340
Views
3
CrossRef citations to date
0
Altmetric
Research Articles

Inhibition of the predicted allosteric site of the SARS-CoV-2 main protease through flavonoids

, , , , , & ORCID Icon show all
Pages 9103-9120 | Received 23 May 2022, Accepted 19 Oct 2022, Published online: 20 Nov 2022

References

  • Adedeji, A. O., Marchand, B., Te Velthuis, A. J. W., Snijder, E. J., Weiss, S., Eoff, R. L., Singh, K., & Sarafianos, S. G. (2012). Mechanism of nucleic acid unwinding by SARS-CoV helicase. PLoS One. 7(5), e36521. https://doi.org/10.1371/journal.pone.0036521
  • Ahmad, N., Badshah, S. L., Junaid, M., Ur Rehman, A., Muhammad, A., & Khan, K. (2021). Structural insights into the Zika virus NS1 protein inhibition using a computational approach. Journal of Biomolecular Structure & Dynamics, 39(8), 3004–3011. https://doi.org/10.1080/07391102.2020.1759453
  • Ahmad, N., Rehman, A. U., Badshah, S. L., Ullah, A., Mohammad, A., & Khan, K. (2020). Molecular dynamics simulation of zika virus NS5 RNA dependent RNA polymerase with selected novel non-nucleoside inhibitors. Journal of Molecular Structure, 1203, 127428. https://doi.org/10.1016/j.molstruc.2019.127428
  • Alzyoud, L., Ghattas, M. A., & Atatreh, N. (2022). Allosteric binding sites of the SARS-CoV-2 main protease: Potential targets for broad-spectrum anti-coronavirus agents. Drug Design, Development and Therapy, 16, 2463–2478. https://doi.org/10.2147/DDDT.S370574
  • Anand, K., Ziebuhr, J., Wadhwani, P., Mesters, J. R., & Hilgenfeld, R. (2003). Coronavirus main proteinase (3CLpro) Structure: Basis for design of anti-SARS drugs. Science, 300(5626), 1763–1767. https://doi.org/10.1126/science.1085658
  • Badshah, S. L., Faisal, S., Muhammad, A., Poulson, B. G., Emwas, A. H., & Jaremko, M. (2021). Antiviral activities of flavonoids. Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie, 140, 111596. https://doi.org/10.1016/j.biopha.2021.111596
  • Badshah, S. L., Khan, A. N., & Mabkhot, Y. N. (2016). Molecular dynamics simulation of cholera toxin A-1 polypeptide. Open Chemistry, 14(1), 188–196. https://doi.org/10.1515/chem-2016-0021
  • Badshah, S. L., & Ullah, A. (2020). Spread of coronavirus disease-19 among devotees during religious congregations. Annals of Thoracic Medicine, 15(3), 105–106. https://doi.org/10.4103/atm.ATM_162_20
  • Bahadur, S., Long, W., & Shuaib, M. (2020). Human coronaviruses with emphasis on the COVID-19 outbreak. VirusDisease, 31(2), 80–84. https://doi.org/10.1007/s13337-020-00594-y
  • Bhati, S., Kaushik, V., & Singh, J. (2021). Rational design of flavonoid based potential inhibitors targeting SARS-CoV 3CL protease for the treatment of COVID-19. Journal of Molecular Structure, 1237, 130380. https://doi.org/10.1016/j.molstruc.2021.130380
  • Bhowmik, D., Nandi, R., Prakash, A., & Kumar, D. (2021). Evaluation of flavonoids as 2019-nCoV cell entry inhibitor through molecular docking and pharmacological analysis. Heliyon, 7(3), e06515. https://doi.org/10.1016/j.heliyon.2021.e06515
  • Bitew, M., Desalegn, T., Demissie, T. B., Belayneh, A., Endale, M., & Eswaramoorthy, R. (2021). Pharmacokinetics and drug-likeness of antidiabetic flavonoids: Molecular docking and DFT study. PLoS One, 16(12), e0260853. https://doi.org/10.1371/journal.pone.0260853
  • Çalıca Utku, A., Budak, G., Karabay, O., Güçlü, E., Okan, H. D., & Vatan, A. (2020). Main symptoms in patients presenting in the COVID-19 period. Scottish Medical Journal, 65(4), 127–132. https://doi.org/10.1177/0036933020949253
  • Chan, J. F. W., Kok, K. H., Zhu, Z., Chu, H., To, K. K. W., Yuan, S., & Yuen, K. Y. (2020). Genomic characterization of the 2019 novel human-pathogenic coronavirus isolated from a patient with atypical pneumonia after visiting Wuhan. Emerging Microbes & Infections, 9(1), 221–236. https://doi.org/10.1080/22221751.2020.1719902
  • Chaves, O. A., Fintelman-Rodrigues, N., Wang, X., Sacramento, C. Q., Temerozo, J. R., Ferreira, A. C., Mattos, M., Pereira-Dutra, F., Bozza, P. T., Castro-Faria-Neto, H. C., Russo, J. J., Ju, J., & Souza, T. M. L. (2022). Commercially available flavonols are better SARS-CoV-2 inhibitors than isoflavone and flavones. Viruses, 14(7), 1458. https://doi.org/10.3390/v14071458
  • Chen, Y., Liu, Q., & Guo, D. (2020). Emerging coronaviruses: Genome structure, replication, and pathogenesis. Journal of Medical Virology, 92(10), 2249–2249. https://doi.org/10.1002/jmv.25681
  • Daina, A., Michielin, O., & Zoete, V. (2017). SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Scientific Reports, 7, 42717. https://doi.org/10.1038/srep42717
  • DasGupta, D., Chan, W. K. B., & Carlson, H. A. (2022). Computational identification of possible allosteric sites and modulators of the SARS-CoV-2 main protease. Journal of Chemical Information and Modeling, 62(3), 618–626. https://doi.org/10.1021/acs.jcim.1c01223
  • Enmozhi, S. K., Raja, K., Sebastine, I., & Joseph, J. (2020). Andrographolide as a potential inhibitor of SARS-CoV-2 main protease: An in silico approach. Journal of Biomolecular Structure and Dynamics, 39(9), 3092–3098. https://doi.org/10.1080/07391102.2020.1760136
  • Faisal, S., Badshah, S. L., Kubra, B., Sharaf, M., Emwas, A.-H., Jaremko, M., & Abdalla, M. (2022a). Identification and inhibition of the druggable allosteric site of SARS-CoV-2 NSP10/NSP16 methyltransferase through computational approaches. Molecules (Basel, Switzerland), 27(16), 5241. https://doi.org/10.3390/molecules27165241
  • Faisal, S., Lal Badshah, S., Kubra, B., Sharaf, M., Emwas, A. H., Jaremko, M., & Abdalla, M. (2022b). Computational study of SARS-cov-2 RNA dependent RNA polymerase allosteric site inhibition. Molecules, 27(1), 223. https://doi.org/10.3390/molecules27010223
  • Ghosh, R., Chakraborty, A., Biswas, A., & Chowdhuri, S. (2021). Identification of polyphenols from Broussonetia papyrifera as SARS CoV-2 main protease inhibitors using in silico docking and molecular dynamics simulation approaches. Journal of Biomolecular Structure & Dynamics, 39(17), 6747–6760. https://doi.org/10.1080/07391102.2020.1802347
  • Glaab, E., Manoharan, G. B., & Abankwa, D. (2021). Pharmacophore model for SARS-CoV-2 3CLpro small-molecule inhibitors and in vitro experimental validation of computationally screened inhibitors. Journal of Chemical Information and Modeling, 61(8), 4082–4096. https://doi.org/10.1021/acs.jcim.1c00258
  • Gordon, D. E., Jang, G. M., Bouhaddou, M., Xu, J., Obernier, K., White, K. M., O’Meara, M. J., Rezelj, V. V., Guo, J. Z., Swaney, D. L., Tummino, T. A., Hüttenhain, R., Kaake, R. M., Richards, A. L., Tutuncuoglu, B., Foussard, H., Batra, J., Haas, K., Modak, M., … Krogan, N. J. (2020). A SARS-CoV-2 protein interaction map reveals targets for drug repurposing. Nature, 583(7816), 459–468. https://doi.org/10.1038/s41586-020-2286-9
  • Günther, S., Reinke, P. Y. A., Fernández-García, Y., Lieske, J., Lane, T. J., Ginn, H. M., Koua, F. H. M., Ehrt, C., Ewert, W., Oberthuer, D., Yefanov, O., Meier, S., Lorenzen, K., Krichel, B., Kopicki, J.-D., Gelisio, L., Brehm, W., Dunkel, I., Seychell, B., … Meents, A. (2021). X-ray screening identifies active site and allosteric inhibitors of SARS-CoV-2 main protease. Science (New York, N.Y.), 372(6542), 642–646. https://doi.org/10.1126/science.abf7945
  • Hariono, M., Hariyono, P., Dwiastuti, R., Setyani, W., Yusuf, M., Salin, N., & Wahab, H. (2021). Potential SARS-CoV-2 3CLpro inhibitors from chromene, flavonoid and hydroxamic acid compound based on FRET assay, docking and pharmacophore studies. Results in Chemistry, 3, 100195. https://doi.org/10.1016/j.rechem.2021.100195
  • Havranek, B., & Islam, S. M. (2021). An in silico approach for identification of novel inhibitors as potential therapeutics targeting COVID-19 main protease. Journal of Biomolecular Structure and Dynamics, 39(12), 4304–4315. https://doi.org/10.1080/07391102.2020.1776158
  • Hendaus, M. A. (2021). Remdesivir in the treatment of coronavirus disease 2019 (COVID-19): A simplified summary. Journal of Biomolecular Structure and Dynamics, 39(10), 3787–3792. https://doi.org/10.1080/07391102.2020.1767691
  • Huang, W., Lu, S., Huang, Z., Liu, X., Mou, L., Luo, Y., Zhao, Y., Liu, Y., Chen, Z., Hou, T., & Zhang, J. (2013). Allosite: A method for predicting allosteric sites. Bioinformatics, 29(18), 2357–2359. https://doi.org/10.1093/bioinformatics/btt399
  • Ibrahim, R. S., Mahrous, R. S. R., Abu, E. L., Khair, R. M., Ross, S. A., Omar, A. A., & Fathy, H. M. (2021). Biologically guided isolation and ADMET profile of new factor Xa inhibitors from Glycyrrhiza glabraroots using in vitro and in silico approaches. RSC Advances, 11(17), 9995–10001. https://doi.org/10.1039/d1ra00359c
  • Isika, D. K., Özkömeç, F. N., Çeşme, M., & Sadik, O. A. (2022). Synthesis, biological and computational studies of flavonoid acetamide derivatives. RSC Advances, 12(16), 10037–10050. https://doi.org/10.1039/D2RA01375D
  • Jairajpuri, D. S., Hussain, A., Nasreen, K., Mohammad, T., Anjum, F., Tabish Rehman, M., Mustafa Hasan, G., Alajmi, M. F., & Imtaiyaz Hassan, M. (2021). Identification of natural compounds as potent inhibitors of SARS-CoV-2 main protease using combined docking and molecular dynamics simulations. Saudi Journal of Biological Sciences, 28(4), 2423–2431. https://doi.org/10.1016/j.sjbs.2021.01.040
  • Jana, A. K., Greenwood, A. B., & Hansmann, U. H. E. (2021). Presence of a SARS-CoV-2 protein enhances amyloid formation of serum amyloid A. The Journal of Physical Chemistry B, 125(32), 9155–9167. https://doi.org/10.1021/acs.jpcb.1c04871
  • Jana, A. K., Lander, C. W., Chesney, A. D., & Hansmann, U. H. E. (2022). Effect of an amyloidogenic SARS-COV-2 protein fragment on α-synuclein monomers and fibrils. The Journal of Physical Chemistry B, 126(20), 3648–3658. https://doi.org/10.1021/acs.jpcb.2c01254
  • Jiménez-Avalos, G., Vargas-Ruiz, A. P., Delgado-Pease, N. E., Olivos-Ramirez, G. E., Sheen, P., Fernández-Díaz, M., Quiliano, M., Zimic, M., Agurto-Arteaga, A., Antiparra, R., Ardiles-Reyes, M., Calderon, K., Cauna-Orocollo, Y., de Grecia Cauti-Mendoza, M., Chipana-Flores, N., Choque-Guevara, R., Chunga-Girón, X., Criollo-Orozco, M., De La Cruz, L., … Ygnacio-Aguirre, F, COVID-19 Working Group in Perú. (2021). Comprehensive virtual screening of 4.8 k flavonoids reveals novel insights into allosteric inhibition of SARS-CoV-2 MPRO. Scientific Reports, 11(1). https://doi.org/10.1038/s41598-021-94951-6
  • Jin, Z., Du, X., Xu, Y., Deng, Y., Liu, M., Zhao, Y., Zhang, B., Li, X., Zhang, L., Peng, C., Duan, Y., Yu, J., Wang, L., Yang, K., Liu, F., Jiang, R., Yang, X., You, T., Liu, X., … Yang, H. (2020). Structure of Mpro from SARS-CoV-2 and discovery of its inhibitors. Nature, 582(7811), 289–293. https://doi.org/10.1038/s41586-020-2223-y
  • Kar, P., Sharma, N. R., Singh, B., Sen, A., & Roy, A. (2021). Natural compounds from Clerodendrum spp. as possible therapeutic candidates against SARS-CoV-2: An in silico investigation. Journal of Biomolecular Structure and Dynamics, 39(13), 4774–4785. https://doi.org/10.1080/07391102.2020.1780947
  • Khafaie, M. A., & Rahim, F. (2020). Cross-country comparison of case fatality rates of Covid-19/SARS-CoV-2. Osong Public Health and Research Perspectives, 11(2), 74–80. https://doi.org/10.24171/j.phrp.2020.11.2.03
  • Khan, R. J., Jha, R. K., Amera, G. M., Jain, M., Singh, E., Pathak, A., Singh, R. P., Muthukumaran, J., & Singh, A. K. (2021). Targeting SARS-CoV-2: A systematic drug repurposing approach to identify promising inhibitors against 3C-like proteinase and 2′-O-ribose methyltransferase. Journal of Biomolecular Structure and Dynamics, 39(8), 2679–2692. https://doi.org/10.1080/07391102.2020.1753577
  • Kumar, S., Nyodu, R., Maurya, V. K., & Saxena, S. K. (2020). Morphology, genome organization, replication, and pathogenesis of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). https://doi.org/10.1007/978-981-15-4814-7_3
  • Lalani, S., & Poh, C. L. (2020). Flavonoids as antiviral agents for enterovirus A71 (EV-A71). Viruses, 12(2), 184. https://doi.org/10.3390/v12020184
  • Lee, J., Worrall, L. J., Vuckovic, M., Rosell, F. I., Gentile, F., Ton, A.-T., Caveney, N. A., Ban, F., Cherkasov, A., Paetzel, M., & Strynadka, N. C. J. (2020). Crystallographic structure of wild-type SARS-CoV-2 main protease acyl-enzyme intermediate with physiological C-terminal autoprocessing site. Nature Communications, 11(1). https://doi.org/10.1038/s41467-020-19662-4
  • Ludwig, S., & Zarbock, A. (2020). Coronaviruses and SARS-CoV-2: A brief overview. Anesthesia and Analgesia, 131(1), 93-96. https://doi.org/10.1213/ANE.0000000000004845
  • Meyerholz, D. K., Lambertz, A. M., & McCray, P. B. (2016). Dipeptidyl peptidase 4 distribution in the human respiratory tract implications for the middle east respiratory syndrome. American Journal of Pathology, 186(1), 78-86. https://doi.org/10.1016/j.ajpath.2015.09.014
  • Mittal, A., Manjunath, K., Ranjan, R. K., Kaushik, S., Kumar, S., & Verma, V. (2020). COVID-19 pandemic: Insights into structure, function, and hACE2 receptor recognition by SARS-CoV-2. PLOS Pathogens, 16(8), e1008762. https://doi.org/10.1371/journal.ppat.1008762
  • MOE (Molecular Operating Environment). (2009). Scientific Computing & Instrumentation.
  • Motiwale, M., Yadav, N. S., Kumar, S., Kushwaha, T., Choudhir, G., Sharma, S., & Singour, P. K. (2022). Finding potent inhibitors for COVID-19 main protease (Mpro): An in silico approach using SARS-CoV-3CL protease inhibitors for combating CORONA. Journal of Biomolecular Structure and Dynamics, 40(4), 1534–1545. https://doi.org/10.1080/07391102.2020.1829501
  • Mousavizadeh, L., & Ghasemi, S. (2021). Genotype and phenotype of COVID-19: Their roles in pathogenesis. Journal of Microbiology, Immunology and Infection, 54(2), 159–163. https://doi.org/10.1016/j.jmii.2020.03.022
  • Ninfali, P., Antonelli, A., Magnani, M., & Scarpa, E. S. (2020). Antiviral properties of flavonoids and delivery strategies. Nutrients, 12(9), 2534. https://doi.org/10.3390/nu12092534
  • Nisius, B., Sha, F., & Gohlke, H. (2012). Structure-based computational analysis of protein binding sites for function and druggability prediction. Journal of Biotechnology, 159(3), 123–134. https://doi.org/10.1016/j.jbiotec.2011.12.005
  • Nussinov, R., & Tsai, C. J. (2013). Allostery in disease and in drug discovery. Cell, 153(2), 293–305. https://doi.org/10.1016/j.cell.2013.03.034
  • Ononamadu, C. J., Abdalla, M., Ihegboro, G. O., Li, J., Owolarafe, T. A., John, T. D., & Tian, Q. (2021). In silico identification and study of potential anti-mosquito juvenile hormone binding protein (MJHBP) compounds as candidates for dengue virus - Vector insecticides. Biochemistry and Biophysics Reports, 28, 101178. https://doi.org/10.1016/j.bbrep.2021.101178
  • Ou, X., Liu, Y., Lei, X., Li, P., Mi, D., Ren, L., Guo, L., Guo, R., Chen, T., Hu, J., Xiang, Z., Mu, Z., Chen, X., Chen, J., Hu, K., Jin, Q., Wang, J., & Qian, Z. (2020). Characterization of spike glycoprotein of SARS-CoV-2 on virus entry and its immune cross-reactivity with SARS-CoV. Nature Communications, 11(1), 1620. https://doi.org/10.1038/s41467-020-15562-9
  • Patel, C. N., Jani, S. P., Jaiswal, D. G., Kumar, S. P., Mangukia, N., Parmar, R. M., Rawal, R. M., & Pandya, H. A. (2021). Identification of antiviral phytochemicals as a potential SARS-CoV-2 main protease (Mpro) inhibitor using docking and molecular dynamics simulations. Scientific Reports, 11(1), 20295. https://doi.org/10.1038/s41598-021-99165-4
  • Peracchi, A., & Mozzarelli, A. (2011). Exploring and exploiting allostery: Models, evolution, and drug targeting. Biochimica et Biophysica Acta - Proteins and Proteomics, 1814(8),922-933. https://doi.org/10.1016/j.bbapap.2010.10.008
  • Roe, M. K., Junod, N. A., Young, A. R., Beachboard, D. C., & Stobart, C. C. (2021). Targeting novel structural and functional features of coronavirus protease nsp5 (3CLpro, Mpro) in the age of COVID-19. Journal of General Virology, 102(3), 001558. https://doi.org/10.1099/jgv.0.001558
  • Saxena, S. K., Kumar, S., Maurya, V. K., Sharma, R., Dandu, H. R., & Bhatt, M. L. B. (2020). Current Insight into the Novel Coronavirus Disease 2019 (COVID-19). Coronavirus Disease 2019 (COVID-19): Epidemiology, Pathogenesis, Diagnosis, and Therapeutics, 2020, 1-8. https://doi.org/10.1007/978-981-15-4814-7_1
  • Sharma, P., Joshi, T., Mathpal, S., Joshi, T., Pundir, H., Chandra, S., & Tamta, S. (2022). Identification of natural inhibitors against Mpro of SARS-CoV-2 by molecular docking, molecular dynamics simulation, and MM/PBSA methods. Journal of Biomolecular Structure & Dynamics, 40(6), 2757–2768. https://doi.org/10.1080/07391102.2020.1842806
  • Shaw, D. (2011). Desmond molecular dynamics system, v 3.0. Schrödinger.
  • Shereen, M. A., Khan, S., Kazmi, A., Bashir, N., & Siddique, R. (2020). COVID-19 infection: Origin, transmission, and characteristics of human coronaviruses. Journal of Advanced Research, 24, 91–98. https://doi.org/10.1016/j.jare.2020.03.005
  • Solnier, J., & Fladerer, J. P. (2021). Flavonoids: A complementary approach to conventional therapy of COVID-19? Phytochemistry Reviews, 20(4), 773–795. https://doi.org/10.1007/s11101-020-09720-6
  • Song, K., Liu, X., Huang, W., Lu, S., Shen, Q., Zhang, L., & Zhang, J. (2017). Improved method for the identification and validation of allosteric sites. Journal of Chemical Information and Modeling, 57(9), 2358–2363. https://doi.org/10.1021/acs.jcim.7b00014
  • Su, H., Yao, S., Zhao, W., Zhang, Y., Liu, J., Shao, Q., Wang, Q., Li, M., Xie, H., Shang, W., Ke, C., Feng, L., Jiang, X., Shen, J., Xiao, G., Jiang, H., Zhang, L., Ye, Y., & Xu, Y. (2021). Identification of pyrogallol as a warhead in design of covalent inhibitors for the SARS-CoV-2 3CL protease. Nature Communications, 12(1), 3623. https://doi.org/10.1038/s41467-021-23751-3
  • Sun, Z., Wang, L., Li, X., Fan, C., Xu, J., Shi, Z., Qiao, H., Lan, Z., Zhang, X., Li, L., Zhou, X., & Geng, Y. (2022). An extended conformation of SARS-CoV-2 main protease reveals allosteric targets. Proceedings of the National Academy of Sciences, 119(15), e2120913119. https://doi.org/10.1073/pnas.2120913119
  • Swain, S. S., Singh, S. R., Sahoo, A., Hussain, T., & Pati, S. (2022). Anti-HIV-drug and phyto-flavonoid combination against SARS-CoV-2: A molecular docking-simulation base assessment. Journal of Biomolecular Structure and Dynamics, 40(14), 6463–6476. https://doi.org/10.1080/07391102.2021.1885495
  • Badshah, S. L., Ullah, A., Badshah, S. H., & Ahmad, I. (2020). Spread of Novel coronavirus by returning pilgrims from Iran to Pakistan. Journal of Travel Medicine, 27(3), taaa044. https://doi.org/10.1093/jtm/taaa044
  • Tian, H., Jiang, X., & Tao, P. (2021). PASSer: Prediction of allosteric sites server. Machine Learning: Science and Technology, 2(3), 035015. https://doi.org/10.1088/2632-2153/abe6d6
  • Varughese, J. K., Joseph Libin, K. L., Sindhu, K. S., Rosily, A. V., & Abi, T. G. (2021). Investigation of the inhibitory activity of some dietary bioactive flavonoids against SARS-CoV-2 using molecular dynamics simulations and MM-PBSA calculations. Journal of Biomolecular Structure and Dynamics, 40(15), 6755–6770. https://doi.org/10.1080/07391102.2021.1891139
  • Velavan, T. P., & Meyer, C. G. (2020). The COVID-19 epidemic. Tropical Medicine and International Health, 25(3), 278–280. https://doi.org/10.1111/tmi.13383
  • Verma, S., & Pandey, A. K. (2021). Factual insights of the allosteric inhibition mechanism of SARS-CoV-2 main protease by quercetin: An in silico analysis. 3 Biotech, 11(2), 67. https://doi.org/10.1007/s13205-020-02630-6
  • Xu, Y., Wang, S., Hu, Q., Gao, S., Ma, X., Zhang, W., Shen, Y., Chen, F., Lai, L., & Pei, J. (2018). CavityPlus: A web server for protein cavity detection with pharmacophore modelling, allosteric site identification and covalent ligand binding ability prediction. Nucleic Acids Research, 46(W1), W374–W379. https://doi.org/10.1093/nar/gky380
  • Xu, Z., Yang, L., Zhang, X., Zhang, Q., Yang, Z., Liu, Y., Wei, S., & Liu, W. (2020). Discovery of potential flavonoid inhibitors against COVID-19 3CL proteinase based on virtual screening strategy. Frontiers in Molecular Biosciences, 7, 556481. https://doi.org/10.3389/fmolb.2020.556481
  • Yang, H., Xie, W., Xue, X., Yang, K., Ma, J., Liang, W., Zhao, Q., Zhou, Z., Pei, D., Ziebuhr, J., Hilgenfeld, R., Yuen, K. Y., Wong, L., Gao, G., Chen, S., Chen, Z., Ma, D., Bartlam, M., & Rao, Z. (2005). Design of wide-spectrum inhibitors targeting coronavirus main proteases. PLoS Biology, 3(10), e324. https://doi.org/10.1371/journal.pbio.0030324
  • Zheng, X., Gan, L., Wang, E., & Wang, J. (2013). Pocket-based drug design: Exploring pocket space. The AAPS Journal, 15(1), 228–241. https://doi.org/10.1208/s12248-012-9426-6

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.