333
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Discovery of novel HDAC8 inhibitors from natural compounds by in silico high throughput screening

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 9492-9502 | Received 18 Aug 2022, Accepted 27 Oct 2022, Published online: 12 Nov 2022

References

  • Akone, S. H., Ntie-Kang, F., Stuhldreier, F., Ewonkem, M. B., Noah, A. M., Mouelle, S. E. M., & Müller, R. (2020). Natural products impacting DNA methyltransferases and histone deacetylases. Frontiers in Pharmacology, 11, 992. https://doi.org/10.3389/fphar.2020.00992
  • Aramsangtienchai, P., Spiegelman, N. A., He, B., Miller, S. P., Dai, L., Zhao, Y., & Lin, H. (2016). HDAC8 catalyzes the hydrolysis of long chain fatty acyl lysine. ACS Chemical Biology, 11(10), 2685–2692.
  • Bae, J., Kumazoe, M., Fujimura, Y., & Tachibana, H. (2019). Diallyl disulfide potentiates anti-obesity effect of green tea in high-fat/high-sucrose diet-induced obesity. The Journal of Nutritional Biochemistry, 64, 152–161. https://doi.org/10.1016/j.jnutbio.2018.10.014
  • Balasubramanian, S., Ramos, J., Luo, W., Sirisawad, M., Verner, E., & Buggy, J. J. (2008). A novel histone deacetylase 8 (HDAC8)-specific inhibitor PCI-34051 induces apoptosis in T-cell lymphomas. Leukemia, 22(5), 1026–1034.
  • Banerjee, S., Adhikari, N., Amin, S. A., & Jha, T. (2019). Histone deacetylase 8 (HDAC8) and its inhibitors with selectivity to other isoforms: An overview. European Journal of Medicinal Chemistry, 164, 214–240.
  • Banerjee, P., Eckert, A. O., Schrey, A. K., & Preissner, R. (2018). ProTox-II: A webserver for the prediction of toxicity of chemicals. Nucleic Acids Research, 46(W1), W257–W263.
  • Berendsen, H. J. C., van der Spoel, D., & van Drunen, R. (1995). GROMACS: A message-passing parallel molecular dynamics implementation. Computer Physics Communications, 91(1-3), 43–56. https://doi.org/10.1016/0010-4655(95)00042-E
  • Bondarev, A. D., Attwood, M. M., Jonsson, J., Chubarev, V. N., Tarasov, V. V., & Schiöth, H. B. (2021). Recent developments of HDAC inhibitors: Emerging indications and novel molecules. British Journal of Clinical Pharmacology, 87(12), 4577–4597.
  • Briggs, P., Winn, M. D., Bailey, S., & Ashton, A. (2002). Ccp4 Newsletter on Protein Crystallography. Ccp4.Ac.Uk, 4.
  • Cashen, A., Juckett, M., Jumonville, A., Litzow, M., Flynn, P. J., Eckardt, J., LaPlant, B., Laumann, K., Erlichman, C., & DiPersio, J. (2012). Phase II study of the histone deacetylase inhibitor belinostat (PXD101) for the treatment of myelodysplastic syndrome (MDS). Annals of Hematology, 91(1), 33–38.
  • Chakrabarti, A., Oehme, I., Witt, O., Oliveira, G., Sippl, W., Romier, C., Pierce, R. J., & Jung, M. (2015). HDAC8: A multifaceted target for therapeutic interventions. Trends in Pharmacological Sciences, 36(7), 481–492.
  • Daina, A., Michielin, O., & Zoete, V. (2017). SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Scientific Reports, 7(October 2016), 42717–42713. https://doi.org/10.1038/srep42717
  • Elmezayen, A. D., & Kemal, Y. (2021). Structure-based virtual screening for novel potential selective inhibitors of class IIa histone deacetylases for cancer treatment. Computational Biology and Chemistry, 92(April), 107491.
  • Essmann, U., Perera, L., Berkowitz, M. L., Darden, T., Lee, H., & Pedersen, L. G. (1995). A smooth particle mesh Ewald method. The Journal of Chemical Physics, 103(19), 8577–8593. https://doi.org/10.1063/1.470117
  • Garber, K. (2007). HDAC inhibitors overcome first hurdle. Nature Biotechnology, 25(1), 17–19. https://doi.org/10.1038/nbt0107-17
  • Gu, J., Gui, Y., Chen, L., Yuan, G., Lu, H. Z., & Xu, X. (2013). Use of natural products as chemical library for drug discovery and network pharmacology. PLoS One, 8(4), 1–10.
  • Halgren, T. A. (2000). Merck molecular force field. II. MMFF94 van der Waals and electrostatic parameters for intermolecular interactions. Journal of Computational Chemistry, 17(1996), 520–552.
  • Hawkins, P. C. D., Skillman, A. G., Warren, G. L., Ellingson, B. A., & Stahl, M. T. (2010). Conformer generation with OMEGA: Algorithm and validation using high quality structures from the protein databank and cambridge structural database. Journal of Chemical Information and Modeling, 50(4), 572–584.
  • Ho, T. C. S., Chan, A. H. Y., & Ganesan, A. (2020). Thirty years of HDAC inhibitors: 2020 insight and hindsight. Journal of Medicinal Chemistry, 63(21), 12460–12484. https://doi.org/10.1021/acs.jmedchem.0c00830
  • Hontecillas-Prieto, L., Flores-Campos, R., Silver, A., de Álava, E., Hajji, N., & García-Domínguez, D. J. (2020). Synergistic enhancement of cancer therapy using HDAC inhibitors: Opportunity for clinical trials. Frontiers in Genetics, 11(September), 578011. https://doi.org/10.3389/fgene.2020.578011
  • Humphrey, W., Dalke, A., & Schulten, K. (1996). VMD: Visual molecular dynamics. Journal of Molecular Graphics, 14(1), 33–38. https://doi.org/10.1016/0263-7855(96)00018-5
  • KrennHrubec, K., Marshall, B. L., Hedglin, M., Verdin, E., & Ulrich, S. M. (2007). Design and evaluation of “Linkerless” hydroxamic acids as selective HDAC8 inhibitors. Bioorganic & Medicinal Chemistry Letters, 17(10), 2874–2878.
  • Kumar Verma, A., Kumar, V., Singh, S., Goswami, B. C., Camps, I., Sekar, A., Yoon, S., & Lee, K. W. (2021). Repurposing potential of Ayurvedic medicinal plants derived active principles against SARS-CoV-2 associated target proteins revealed by molecular docking, molecular dynamics and MM-PBSA studies. Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie, 137, 111356.
  • Kumari, R., Kumar, R., & Lynn, A. (2014). G-mmpbsa -A GROMACS tool for high-throughput MM-PBSA calculations. Journal of Chemical Information and Modeling, 54(7), 1951–1962. https://doi.org/10.1021/ci500020m
  • Kumar, S. U., & Priya Doss, C. G. (2021). Computational investigation to identify potent inhibitors of the GTPase-Kirsten RAt sarcoma virus (K-Ras) mutants G12C and G12D. Computers in Biology and Medicine, 139, 104946.
  • Kumar, S. U., Sankar, S., Kumar, D. T., Younes, S., Younes, N., Siva, R., Doss, C. G. P., & Zayed, H. (2021). Molecular dynamics, residue network analysis, and cross-correlation matrix to characterize the deleterious missense mutations in GALE causing galactosemia III. Cell Biochemistry and Biophysics, 79(2), 201–219. https://doi.org/10.1007/s12013-020-00960-z
  • Kumar, N., Tomar, R., Pandey, A., Tomar, V., Singh, V. K., & Chandra, R. (2018). Preclinical evaluation and molecular docking of 1,3-benzodioxole propargyl ether derivatives as novel inhibitor for combating the histone deacetylase enzyme in cancer. Artificial Cells, Nanomedicine and Biotechnology, 46(6), 1288–1299. https://doi.org/10.1080/21691401.2017.1369423
  • Lindorff-Larsen, K., Piana, S., Palmo, K., Maragakis, P., Klepeis, J. L., Dror, R. O., & Shaw, D. E. (2010). Improved side-chain torsion potentials for the Amber ff99SB protein force field. Proteins, 78(8), 1950–1958. https://doi.org/10.1002/prot.22711
  • Long, K., Vaughn, Z., McDaniels, M. D., Joyasawal, S., Przepiorski, A., Parasky, E., Sander, V., Close, D., Johnston, P. A., Davidson, A. J., De Caestecker, M., Hukriede, N. A., & Huryn, D. M. (2022). Validation of HDAC8 inhibitors as drug discovery starting points to treat acute kidney injury. ACS Pharmacology & Translational Science, 5(4), 207–215.
  • Losson, H., Schnekenburger, M., Dicato, M., & Diederich, M. (2016). Natural compound histone deacetylase inhibitors (HDACi): Synergy with inflammatory signaling pathway modulators and clinical applications in cancer. Molecules, 21(11), 1608. https://doi.org/10.3390/molecules21111608
  • Manal, M., Manish, K., Sanal, D., Selvaraj, A., Devadasan, V., & Chandrasekar, M. J. N. (2017). Novel HDAC8 inhibitors: A multi-computational approach. SAR and QSAR in Environmental Research, 28(9), 707–733.
  • Mark, P., & Nilsson, L. (2001). Structure and dynamics of the TIP3P, SPC, and SPC/E water models at 298 K. The Journal of Physical Chemistry A, 105(43), 9954–9960. https://doi.org/10.1021/jp003020w
  • Marks, P. A., & Xu, W. S. (2009). Histone deacetylase inhibitors: Potential in cancer therapy. Journal of Cellular Biochemistry, 107(4), 600–608.
  • Masuoka, Y., Nagai, A., Shin-Ya, K., Furihata, K., Nagai, K., Suzuki, K. I., Hayakawa, Y., & Seto, H. (2001). Spiruchostatins A and B, novel gene expression-enhancing substances produced by Pseudomonas sp. Tetrahedron Letters, 42(1), 41–44. https://doi.org/10.1016/S0040-4039(00)01874-8
  • McGann, M. (2011). Fred pose prediction and virtual screening accuracy. Journal of Chemical Information and Modeling, 51(1), 578–596.
  • Mishra, A., & Singh, A. (2022). Discovery of histone deacetylase inhibitor using molecular modeling and free energy calculations. ACS Omega. 7(22), 18786–18794. https://doi.org/10.1021/acsomega.2c01572
  • Ngo, S. T., Quynh Anh Pham, N., Thi Le, L., Pham, D. H., & Vu, V. V. (2020). Computational determination of potential inhibitors of SARS-CoV-2 Main Protease. Journal of Chemical Information and Modeling, 60(12), 5771–5780.
  • Oehme, I., Deubzer, H. E., Lodrini, M., Milde, T., & Witt, O. (2009). Targeting of HDAC8 and investigational inhibitors in neuroblastoma. Expert Opinion on Investigational Drugs, 18(11), 1605–1617.
  • Okamoto, H., Fujioka, Y., Takahashi, A., Takahashi, T., Taniguchi, T., Ishikawa, Y., & Yokoyama, M. (2006). Trichostatin A, an inhibitor of histone deacetylase, inhibits smooth muscle cell proliferation via induction of p21WAF1. Journal of Atherosclerosis and Thrombosis, 13(4), 183–191. https://doi.org/10.5551/jat.13.183
  • Palanisamy, K., Rubavathy, S. M. E., Prakash, M., Thilagavathi, R., Hosseini-Zare, M. S., & Selvam, C. (2022). RSC Advances Antiviral activities of natural compounds and ionic liquids to inhibit the Mpro of SARS-CoV-2 : A computational approach. RSC Advances, 12(6), 3687–3695. https://doi.org/10.1039/D1RA08604A
  • Prejanò, M., Vidossich, P., Russo, N., De Vivo, M., & Marino, T. (2021). Insights into the catalytic mechanism of domains CD1 and CD2 in histone deacetylase 6 from quantum calculations. ACS Catalysis, 11(5), 3084–3093. https://doi.org/10.1021/acscatal.0c04729
  • Ramasamy, T., & Selvam, C. (2015). Performance evaluation of structure based and ligand based virtual screening methods on ten selected anti-cancer targets. Bioorganic & Medicinal Chemistry Letters, 25(20), 4632–4636.
  • Rehman, M. U., Jawaid, P., Yoshihisa, Y., Li, P., Zhao, Q. L., Narita, K., Katoh, T., Kondo, T., & Shimizu, T. (2014). Spiruchostatin A and B, novel histone deacetylase inhibitors, induce apoptosis through reactive oxygen species-mitochondria pathway in human lymphoma U937 cells. Chemico-Biological Interactions, 221, 24–34. https://doi.org/10.1016/j.cbi.2014.07.004
  • Singh, R., Bhardwaj, V. K., Das, P., Bhattacherjee, D., Zyryanov, G. V., & Purohit, R. (2022). Benchmarking the ability of novel compounds to inhibit SARS-CoV-2 main protease using steered molecular dynamics simulations. Computers in Biology and Medicine, 146(February), 105572.
  • Sinha, S., Tyagi, C., Goyal, S., Jamal, S., Somvanshi, P., & Grover, A. (2016). Fragment based G-QSAR and molecular dynamics based mechanistic simulations into hydroxamic-based HDAC inhibitors against spinocerebellar ataxia. Journal of Biomolecular Structure & Dynamics, 34(10), 2281–2295.
  • Somoza, J. R., Skene, R. J., Katz, B. A., Mol, C., Ho, J. D., Jennings, A. J., Luong, C., Arvai, A., Buggy, J. J., Chi, E., Tang, J., Sang, B.-C., Verner, E., Wynands, R., Leahy, E. M., Dougan, D. R., Snell, G., Navre, M., Knuth, M. W., … Tari, L. W. (2004). Structural snapshots of human HDAC8 provide insights into the class I histone deacetylases. Structure (London, England : 1993), 12(7), 1325–1334. https://doi.org/10.1016/j.str.2004.04.012
  • Sorokina, M., & Steinbeck, C. (2020). Review on natural products databases: Where to find data in 2020. Journal of Cheminformatics, 12(1), 20–51. https://doi.org/10.1186/s13321-020-00424-9
  • Su, M., Gong, X., & Liu, F. (2021). An update on the emerging approaches for histone deacetylase (HDAC) inhibitor drug discovery and future perspectives. Expert Opinion on Drug Discovery, 16(7), 745–761.
  • Suzuki, T., Muto, N., Bando, M., Itoh, Y., Masaki, A., Ri, M., Ota, Y., Nakagawa, H., Iida, S., Shirahige, K., & Miyata, N. (2014). Design, synthesis, and biological activity of NCC149 derivatives as histone deacetylasea 8-selective inhibitors. ChemMedChem. 9(3), 657–664.
  • Tabudravu, J. N., Eijsink, V. G. H., Gooday, G. W., Jaspars, M., Komander, D., Legg, M., Synstad, B., & Van Aalten, D. M. F. (2002). Psammaplin A, a chitinase inhibitor isolated from the Fijian marine sponge Aplysinella rhax. Bioorganic & Medicinal Chemistry, 10(4), 1123–1128.
  • Tang, G., Wong, J. C., Zhang, W., Wang, Z., Zhang, N., Peng, Z., Zhang, Z., Rong, Y., Li, S., Zhang, M., Yu, L., Feng, T., Zhang, X., Wu, X., Wu, J. Z., & Chen, L. (2014). Identification of a novel aminotetralin class of HDAC6 and HDAC8 selective inhibitors. Journal of Medicinal Chemistry, 57(19), 8026–8034.
  • Tayubi, I. A., Kumar, S. U., & Doss, C. G. P. (2022). Identification of potential inhibitors, conformational dynamics, and mechanistic insights into mutant Kirsten rat sarcoma virus (G13D) driven cancers. Journal of Cellular Biochemistry, 123(9), 1467–1480.
  • Ueda, H., Nakajima, H., Hori, Y., Fujita, T., Nishimura, M., Goto, T., & Okuhara, M. (1994). A novel antitumor bicyclic depsipeptide produced by Chromobacterium violaceum. The Journal of Antibiotics, 47(3), 301–310. https://doi.org/10.7164/antibiotics.47.301
  • Upadhyay, N., Tilekar, K., Jänsch, N., Schweipert, M., Hess, J. D., Henze Macias, L., Mrowka, P., Aguilera, R. J., Choe, J. y., Meyer-Almes, F. J., & Ramaa, C. S. (2020). Discovery of novel N-substituted thiazolidinediones (TZDs) as HDAC8 inhibitors: in-silico studies, synthesis, and biological evaluation. Bioorganic Chemistry, 100, 103934.
  • Van Gunsteren, W. F., & Berendsen, H. J. C. (1988). A leap-frog algorithm for stochastic dynamics. Molecular Simulation, 1(3), 173–185. https://doi.org/10.1080/08927028808080941
  • Vema, A., Debnath, S., & Kalle, A. M. (2022). Identification of novel HDAC8 selective inhibitors through ligand and structure based studies: Exploiting the acetate release channel differences among class I isoforms. Arabian Journal of Chemistry, 15(6), 103863. https://doi.org/10.1016/j.arabjc.2022.103863
  • Wang, C., Greene, D., Xiao, L., Qi, R., & Luo, R. (2018). Recent developments and applications of the MMPBSA method. Frontiers in Molecular Biosciences, 4(JAN), 1–18. https://doi.org/10.3389/fmolb.2017.00087
  • Wang, X., He, S., Zhou, Z., Bo, X., Qi, D., Fu, X., Wang, Z., Yang, J., & Wang, S. (2020). LINCS dataset-based repositioning of rosiglitazone as a potential anti-human adenovirus drug. Antiviral Research, 179, 104789.
  • Wolfson, N. A., Ann Pitcairn, C., & Fierke, C. A. (2013). HDAC8 substrates: Histones and beyond. Biopolymers, 99(2), 112–126.
  • Yang, F., Zhao, N., Ge, D., & Chen, Y. (2019). Next-generation of selective histone deacetylase inhibitors. RSC Advances, 9(34), 19571–19583. https://doi.org/10.1039/c9ra02985k
  • Yoon, S., & Eom, G. H. (2016). HDAC and HDAC inhibitor: From Cancer to cardiovascular diseases. Chonnam Medical Journal, 52(1), 1–11.
  • Yoshida, M., Kijima, M., Akita, M., & Beppu, T. (1990). Potent and specific inhibition of mammalian histone deacetylase both in vivo and in vitro by trichostatin A. The Journal of Biological Chemistry, 265(28), 17174–17179.
  • Zhang, X.-H., Qin-Ma, Wu, H.-P., Khamis, M. Y., Li, Y.-H., Ma, L.-Y., & Liu, H.-M. (2021). A review of progress in histone deacetylase 6 inhibitors research: Structural specificity and functional diversity. Journal of Medicinal Chemistry, 64(3), 1362–1391.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.