389
Views
0
CrossRef citations to date
0
Altmetric
Research Article

In silico study identifies peptide inhibitors that negate the effect of non-synonymous mutations in major drug targets of SARS-CoV-2 variants

, , , , & ORCID Icon
Pages 9551-9561 | Received 15 Sep 2022, Accepted 29 Oct 2022, Published online: 15 Nov 2022

References

  • Aier, I., Varadwaj, P. K., & Raj, U. (2016). Structural insights into conformational stability of both wild-type and mutant EZH2 receptor. Scientific Reports, 6(1), 34984–34910. https://doi.org/10.1038/srep34984
  • Alimohamadi, Y., Sepandi, M., Taghdir, M., & Hosamirudsari, H. (2020). Determine the most common clinical symptoms in COVID-19 patients: A systematic review and meta-analysis. Journal of Preventive Medicine and Hygiene, 61(3), E304–E312.
  • Anand, K., Ziebuhr, J., Wadhwani, P., Mesters, J. R., & Hilgenfeld, R. (2003). Coronavirus main proteinase (3CLpro) structure: Basis for design of anti-SARS drugs. Science (New York, N.Y.), 300(5626), 1763–1767.
  • Andreano, E., Piccini, G., Licastro, D., Casalino, L., Johnson, N. V., Paciello, I., Dal Monego, S., Pantano, E., Manganaro, N., Manenti, A., Manna, R., Casa, E., Hyseni, I., Benincasa, L., Montomoli, E., Amaro, R. E., McLellan, J. S., & Rappuoli, R. (2021). SARS-CoV-2 escape from a highly neutralizing COVID-19 convalescent plasma. Proceedings of the National Academy of Sciences, 118(36), e2103154118. https://doi.org/10.1073/pnas.2103154118
  • Arya, R., Kumari, S., Pandey, B., Mistry, H., Bihani, S. C., Das, A., Prashar, V., Gupta, G. D., Panicker, L., & Kumar, M. (2021). Structural insights into SARS-CoV-2 proteins. Journal of Molecular Biology, 433(2), 166725. https://doi.org/10.1016/j.jmb.2020.11.024
  • Awad, I. E., Abu-Saleh, A., Sharma, S., Yadav, A., & Poirier, R. A. (2022). High-throughput virtual screening of drug databanks for potential inhibitors of SARS-CoV-2 spike glycoprotein. Journal of Biomolecular Structure & Dynamics, 40(5), 2099–2112. https://doi.org/10.1080/07391102.2020.1835721
  • Bafna, K., Krug, R. M., & Montelione, G. T. (2020). Structural similarity of SARS-CoV2 Mpro and HCV NS3/4A proteases suggests new approaches for identifying existing drugs useful as COVID-19 therapeutics. Frontiers in Chemistry, 1070.
  • Balmeh, N., Mahmoudi, S., & Fard, N. A. (2021). Manipulated bio antimicrobial peptides from probiotic bacteria as proposed drugs for COVID-19 disease. Informatics in Medicine Unlocked, 23, 100515. https://doi.org/10.1016/j.imu.2021.100515
  • Barh, D., Tiwari, S., Andrade, B. S., Giovanetti, M., Costa, E. A., Kumavath, R., Ghosh, P., Góes-Neto, A., Alcantara, L. C. J., & Azevedo, V. (2020). Potential chimeric peptides to block the SARS-CoV-2 spike receptor-binding domain. F1000Research, 9, 576. https://doi.org/10.12688/f1000research.24074.1
  • Barton, M. I., MacGowan, S. A., Kutuzov, M. A., Dushek, O., Barton, G. J., & Van Der Merwe, P. A. (2021). Effects of common mutations in the SARS-CoV-2 Spike RBD and its ligand, the human ACE2 receptor on binding affinity and kinetics. eLife, 10, e70658. https://doi.org/10.7554/eLife.70658
  • Bharadwaj, S., Dubey, A., Yadava, U., Mishra, S. K., Kang, S. G., & Dwivedi, V. D. (2021). Exploration of natural compounds with anti-SARS-CoV-2 activity via inhibition of SARS-CoV-2 Mpro. Briefings in Bioinformatics, 22(2), 1361–1377. https://doi.org/10.1093/bib/bbaa382
  • Bowers, K. J., Chow, E., Xu, H., Dror, R. O., Eastwood, M. P., Gregersen, B. A., Klepeis, J. L., Kolossvary, I., Moraes, M. A., Sacerdoti, F. D., Salmon, J. K., Shan, Y., & Shaw, D. E. (2006, November 11–17). Scalable algorithms for molecular dynamics simulations on commodity clusters [Paper presentation]. Proceedings of the ACM/IEEE Conference on Supercomputing (SC06), Tampa, FL.
  • Brant, A. C., Tian, W., Majerciak, V., Yang, W., & Zheng, Z. M. (2021). SARS-CoV-2: From its discovery to genome structure, transcription, and replication. Cell & Bioscience, 11(1), 1–17. https://doi.org/10.1186/s13578-021-00643-z
  • Brister, J. R., Ako-Adjei, D., Bao, Y., & Blinkova, O. (2015). NCBI viral genomes resource. Nucleic Acids Research, 43(D1), D571–D577. Epub 2014 Nov 26. https://doi.org/10.1093/nar/gku1207
  • Campagna, S., Saint, N., Molle, G., & Aumelas, A. (2007). Structure and mechanism of action of the antimicrobial peptide piscidin. Biochemistry, 46(7), 1771–1778. https://doi.org/10.1021/bi0620297
  • Cannalire, R., Stefanelli, I., Cerchia, C., Beccari, A. R., Pelliccia, S., & Summa, V. (2020). SARS-CoV-2 entry inhibitors: Small molecules and peptides targeting virus or host cells. International Journal of Molecular Sciences, 21(16), 5707. https://doi.org/10.3390/ijms21165707
  • Cao, L., Goreshnik, I., Coventry, B., Case, J. B., Miller, L., Kozodoy, L., Chen, R. E., Carter, L., Walls, A. C., Park, Y.-J., Strauch, E.-M., Stewart, L., Diamond, M. S., Veesler, D., & Baker, D. (2020). De novo design of picomolar SARS-CoV-2 miniprotein inhibitors. Science (New York, N.Y.), 370(6515), 426–431.
  • Cao, Y., Wang, J., Jian, F., Xiao, T., Song, W., Yisimayi, A., Huang, W., Li, Q., Wang, P., An, R., Wang, J., Wang, Y., Niu, X., Yang, S., Liang, H., Sun, H., Li, T., Yu, Y., Cui, Q., … Xie, X. S. (2022). Omicron escapes the majority of existing SARS-CoV-2 neutralizing antibodies. Nature, 602(7898), 657–663.
  • Chowdhury, S. M., Talukder, S. A., Khan, A. M., Afrin, N., Ali, M. A., Islam, R., Parves, R., Al Mamun, A., Sufian, M. A., Hossain, M. N., Hossain, M. A., & Halim, M. A. (2020). Antiviral peptides as promising therapeutics against SARS-CoV-2. The Journal of Physical Chemistry. B, 124(44), 9785–9792. https://doi.org/10.1021/acs.jpcb.0c05621
  • da Costa, C. H. S., de Freitas, C. A. B., Alves, C. N., & Lameira, J. (2022). Assessment of mutations on RBD in the Spike protein of SARS-CoV-2 Alpha, Delta and Omicron variants. Scientific Reports, 12(1), 1–10. https://doi.org/10.1038/s41598-022-12479-9
  • DeLano, W. L. (2002). Pymol: An open-source molecular graphics tool. CCP4 Newsletter on Protein Crystallography, 40(1), 82–92.
  • Dominguez, C., Boelens, R., & Bonvin, A. M. (2003). HADDOCK: A protein − protein docking approach based on biochemical or biophysical information. Journal of the American Chemical Society, 125(7), 1731–1737. https://doi.org/10.1021/ja026939x
  • Du, Q. S., Wang, S. Q., Zhu, Y., Wei, D. Q., Guo, H., Sirois, S., & Chou, K. C. (2004). Polyprotein cleavage mechanism of SARS CoV Mpro and chemical modification of the octapeptide. Peptides, 25(11), 1857–1864. https://doi.org/10.1016/j.peptides.2004.06.018
  • Ferreira, G. M., Kronenberger, T., Tonduru, A. K., Hirata, R. D. C., Hirata, M. H., & Poso, A. (2021). SARS-COV-2 Mpro conformational changes induced by covalently bound ligands. Journal of Biomolecular Structure and Dynamics, 1–11. https://doi.org/10.1080/07391102.2021.1970626
  • Giovanetti, M., Cella, E., Benedetti, F., Rife Magalis, B., Fonseca, V., Fabris, S., Campisi, G., Ciccozzi, A., Angeletti, S., Borsetti, A., Tambone, V., Sagnelli, C., Pascarella, S., Riva, A., Ceccarelli, G., Marcello, A., Azarian, T., Wilkinson, E., de Oliveira, T., … Ciccozzi, M. (2021). SARS-CoV-2 shifting transmission dynamics and hidden reservoirs potentially limit efficacy of public health interventions in Italy. Communications Biology, 4(1), 1–9. https://doi.org/10.1038/s42003-021-02025-0
  • Goyal, B., & Goyal, D. (2020). Targeting the dimerization of the main protease of coronaviruses: A potential broad-spectrum therapeutic strategy. ACS Combinatorial Science, 22(6), 297–305. https://doi.org/10.1021/acscombsci.0c00058
  • Greaney, A. J., Loes, A. N., Crawford, K. H., Starr, T. N., Malone, K. D., Chu, H. Y., & Bloom, J. D. (2021). Comprehensive mapping of mutations in the SARS-CoV-2 receptor-binding domain that affect recognition by polyclonal human plasma antibodies. Cell Host & Microbe, 29(3), 463–476.e6. https://doi.org/10.1016/j.chom.2021.02.003
  • Guo, Y. R., Cao, Q. D., Hong, Z. S., Tan, Y. Y., Chen, S. D., Jin, H. J., Tan, K. S., Wang, D. Y., & Yan, Y. (2020). The origin, transmission and clinical therapies on coronavirus disease 2019 (COVID-19) outbreak–an update on the status. Military Medical Research, 7(1), 1–10. https://doi.org/10.1186/s40779-020-00240-0
  • Gupta, S., Wang, W., Hayek, S. S., Chan, L., Mathews, K. S., Melamed, M. L., Brenner, S. K., Leonberg-Yoo, A., Schenck, E. J., Radbel, J., Reiser, J., Bansal, A., Srivastava, A., Zhou, Y., Finkel, D., Green, A., Mallappallil, M., Faugno, A. J., Zhang, J., … Leaf, D. E. (2021). Association between early treatment with tocilizumab and mortality among critically ill patients with COVID-19. JAMA Internal Medicine, 181(1), 41–51.
  • Han, Y., & Král, P. (2020). Computational design of ACE2-based peptide inhibitors of SARS-CoV-2. ACS Nano, 14(4), 5143–5147. https://doi.org/10.1021/acsnano.0c02857
  • He, X., Lau, E. H. Y., Wu, P., Deng, X., Wang, J., Hao, X., Lau, Y. C., Wong, J. Y., Guan, Y., Tan, X., Mo, X., Chen, Y., Liao, B., Chen, W., Hu, F., Zhang, Q., Zhong, M., Wu, Y., Zhao, L., … Leung, G. M. (2020). Temporal dynamics in viral shedding and transmissibility of COVID-19. Nature Medicine, 26(5), 672–675. https://doi.org/10.1038/s41591-020-0869-5
  • Henninot, A., Collins, J. C., & Nuss, J. M. (2018). The current state of peptide drug discovery: Back to the future? Journal of Medicinal Chemistry, 61(4), 1382–1414. https://doi.org/10.1021/acs.jmedchem.7b00318
  • Honorato, R. V., Koukos, P. I., Jiménez-García, B., Tsaregorodtsev, A., Verlato, M., Giachetti, A., Rosato, A., & Bonvin, A. M. (2021). Structural biology in the clouds: The WeNMR-EOSC ecosystem. Frontiers in Molecular Biosciences, 8, 708. https://doi.org/10.3389/fmolb.2021.729513
  • Jacobson, M. P., Friesner, R. A., Xiang, Z., & Honig, B. (2002). On the role of crystal packing forces in determining protein sidechain conformations. Journal of Molecular Biology. 320(3), 597–608. https://doi.org/10.1016/S0022-2836(02)00470-9
  • Jacobson, M. P., Pincus, D. L., Rapp, C. S., Day, T. J. F., Honig, B., Shaw, D. E., & Friesner, R. A. (2004). A hierarchical approach to all-atom protein loop prediction. Proteins, 55(2), 351–367. https://doi.org/10.1002/prot.10613
  • Jaiswal, G., & Kumar, V. (2020). In-silico design of a potential inhibitor of SARS-CoV-2 S protein. PloS One, 15(10), e0240004. https://doi.org/10.1371/journal.pone.0240004
  • Janik, E., Niemcewicz, M., Podogrocki, M., Majsterek, I., & Bijak, M. (2021). The emerging concern and interest SARS-CoV-2 variants. Pathogens, 10(6), 633. https://doi.org/10.3390/pathogens10060633
  • Jin, Z., Du, X., Xu, Y., Deng, Y., Liu, M., Zhao, Y., Zhang, B., Li, X., Zhang, L., Peng, C., Duan, Y., Yu, J., Wang, L., Yang, K., Liu, F., Jiang, R., Yang, X., You, T., Liu, X., … Yang, H. (2020). Structure of Mpro from SARS-CoV-2 and discovery of its inhibitors. Nature, 582(7811), 289–293.
  • Katoh, K., Misawa, K., Kuma, K. I., & Miyata, T. (2002). MAFFT: A novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Research, 30(14), 3059–3066. https://doi.org/10.1093/nar/gkf436
  • Kawulka, K. E., Sprules, T., Diaper, C. M., Whittal, R. M., McKay, R. T., Mercier, P., Zuber, P., & Vederas, J. C. (2004). Structure of subtilosin A, a cyclic antimicrobial peptide from Bacillus subtilis with unusual sulfur to α-carbon cross-links: Formation and reduction of α-thio-α-amino acid derivatives. Biochemistry, 43(12), 3385–3395. https://doi.org/10.1021/bi0359527
  • Khailany, R. A., Safdar, M., & Ozaslan, M. (2020). Genomic characterization of a novel SARS-CoV-2. Gene Reports, 19, 100682. https://doi.org/10.1016/j.genrep.2020.100682
  • Lan, J., Ge, J., Yu, J., Shan, S., Zhou, H., Fan, S., Zhang, Q., Shi, X., Wang, Q., Zhang, L., & Wang, X. (2020). Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor. Nature, 581(7807), 215–220. https://doi.org/10.1038/s41586-020-2180-5
  • Laskowski, R. A., & Swindells, M. B. (2011). LigPlot+: multiple ligand–protein interaction diagrams for drug discovery.
  • Lee, J. T., Yang, Q., Gribenko, A., Perrin, B. S., Jr, Zhu, Y., Cardin, R., Liberator, P. A., Anderson, A. S., & Hao, L. (2022). Genetic surveillance of SARS-CoV-2 Mpro reveals high sequence and structural conservation prior to the introduction of protease inhibitor Paxlovid. Mbio, 13(4), e00869–22.
  • Lei, J., & Hilgenfeld, R. (2017). RNA‐virus proteases counteracting host innate immunity. FEBS Letters, 591(20), 3190–3210. https://doi.org/10.1002/1873-3468.12827
  • Lu, C., Wu, C., Ghoreishi, D., Chen, W., Wang, L., Damm, W., Ross, G. A., Dahlgren, M. K., Russell, E., Von Bargen, C. D., Abel, R., Friesner, R. A., & Harder, E. D. (2021). OPLS4: Improving force field accuracy on challenging regimes of chemical space. Journal of Chemical Theory and Computation, 17(7), 4291–4300. https://doi.org/10.1021/acs.jctc.1c00302
  • Lu, R., Zhao, X., Li, J., Niu, P., Yang, B., Wu, H., Wang, W., Song, H., Huang, B., Zhu, N., Bi, Y., Ma, X., Zhan, F., Wang, L., Hu, T., Zhou, H., Hu, Z., Zhou, W., Zhao, L., … Tan, W. (2020). Genomic characterisation and epidemiology of 2019 novel coronavirus: Implications for virus origins and receptor binding. The Lancet, 395(10224), 565–574. https://doi.org/10.1016/S0140-6736(20)30251-8
  • Naqvi, A. A. T., Fatima, K., Mohammad, T., Fatima, U., Singh, I. K., Singh, A., Atif, S. M., Hariprasad, G., Hasan, G. M., & Hassan, M. I. (2020). Insights into SARS-CoV-2 genome, structure, evolution, pathogenesis and therapies: Structural genomics approach. Biochimica et Biophysica Acta. Molecular Basis of Disease, 1866(10), 165878. https://doi.org/10.1016/j.bbadis.2020.165878
  • Nelson-Sathi, S., Umasankar, P. K., Sreekumar, E., Nair, R. R., Joseph, I., Nori, S. R. C., Philip, J. S., Prasad, R., Navyasree, K. V., Ramesh, S., Pillai, H., Ghosh, S., Santosh Kumar, T. R., & Pillai, M. R. (2022). Mutational landscape and in silico structure models of SARS-CoV-2 spike receptor binding domain reveal key molecular determinants for virus-host interaction. BMC Molecular and Cell Biology, 23(1), 2–12. https://doi.org/10.1186/s12860-021-00403-4
  • Ortega, J. T., Serrano, M. L., Pujol, F. H., & Rangel, H. R. (2020). Role of changes in SARS-CoV-2 spike protein in the interaction with the human ACE2 receptor: An in silico analysis. EXCLI Journal, 19, 410.
  • Panda, S. K., Sen Gupta, P. S., Biswal, S., Ray, A. K., & Rana, M. K. (2021). ACE-2-derived biomimetic peptides for the inhibition of spike protein of SARS-CoV-2. Journal of Proteome Research, 20(2), 1296–1303. https://doi.org/10.1021/acs.jproteome.0c00686
  • Park, M., Cook, A. R., Lim, J. T., Sun, Y., & Dickens, B. L. (2020). A systematic review of COVID-19 epidemiology based on current evidence. Journal of Clinical Medicine, 9(4), 967. https://doi.org/10.3390/jcm9040967
  • Pettersen, E. F., Goddard, T. D., Huang, C. C., Couch, G. S., Greenblatt, D. M., Meng, E. C., & Ferrin, T. E. (2004). UCSF Chimera—A visualization system for exploratory research and analysis. Journal of Computational Chemistry, 25(13), 1605–1612. https://doi.org/10.1002/jcc.20084
  • Rajpoot, S., Ohishi, T., Kumar, A., Pan, Q., Banerjee, S., Zhang, K. Y., & Baig, M. S. (2021). A novel therapeutic peptide blocks SARS-CoV-2 spike protein binding with host cell ACE2 receptor. Drugs in R&D, 21(3), 273–283. https://doi.org/10.1007/s40268-021-00357-0
  • Rathi, A., Kumar, V., & Sundar, D. (2022). Insights into the potential of withanolides as Phosphodiesterase-4 (PDE4D) inhibitors. Journal of Biomolecular Structure and Dynamics, 1–10. https://doi.org/10.1080/07391102.2022.2028679
  • Rogne, P., Fimland, G., Nissen-Meyer, J., & Kristiansen, P. E. (2008). Three-dimensional structure of the two peptides that constitute the two-peptide bacteriocin lactococcin G. Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics, 1784(3), 543–554. https://doi.org/10.1016/j.bbapap.2007.12.002
  • Sanches, P. R., Charlie-Silva, I., Braz, H. L., Bittar, C., Calmon, M. F., Rahal, P., & Cilli, E. M. (2021). Recent advances in SARS-CoV-2 Spike protein and RBD mutations comparison between new variants Alpha (B. 1.1. 7, United Kingdom), Beta (B. 1.351, South Africa), Gamma (P. 1, Brazil) and Delta (B. 1.617. 2, India). Journal of Virus Eradication, 7(3), 100054. https://doi.org/10.1016/j.jve.2021.100054
  • Schwede, T., Kopp, J., Guex, N., & Peitsch, M. C. (2003). SWISS-MODEL: An automated protein homology-modeling server. Nucleic Acids Research, 31(13), 3381–3385. https://doi.org/10.1093/nar/gkg520
  • Shang, J., Wan, Y., Luo, C., Ye, G., Geng, Q., Auerbach, A., & Li, F. (2020). Cell entry mechanisms of SARS-CoV-2. Proceedings of the National Academy of Sciences of the United States of America, 117(21), 11727–11734. https://doi.org/10.1073/pnas.2003138117
  • Sharma, P., Joshi, T., Mathpal, S., Joshi, T., Pundir, H., Chandra, S., & Tamta, S. (2022). Identification of natural inhibitors against Mpro of SARS-CoV-2 by molecular docking, molecular dynamics simulation, and MM/PBSA methods. Journal of Biomolecular Structure & Dynamics, 40(6), 2757–2768. https://doi.org/10.1080/07391102.2020.1842806
  • Sitthiyotha, T., & Chunsrivirot, S. (2020). Computational design of 25-mer peptide binders of SARS-CoV-2. The Journal of Physical Chemistry. B, 124(48), 10930–10942. https://doi.org/10.1021/acs.jpcb.0c07890
  • Souza, P. F., Mesquita, F. P., Amaral, J. L., Landim, P. G., Lima, K. R., Costa, M. B., Farias, I. R., Belém, M. O., Pinto, Y. O., Moreira, H. H., Magalhaes, I. C., Castelo-Branco, D. S., Montenegro, R. C., & de Andrade, C. R. (2022). The spike glycoproteins of SARS-CoV-2: A review of how mutations of spike glycoproteins have driven the emergence of variants with high transmissibility and immune escape. International Journal of Biological Macromolecules, 208, 105–125. https://doi.org/10.1016/j.ijbiomac.2022.03.058
  • Suárez, D., & Díaz, N. (2020). SARS-CoV-2 main protease: A molecular dynamics study. Journal of Chemical Information and Modeling, 60(12), 5815–5831. https://doi.org/10.1021/acs.jcim.0c00575
  • Sun, C., Xie, C., Bu, G. L., Zhong, L. Y., & Zeng, M. S. (2022). Molecular characteristics, immune evasion, and impact of SARS-CoV-2 variants. Signal Transduction and Targeted Therapy, 7(1), 202. https://doi.org/10.1038/s41392-022-01039-2
  • Thevenet, P., Shen, Y., Maupetit, J., Guyon, F., Derreumaux, P., & Tuffery, P. (2012). PEP-FOLD: An updated de novo structure prediction server for both linear and disulfide bonded cyclic peptides. Nucleic Acids Research, 40(W1), W288–W293. https://doi.org/10.1093/nar/gks419
  • Tian, D., Sun, Y., Xu, H., & Ye, Q. (2022). The emergence and epidemic characteristics of the highly mutated SARS‐CoV‐2 Omicron variant. Journal of Medical Virology, 94(6), 2376–2383. https://doi.org/10.1002/jmv.27643
  • Tsomaia, N. (2015). Peptide therapeutics: Targeting the undruggable space. European Journal of Medicinal Chemistry, 94, 459–470. https://doi.org/10.1016/j.ejmech.2015.01.014
  • Ullrich, S., Ekanayake, K. B., Otting, G., & Nitsche, C. (2022). Main protease mutants of SARS-CoV-2 variants remain susceptible to nirmatrelvir. Bioorganic & Medicinal Chemistry Letters, 62, 128629. https://doi.org/10.1016/j.bmcl.2022.128629
  • Vangeel, L., Chiu, W., De Jonghe, S., Maes, P., Slechten, B., Raymenants, J., André, E., Leyssen, P., Neyts, J., & Jochmans, D. (2022). Remdesivir, Molnupiravir and Nirmatrelvir remain active against SARS-CoV-2 Omicron and other variants of concern. Antiviral Research, 198, 105252. https://doi.org/10.1016/j.antiviral.2022.105252
  • Venugopal, H., Edwards, P. J., Schwalbe, M., Claridge, J. K., Libich, D. S., Stepper, J., Loo, T., Patchett, M. L., Norris, G. E., & Pascal, S. M. (2011). Structural, dynamic, and chemical characterization of a novel S-glycosylated bacteriocin. Biochemistry, 50(14), 2748–2755. https://doi.org/10.1021/bi200217u
  • Wang, S., Xu, X., Wei, C., Li, S., Zhao, J., Zheng, Y., Liu, X., Zeng, X., Yuan, W., & Peng, S. (2022). Molecular evolutionary characteristics of SARS‐CoV‐2 emerging in the United States. Journal of Medical Virology, 94(1), 310–317. https://doi.org/10.1002/jmv.27331
  • Wang, Q., Zhang, Y., Wu, L., Niu, S., Song, C., Zhang, Z., Lu, G., Qiao, C., Hu, Y., Yuen, K.-Y., Wang, Q., Zhou, H., Yan, J., & Qi, J. (2020). Structural and functional basis of SARS-CoV-2 entry by using human ACE2. Cell, 181(4), 894–904.e9. https://doi.org/10.1016/j.cell.2020.03.045
  • Weisblum, Y., Schmidt, F., Zhang, F., DaSilva, J., Poston, D., Lorenzi, J. C., Muecksch, F., Rutkowska, M., Hoffmann, H.-H., Michailidis, E., Gaebler, C., Agudelo, M., Cho, A., Wang, Z., Gazumyan, A., Cipolla, M., Luchsinger, L., Hillyer, C. D., Caskey, M., … Bieniasz, P. D. (2020). Escape from neutralizing antibodies by SARS-CoV-2 spike protein variants. eLife, 9, e61312. https://doi.org/10.7554/eLife.61312
  • WHO (2022). WHO Coronavirus (COVID-19) dashboard. https://covid19.who.int/
  • Wibmer, C. K., Ayres, F., Hermanus, T., Madzivhandila, M., Kgagudi, P., Oosthuysen, B., Lambson, B. E., de Oliveira, T., Vermeulen, M., van der Berg, K., Rossouw, T., Boswell, M., Ueckermann, V., Meiring, S., von Gottberg, A., Cohen, C., Morris, L., Bhiman, J. N., & Moore, P. L. (2021). SARS-CoV-2 501Y. V2 escapes neutralization by South African COVID-19 donor plasma. Nature Medicine, 27(4), 622–625. https://doi.org/10.1038/s41591-021-01285-x
  • Xu, W., Wang, M., Yu, D., & Zhang, X. (2020). Variations in SARS-CoV-2 spike protein cell epitopes and glycosylation profiles during global transmission course of COVID-19. Frontiers in Immunology, 11, 565278. https://doi.org/10.3389/fimmu.2020.565278
  • Zhu, N., Zhang, D., Wang, W., Li, X., Yang, B., Song, J., Zhao, X., Huang, B., Shi, W., Lu, R., Niu, P., Zhan, F., Ma, X., Wang, D., Xu, W., Wu, G., Gao, G. F., & Tan, W. (2020). A novel coronavirus from patients with pneumonia in China, 2019. New England Journal of Medicine, 382(8), 727–733. https://doi.org/10.1056/NEJMoa2001017

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.