibition study. Bioorganic Chemistry, 90, 103100. https://doi.org/10.1016/j.bioorg.2019.103100
  • Arslan, T., Ceylan, M. B., Baş, H., Biyiklioglu, Z., & Senturk, M. (2020). Design, synthesis, characterization of peripherally tetra-pyridine-triazole-substituted phthalocyanines and their inhibitory effects on cholinesterases (AChE/BChE) and carbonic anhydrases (hCA I, II and IX). Dalton Transactions, 49(1), 203–209. https://doi.org/10.1039/c9dt03897c
  • Berman, H. A., Yguerabide, J., & Taylor, P. (1980). Fluorescence energy transfer on acetylcholinesterase: Spatial relationship between peripheral site and active center. Biochemistry, 19(10), 2226–2235. https://doi.org/10.1021/bi00551a036
  • Bharadwaj, K. K., Ahmad, I., Pati, S., Ghosh, A., Sarkar, T., Rabha, B., Patel, H., Baishya, D., Edinur, H. A., Abdul Kari, Z., Ahmad Mohd Zain, M. R., & Wan Rosli, W. I. (2022). Potent bioactive compounds from seaweed waste to combat cancer through bioinformatics investigation. Frontiers in Nutrition, 9, 889276. https://doi.org/10.3389/fnut.2022.889276
  • Boulaamane, Y., Ahmad, I., Patel, H., Das, N., Britel, M. R., & Maurady, A. (2022). Structural exploration of selected C6 and C7-substituted coumarin isomers as selective MAO-B inhibitors. Journal of Biomolecular Structure and Dynamics, 1–15. https://doi.org/10.1080/07391102.2022.2033643
  • Budimir, A. (2011). Metal ions, Alzheimer’s disease and chelation therapy. Acta Pharmaceutica, 61(1), 1–14. https://doi.org/10.2478/v10007-011-0006-6
  • Cavdar, H., Senturk, M., Guney, M., Durdagi, S., Kayik, G., Supuran, C. T., & Ekinci, D. (2019). Inhibition of acetylcholinesterase and butyrylcholinesterase with uracil derivatives: Kinetic and computational studies. Journal of Enzyme Inhibition and Medicinal Chemistry, 34(1), 429–437. https://doi.org/10.1080/14756366.2018.1543288
  • Cevik, U., Levent, S., Saglık, B., Ozkay, Y., & Kaplancıklı, Z. (2017). Synthesis of novel 4-(dimethylaminoalkyl) piperazine-1-carbodithioate derivatives as cholinesterase inhibitors. Letters in Drug Design & Discovery, 14(5), 528–539. https://doi.org/10.2174/1570180813666160923105636
  • Cheung, J., Rudolph, M. J., Burshteyn, F., Cassidy, M. S., Gary, E. N., Love, J., Franklin, M. C., & Height, J. J. (2012). Structures of human acetylcholinesterase in complex with pharmacologically important ligands. Journal of Medicinal Chemistry, 55(22), 10282–10286. https://doi.org/10.1021/jm300871x
  • Darvesh, S., Hopkins, D., & Geula, C. (2003). Neurobiology of butyrylcholinesterase. Nature Reviews Neuroscience, 4(2), 131–138. https://doi.org/10.1038/nrn1035
  • dos Santos, P., Leide, C., Ozela, P. F., de Fatima de Brito Brito, M., Pinheiro, A. A., Padilha, E. C., Braga, F. S., de Paula, d., Carlos, H., & dos Santos, C. B. R. (2018). Alzheimer’s disease: A review from the pathophysiology to diagnosis, new perspectives for pharmacological treatment. Current Medicinal Chemistry, 25(26), 3141–3159. https://doi.org/10.2174/0929867323666161213101126
  • Du, X., Wang, X., & Geng, M. (2018). Alzheimer’s disease hypothesis and related therapies. Translational Neurodegeneration, 7, 2–7. https://doi.org/10.1186/s40035-018-0107-y
  • Ellman, G. L., Courtney, K. D., Andres, V., & Feather-Stone, R. M. (1961). A new and rapid colorimetric determination of acetylcholinesterase activity. Biochemical Pharmacology, 7, 88–95. https://doi.org/10.1016/0006-2952(61)90145-9
  • Fernández-Bachiller, M. I., Pérez, C., González-Muñoz, G. C., Conde, S., López, M. G., Villarroya, M., García, A. G., & Rodríguez-Franco, M. I. (2010). Novel tacrine–8-hydroxyquinoline hybrids as multifunctional agents for the treatment of Alzheimer’s disease, with neuroprotective, cholinergic, antioxidant, and copper-complexing properties. Journal of Medicinal Chemistry, 53(13), 4927–4937. https://doi.org/10.1021/jm100329q
  • Genest, D., Rochais, C., Lecoutey, C., Sopkova-de Oliveira Santos, J., Ballandonne, C., Butt-Gueulle, S., Legay, R., Since, M., & Dallemagne, P. (2013). Design, synthesis and biological evaluation of novel indano-and thiaindano-pyrazoles with potential interest for Alzheimer’s disease. MedChemComm, 4(6), 925–931. https://doi.org/10.1039/c3md00041a
  • Ghosh, S., Das, S., Ahmad, I., & Patel, H. (2021). In silico validation of anti-viral drugs obtained from marine sources as a potential target against SARS-CoV-2 Mpro. Journal of the Indian Chemical Society, 98(12), 100272. https://doi.org/10.1016/j.jics.2021.100272
  • Girase, R., Ahmad, I., Pawara, R., & Patel, H. (2022). Optimizing cardio, hepato and phospholipidosis toxicity of the Bedaquiline by chemoinformatics and molecular modelling approach. SAR and QSAR in Environmental Research, 33(3), 215–235. https://doi.org/10.1080/1062936X.2022.2041724
  • Holzgrabe, U., Kapková, P., Alptüzün, V., Scheiber, J., & Kugelmann, E. (2007). Targeting acetylcholinesterase to treat neurodegeneration. Expert Opinion on Therapeutic Targets, 11(2), 161–179. https://doi.org/10.1517/14728222.11.2.161
  • Hussein, W., Sağlık, B. N., Levent, S., Korkut, B., Ilgın, S., Özkay, Y., & Kaplancıklı, Z. A. (2018). Synthesis and biological evaluation of new cholinesterase inhibitors for Alzheimer’s disease. Molecules, 23(8), 2033. https://doi.org/10.3390/molecules23082033
  • Jorgensen, W. L., Maxwell, D. S., & Tirado-Rives, J. (1996). Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids. Journal of the American Chemical Society, 118(45), 11225–11236. https://doi.org/10.1021/ja9621760
  • Kalibaeva, G., Ferrario, M., & Ciccotti, G. (2003). Constant pressure-constant temperature molecular dynamics: A correct constrained NPT ensemble using the molecular virial. Molecular Physics, 101(6), 765–778. https://doi.org/10.1080/0026897021000044025
  • LaFerla, F. M., Green, K. N., & Oddo, S. (2007). Intracellular amyloid-β in Alzheimer’s disease. Nature Reviews Neuroscience, 8(7), 499–509. https://doi.org/10.1038/nrn2168
  • Lee, H. Y., Cho, D. Y., Ahmad, I., Patel, H. M., Kim, M. J., Jung, J. G., Jeong, E. H., Haque, M. A., & Cho, K. M. (2021). Mining of a novel esterase (est3S) gene from a cow rumen metagenomic library with organosphosphorus insecticides degrading capability: Catalytic insights by site directed mutations, docking, and molecular dynamic simulations. International Journal of Biological Macromolecules, 190, 441–455. https://doi.org/10.1016/j.ijbiomac.2021.08.224
  • Levent, S., Acar Çevik, U., Sağlık, B. N., Özkay, Y., Can, Ö. D., Özkay, Ü. D., & Uçucu, Ü. (2017). Anticholinesterase activity screening of some novel dithiocarbamate derivatives including piperidine and piperazine moieties. Phosphorus, Sulfur, and Silicon and the Related Elements, 192(4), 469–474. https://doi.org/10.1080/10426507.2016.1259228
  • Makhaeva, G. F., Lushchekina, S. V., Kovaleva, N. V., Yu Astakhova, T., Boltneva, N. P., Rudakova, E. V., Serebryakova, O. G., Proshin, A. N., Serkov, I. V., Trofimova, T. P., Tafeenko, V. A., Radchenko, E. V., Palyulin, V. A., Fisenko, V. P., Korábečný, J., Soukup, O., & Richardson, R. J. (2021). Amiridine-piperazine hybrids as cholinesterase inhibitors and potential multitarget agents for Alzheimer’s disease treatment. Bioorganic Chemistry, 112, 104974. https://doi.org/10.1016/j.bioorg.2021.104974
  • Martyna, G. J. (1994). Remarks on “Constant-temperature molecular dynamics with momentum conservation”. Physical Review E: Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics, 50(4), 3234–3236. https://doi.org/10.1103/physreve.50.3234
  • Mayeux, R. (2003). Epidemiology of neurodegeneration. Annual Review of Neuroscience, 26, 81–104. https://doi.org/10.1146/annurev.neuro.26.043002.094919
  • Meena, P., Nemaysh, V., Khatri, M., Manral, A., Luthra, P. M., & Tiwari, M. (2015). Synthesis, biological evaluation and molecular docking study of novel piperidine and piperazine derivatives as multi-targeted agents to treat Alzheimer’s disease. Bioorganic & Medicinal Chemistry, 23(5), 1135–1148. https://doi.org/10.1016/j.bmc.2014.12.057
  • Neochoritis, C., Tsoleridis, C. A., & Stephanidou-Stephanatou, J. (2008). 1-Arylaminoimidazole-2-thiones as intermediates in the synthesis of imidazo [2,1-b][1,3,4] thiadiazines. Tetrahedron, 64(16), 3527–3533. https://doi.org/10.1016/j.tet.2008.01.136
  • Onder, F. C., Sahin, K., Senturk, M., Durdagi, S., & Ay, M. (2022). Identifying highly effective coumarin-based novel cholinesterase inhibitors by in silico and in vitro studies. Journal of Molecular Graphics & Modelling, 115, 108210. https://doi.org/10.1016/j.jmgm.2022.108210
  • Osmaniye, D., Sağlık, B. N., Acar Çevik, U., Levent, S., Kaya Çavuşoğlu, B., Özkay, Y., Kaplancıklı, Z. A., & Turan, G. (2019). Synthesis and AChE inhibitory activity of novel thiazolylhydrazone derivatives. Molecules, 24(13), 2392. https://doi.org/10.3390/molecules24132392
  • Özil, M., Balaydın, H. T., & Şentürk, M. (2019). Synthesis of 5-methyl-2,4-dihydro-3H-1,2,4-triazole-3-one’s aryl Schiff base derivatives and investigation of carbonic anhydrase and cholinesterase (AChE, BuChE) inhibitory properties. Bioorganic Chemistry, 86, 705–713. https://doi.org/10.1016/j.bioorg.2019.02.045
  • Özkay, Ü. D., Can, Ö. D., Sağlık, B. N., Çevik, U. A., Levent, S., Özkay, Y., Ilgın, S., & Atlı, Ö. (2016). Design, synthesis, and AChE inhibitory activity of new benzothiazole–piperazines. Bioorganic & Medicinal Chemistry Letters, 26(22), 5387–5394. https://doi.org/10.1016/j.bmcl.2016.10.041
  • Pawara, R., Ahmad, I., Nayak, D., Belamkar, S., Surana, S., Kundu, C. N., Patil, C., & Patel, H. (2022). Design and synthesis of the novel, selective WZ4002 analogue as EGFR-L858R/T790M tyrosine kinase inhibitors for targeted drug therapy in non-small-cell lung cancer (NSCLC). Journal of Molecular Structure, 1254, 132313. https://doi.org/10.1016/j.molstruc.2021.132313
  • Pawara, R., Ahmad, I., Nayak, D., Wagh, S., Wadkar, A., Ansari, A., Belamkar, S., Surana, S., Nath Kundu, C., Patil, C., & Patel, H. (2021). Novel, selective acrylamide linked quinazolines for the treatment of double mutant EGFR-L858R/T790M non-small-cell lung cancer (NSCLC). Bioorganic Chemistry, 115, 105234. https://doi.org/10.1016/j.bioorg.2021.105234
  • Pawara, R., Ahmad, I., Surana, S., & Patel, H. (2021). Computational identification of 2,4-disubstituted amino-pyrimidines as L858R/T790M-EGFR double mutant inhibitors using pharmacophore mapping, molecular docking, binding free energy calculation, DFT study and molecular dynamic simulation. In Silico Pharmacology, 9(1), 22. https://doi.org/10.1007/s40203-021-00113-x
  • Pievani, M., de Haan, W., Wu, T., Seeley, W. W., & Frisoni, G. B. (2011). Functional network disruption in the degenerative dementias. The Lancet Neurology, 10(9), 829–843. https://doi.org/10.1016/S1474-4422(11)70158-2
  • Rennekamp, A. J., Huang, X.-P., Wang, Y., Patel, S., Lorello, P. J., Cade, L., Gonzales, A. P. W., Yeh, J.-R J., Caldarone, B. J., Roth, B. L., Kokel, D., & Peterson, R. T. (2016). σ1 receptor ligands control a switch between passive and active threat responses. Nature Chemical Biology, 12(7), 552–558. https://doi.org/10.1038/nchembio.2089
  • Sağlık, B. N., Ilgın, S., & Özkay, Y. (2016). Synthesis of new donepezil analogues and investigation of their effects on cholinesterase enzymes. European Journal of Medicinal Chemistry, 124, 1026–1040. https://doi.org/10.1016/j.ejmech.2016.10.042
  • Sağlık, B. N., Osmaniye, D., Acar Çevik, U., Levent, S., Kaya Çavuşoğlu, B., Özkay, Y., & Kaplancıklı, Z. A. (2020). Design, synthesis, and structure–activity relationships of thiazole analogs as anticholinesterase agents for Alzheimer’s disease. Molecules, 25(18), 4312. https://doi.org/10.3390/molecules25184312
  • Schrödinger, LLC. (2014). Schrödinger Release, 1: Desmond molecular dynamics system, version 3.7, DE Shaw Research, New York, NY, Maestro-Desmond Interoperability Tools, version, 3. Schrödinger, LLC.
  • Schrödinger, LLC. (2016a). Maestro (Version 10.6). Schrödinger, LLC.
  • Schrödinger, LLC. (2016b). Schrödinger Suite 2020 Update 2. Schrödinger, LLC.
  • Schrödinger, LLC. (2016c). LigPrep (Version 3.8). Schrödinger, LLC.
  • Schrödinger, LLC. (2016d). Glide (Version 7.1). Schrödinger, LLC.
  • Shaik, J. B., Palaka, B. K., Penumala, M., Kotapati, K. V., Devineni, S. R., Eadlapalli, S., Darla, M. M., Ampasala, D. R., Vadde, R., & Amooru, G. D. (2016). Synthesis, pharmacological assessment, molecular modeling and in silico studies of fused tricyclic coumarin derivatives as a new family of multifunctional anti-Alzheimer agents. European Journal of Medicinal Chemistry, 107, 219–232. https://doi.org/10.1016/j.ejmech.2015.10.046
  • Silva, D., Chioua, M., Samadi, A., Agostinho, P., Garção, P., Lajarín-Cuesta, R., de Los Ríos, C., Iriepa, I., Moraleda, I., Gonzalez-Lafuente, L., Mendes, E., Pérez, C., Rodríguez-Franco, M. I., Marco-Contelles, J., & Carmo Carreiras, M. (2013). Synthesis, pharmacological assessment, and molecular modeling of acetylcholinesterase/butyrylcholinesterase inhibitors: Effect against amyloid-β-induced neurotoxicity. ACS Chemical Neuroscience, 4(4), 547–565. https://doi.org/10.1021/cn300178k
  • Skovronsky, D. M., Lee, V. M.-Y., & Trojanowski, J. Q. (2006). Neurodegenerative diseases: New concepts of pathogenesis and their therapeutic implications. Annual Review of Pathology, 1, 151–170. https://doi.org/10.1146/annurev.pathol.1.110304.100113
  • Tok, F., Koçyiğit-Kaymakçıoğlu, B., Sağlık, B. N., Levent, S., Özkay, Y., & Kaplancıklı, Z. A. (2019). Synthesis and biological evaluation of new pyrazolone Schiff bases as monoamine oxidase and cholinesterase inhibitors. Bioorganic Chemistry, 84, 41–50. https://doi.org/10.1016/j.bioorg.2018.11.016
  • Vickers, N. J. (2017). Animal communication: When I’m calling you, will you answer too? Current Biology, 27(14), R713–R715. https://doi.org/10.1016/j.cub.2017.05.064
  • Yan, G., Hao, L., Niu, Y., Huang, W., Wang, W., Xu, F., Liang, L., Wang, C., Jin, H., & Xu, P. (2017). 2-Substituted-thio-N-(4-substituted-thiazol/1H-imidazol-2-yl) acetamides as BACE1 inhibitors: Synthesis, biological evaluation and docking studies. European Journal of Medicinal Chemistry, 137, 462–475. https://doi.org/10.1016/j.ejmech.2017.06.020
  • Youssef, K. M., Fawzy, I. M., & El-Subbagh, H. I. (2018). N-substituted-piperidines as novel anti-Alzheimer agents: Synthesis, antioxidant activity, and molecular docking study. Future Journal of Pharmaceutical Sciences, 4(1), 1–7. https://doi.org/10.1016/j.fjps.2017.06.002

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.