1,022
Views
7
CrossRef citations to date
0
Altmetric
Research Article

Chalcogen bonds formed by protein sulfur atoms in proteins. A survey of high-resolution structures deposited in the protein data bank

ORCID Icon
Pages 9576-9582 | Received 07 Oct 2022, Accepted 30 Oct 2022, Published online: 07 Nov 2022

References

  • Aakeroy, C. B., Bryce, D. L., Desiraju, G. R., Frontera, A., Legon, A. C., Nicotra, F., Rissanen, K., Scheiner, S., Terraneo, G., Metrangolo, P., & Resnati, G. (2019). Definition of the chalcogen bond (IUPAC Recommendations 2019). Pure and Applied Chemistry, 91(11), 1889–1892. https://doi.org/10.1515/pac-2018-0713
  • Beno, B. R., Yeung, K.-S., Bartberger, M. D., Pennington, L. D., & Meanwell, N. A. (2015). A survey of the role of noncovalent sulfur interactions in drug design. Journal of Medicinal Chemistry, 58(11), 4383–4438. https://doi.org/10.1021/jm501853m
  • Berman, H. M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T. N., & Weissig, H. (2000). The protein data bank. Nucleic Acids Research, 28(1), 235–242. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=10592235. https://doi.org/10.1093/nar/28.1.235
  • Bernstein, F. C., Koetzle, T. F., Williams, G. J., Meyer, E. F., Brice, M. D., Rodgers, J. R., Kennard, O., Shimanouchi, T., & Tasumi, M. (1977). The Protein Data Bank: a computer-based archival file for macromolecular structures. Journal of Molecular Biology, 112(3), 535–542. https://doi.org/10.1016/S0022-2836(77)80200-3
  • Biswal, H. S., Sahu, A. K., Galmés, B., Frontera, A., & Chopra, D. (2022). Se…O/S and S…O chalcogen bonds in small molecules and proteins: a combined CSD and PDB study. ChemBioChem. 23(2), e202100498. https://doi.org/10.1002/cbic.202100498
  • Blakeley, M. P., Hasnain, S. S., & Antonyuk, S. V. (2015). Sub-atomic resolution X-ray crystallography and neutron crystallography: promise, challenges and potential. IUCrJ, 2(Pt 4), 464–474. https://doi.org/10.1107/S2052252515011239
  • Bondi, A. (1964). van der Waals volumes and radii. The Journal of Physical Chemistry, 68(3), 441–451. https://doi.org/10.1021/j100785a001
  • Carugo, O. (1999). Stereochemistry of the interaction between methionine sulfur and the protein core. Biological Chemistry, 380(4), 495–498. https://doi.org/10.1515/BC.1999.064
  • Carugo, O. (2017). Protein hydration: Investigation of globular protein crystal structures. International Journal of Biological Macromolecules, 99, 160–165. https://doi.org/10.1016/j.ijbiomac.2017.02.073
  • Carugo, O., Resnati, G., & Metrangolo, P. (2021). Chalcogen bonds involving selenium in protein structures. ACS Chemical Biology, 16(9), 1622–1627. https://doi.org/10.1021/acschembio.1c00441
  • Costantini, S., Colonna, G., & Facchiano, A. M. (2006). Amino acid propensities for secondary structures are influenced by the protein structural class. Biochemical and Biophysical Research Communications, 342(2), 441–451. https://doi.org/10.1016/j.bbrc.2006.01.159
  • Dahl, T., Kozma, D., Ács, M., Weidlein, J., Schnöckel, H., Paulsen, G. B., Nielsen, R. I., Olsen, C. E., Pedersen, C., & Stidsen, C. E. (1994). The nature of stacking interactions between organic molecules elucidated by analysis of crystal structures. Acta Chemica Scandinavica, 48, 95–106. https://doi.org/10.3891/acta.chem.scand.48-0095
  • Daolio, A., Scilabra, P., Di Pietro, M. E., Resnati, C., Rissanen, K., & Resnati, G. (2020). Binding motif of ebselen in solution: chalcogen and hydrogen bonds team up. New Journal of Chemistry, 44(47), 20697–20703. https://doi.org/10.1039/D0NJ04647G
  • Fick, R. J., Kroner, G. M., Nepal, B., Magnani, R., Horowitz, S., & Houtz, R. L. (2016). Oxygen chalcogenbonding mediates adomet recognition in the lysine methyltransfer-ase SET7/9. ACS Chem Biol, 11, 748-754.
  • Fu, L., Niu, B., Zhu, Z., Wu, S., & Li, W. (2012). CD-HIT: accelerated for clustering the next generation sequencing data. Bioinformatics (Oxford, England), 28(23), 3150–3152. https://doi.org/10.1093/bioinformatics/bts565
  • Galmés, B., Juan-Bals, A., Frontera, A., & Resnati, G. (2020). Charge-assisted chalcogen bonds: csd and dft analyses and biological implication in glucosidase inhibitors. Chemistry (Weinheim an Der Bergstrasse, Germany), 26(20), 4599–4606. https://doi.org/10.1002/chem.201905498
  • Giacovazzo, C., Monaco, H. L., Artioli, G., Viterbo, D., Ferraris, G., & Gilli, G. (2002). Fundamentals of crystallography. Oxford University Press.
  • Heine, A., Herrmann, G., Selmer, T., Terwesten, F., Buckel, W., & Reuter, K. (2014). High resolution crystal structure of Clostridium propionicum beta-alanyl-CoA:ammonia lyase, a new member of the “hot dog fold” protein superfamily. Proteins, 82(9), 2041–2053. https://doi.org/10.1002/prot.24557
  • Heinig, M., & Frishman, D. (2004). STRIDE: A web server for secondary structure assignment from known atomic coordinates of proteins. Nucleic Acids Research, 32(Web Server issue), w500–2. https://doi.org/10.1093/nar/gkh429
  • Ho, P. S. (2015). Biomolecular halogen bonds. In P. Metrangolo, G. Resnati (Eds.), Halogen bonding I: Impact on material chemistry and life science (pp. 241–276). Springer.
  • Hubbard, S. J., & Thornton, J. M. (1993). NACCESS. Department of Biochemistry and Molecular Biology, University College London.
  • Iwaoka, M., Takemoto, S., Okada, M., & Tomoda, S. (2002). Weak nonbonded S ≥ X (X = O, N, and S) interactions in proteins. Statistical and theoretical studies. Bulletin of the Chemical Society of Japan, 75(7), 1611–1625. https://doi.org/10.1246/bcsj.75.1611
  • Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M., Ronneberger, O., Tunyasuvunakool, K., Bates, R., Žídek, A., Potapenko, A., Bridgland, A., Meyer, C., Kohl, S. A. A., Ballard, A. J., Cowie, A., Romera-Paredes, B., Nikolov, S., Jain, R., Adler, J., … Hassabis, D. (2021). Highly accurate protein structure prediction with AlphaFold. Nature, 596(7873), 583–589. https://doi.org/10.1038/s41586-021-03819-2
  • Junming, L., Yunxiang, L., Subin, Y., & Weiliang, Z. (2011). Theoretical and crystallographic data investigationsof noncovalent S…O interactions. Structural Chemistry, 22(4), 757–763. https://doi.org/10.1007/s11224-011-9751-x
  • Karshikoff, A. (2021). Non-covalent interactions in proteins (2nd ed.). World Scientific.
  • Kleywegt, G. J., & Velankar, S. (2022). The scientific impact of accurate protein-structure prediction methods is being felt already, but how might they affect the work and careers of structural biologists? IUCrJ, 9(Pt 4), 399–400. https://doi.org/10.1107/S2052252522005802
  • Koebel, M. R., Cooper, A., Schmadeke, G., Jeon, S., Narayan, M., Sirimulla, S., & S-O, S.-N. (2016). Sulfur bonding interactions in protein-ligand complexes: empirical considerations and scoring function. Journal of Chemical Information and Modeling, 56(12), 2298–2309. https://doi.org/10.1021/acs.jcim.6b00236
  • Kříž, K., Fanfrlík, J., & Lepšík, M. (2018). Chalcogen bonding in protein-ligand complexes: PDB survey and quantim mechanical calculations. Chemphyschem: A European Journal of Chemical Physics and Physical Chemistry, 19(19), 2540–2548. https://doi.org/10.1002/cphc.201800409
  • Kuhn, P., Deacon, A. M., Comoso, S., Rajaseger, G., Kini, R. M., Usón, I., & Kolatkar, P. R. (2000). The atomic resolution structure of bucandin, a novel toxin isolated from the Malayan krait, determined by direct methods. Acta Crystallographica. Section D, Biological Crystallography, 56(Pt 11), 1401–1407. https://doi.org/10.1107/s0907444900011501
  • Kumar, K. S. D., Gurusaran, M., Satheesh, S. N., Radha, P., Pavithra, S., Thulaa Tharshan, K. P. S., Helliwell, J. R., & Sekar, K. (2015). Online_DPI: a web server to calculate the diffraction precision index for a protein structure. Journal of Applied Crystallography, 48(3), 939–942. https://doi.org/10.1107/S1600576715006287
  • Lobanov, M. Y., Pereyaslavets, L. B., Likhachev, I. V., Matkarimov, B. T., & Galzitskaya, O. V. (2021). Is there an advantageous arrangement of aromatic residues in proteins? Statistical analysis of aromatic interactions in globular proteins. Computational and Structural Biotechnology Journal, 19, 5960–5968. https://doi.org/10.1016/j.csbj.2021.10.036
  • Mitchell, M. O. (2017). Discovering protein-ligand chalcogen bonding in the protein data bank using endocyclic sulfur-containing heterocycles as ligand search subsets. Journal of Molecular Modeling, 23, 287.
  • Newberry, R. W., & Raines, R. T. (2019). Secondary forces in protein folding. ACS Chemical Biology, 14(8), 1677–1686. https://doi.org/10.1021/acschembio.9b00339
  • Pal, D., & Chakrabarti, P. (2001). Non-hydrogen bond interactions involving the methionine sulfur atom. Journal of Biomolecular Structure and Dynamics, 1, 115–128.
  • Pascoe, D. J., Ling, K. B., & Cockroft, S. L. (2017). The origin of chalcogen-bonding interactions. Journal of the American Chemical Society, 139(42), 15160–15167. https://doi.org/10.1021/jacs.7b08511
  • Pflugrath, J. W. (2004). Macromolecular cryocrystallography–methods for cooling and mounting protein crystals at cryogenic temperatures. Methods (San Diego, CA), 34(3), 415–423. https://doi.org/10.1016/j.ymeth.2004.03.032
  • Scheiner, S. (2021). Participation od S and Se in hydrogen and chalcogen bonds. CrystEngComm, 23(39), 6821–6837. https://doi.org/10.1039/D1CE01046H
  • Scheiner, S. (2022). Various sorts of chalcogen bonds formed by an aromatic system. The Journal of Physical Chemistry. A, 126(25), 4025–4035. https://doi.org/10.1021/acs.jpca.2c02451
  • Sundaramoorthy, M., Gold, M. H., & Poulos, T. L. (2010). Ultrahigh (0.93A) resolution structure of manganese peroxidase from Phanerochaete chrysosporium: implications for the catalytic mechanism. Journal of Inorganic Biochemistry, 104(6), 683–690. https://doi.org/10.1016/j.jinorgbio.2010.02.011
  • Tunyasuvunakool, K., Adler, J., Wu, Z., Green, T., Zielinski, M., Žídek, A., Bridgland, A., Cowie, A., Meyer, C., Laydon, A., Velankar, S., Kleywegt, G. J., Bateman, A., Evans, R., Pritzel, A., Figurnov, M., Ronneberger, O., Bates, R., Kohl, S. A. A., … Hassabis, D. (2021). Highly accurate protein structure prediction for the human proteome. Nature, 596(7873), 590–596. https://doi.org/10.1038/s41586-021-03828-1
  • Varadi, M., Anyango, S., Deshpande, M., Nair, S., Natassia, C., Yordanova, G., Yuan, D., Stroe, O., Wood, G., Laydon, A., Žídek, A., Green, T., Tunyasuvunakool, K., Petersen, S., Jumper, J., Clancy, E., Green, R., Vora, A., Lutfi, M., … Velankar, S. (2022). AlphaFold protein structure database: massively expanding the structural coverage of protein-sequence space with high-accuracy models. Nucleic Acids Research, 50(D1), D439–D444. https://doi.org/10.1093/nar/gkab1061