113
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Hydrotrope assisted green synthesis of dicoumarols and in silico and in vitro antibacterial, antioxidant and xanthine oxidase inhibition studies

, ORCID Icon, ORCID Icon, & ORCID Icon
Pages 9651-9665 | Received 28 Jul 2022, Accepted 03 Nov 2022, Published online: 14 Nov 2022

References

  • Abu-Gharbieh, E., Shehab, N. G., Almasri, I. M., & Bustanji, Y. (2018). Antihyperuricemic and xanthine oxidase inhibitory activities of Tribulus arabicus and its isolated compound, ursolic acid: In vitro and in vivo investigation and docking simulations. PLoS One, 13(8), e0202572–12. https://doi.org/10.1371/journal.pone.0202572
  • Agarwal, D. K., Sethiya, A., Teli, P., Manhas, A., Soni, J., Sahiba, N., Jha, P. C., Agarwal, S., & Goyal, P. K. (2020). Click chemistry-inspired design, synthesis, and molecular docking studies of biscoumarin derivatives using carbon-based acid catalyst. Journal of Heterocyclic Chemistry. 57(9), 3294–3309. https://doi.org/10.1002/jhet.4045
  • Al-Amiery, A. A., Al-Majedy, Y. K., Kadhum, A. A. H., & Mohamad, A. B. (2015). Hydrogen peroxide scavenging activity of novel coumarins synthesized using different approaches. PLoS One, 10(7), e0132175–10. https://doi.org/10.1371/journal.pone.0132175
  • Amin, K. M., Abdel Gawad, N. M., Abdel Rahman, D. E., & El Ashry, M. K. (2014). New series of 6-substituted coumarin derivatives as effective factor Xa inhibitors: Synthesis, in vivo antithrombotic evaluation and molecular docking. Bioorganic Chemistry, 52, 31–43. https://doi.org/10.1016/j.bioorg.2013.11.002
  • Bensalah, D., Mnasri, A., Chakchouk-Mtibaa, A., Mansour, L., Mellouli, L., & Hamdi, N. (2020). Synthesis and antioxidant properties of some new thiazolyl coumarin derivatives. Green Chemistry Letters and Reviews. 13(2), 155–163. https://doi.org/10.1080/17518253.2020.1762935
  • BIOVIA. (2021). Dassault Systèmes, Discovery Studio Visualizer, R2 client, San Diego: Dassault Systèmes.
  • Brahmachari, G., & Begam, S. (2019). Ceric ammonium nitrate (CAN): An efficient and eco-friendly catalyst for one-pot synthesis of diversely functionalized biscoumarins in aqueous medium under ambient conditions. ChemistrySelect, 4(19), 5415–5420. https://doi.org/10.1002/slct.201900961
  • Chen, Y., Zhang, W., Shi, Q., Hesek, D., Lee, M., Mobashery, S., & Shoichet, B. K. (2009). Crystal structures of penicillin-binding protein 6 from Escherichia coli. Journal of the American Chemical Society, 131(40), 14345–14354. https://doi.org/10.1021/ja903773f
  • Chohan, Z. H., Rauf, A., Naseer, M. M., Somra, M. A., & Supuran, C. T. (2006). Antibacterial, antifungal and cytotoxic properties of some sulfonamide-derived chromones. Journal of Enzyme Inhibition and Medicinal Chemistry, 21(2), 173–177. https://doi.org/10.1080/14756360500533059
  • Dawood, D. H., Batran, R. Z., Farghaly, T. A., Khedr, M. A., & Abdulla, M. (2015). New coumarin derivatives as potent selective COX-2 inhibitors: Synthesis, anti-inflammatory, QSAR, and molecular modeling studies. Archiv der Pharmazie, 348(12), 875–888. https://doi.org/10.1002/ardp.201500274
  • de Araújo, R., S. A., Guerra, F. Q. S., Lima, E., de, O., de Simone, C. A., Tavares, J. F., Scotti, L., Scotti, M. T., de Aquino, T. M., de Moura, R. O., Mendonça, F. J. B., & Barbosa-Filho, J. M. (2013). Synthesis, structure-activity relationships (SAR) and in silico studies of coumarin derivatives with antifungal activity. International Journal of Molecular Sciences, 14(1), 1293–1309. https://doi.org/10.3390/ijms14011293
  • El-Desoky, E. S. I., Keshk, E. M., El-Sawi, A. A., Abozeid, M. A., Abouzeid, L. A., & Abdel-Rahman, A. R. H. (2018). Synthesis, biological evaluation and in silico molecular docking of novel 1-hydroxy-naphthyl substituted heterocycles. Saudi Pharmaceutical Journal : SPJ : The Official Publication of the Saudi Pharmaceutical Society, 26(6), 852–859. https://doi.org/10.1016/j.jsps.2018.03.013
  • Elsenety, M. M., Elsayed, B. A., Ibrahem, I. A., & Bedair, M. A. (2020). Photophysical, DFT and molecular docking studies of Sm(III) and Eu(III) complexes of newly synthesized coumarin ligand. Inorganic Chemistry Communications, 121(September), 108213. https://doi.org/10.1016/j.inoche.2020.108213
  • Elshikh, M., Ahmed, S., Funston, S., Dunlop, P., Mcgaw, M., Marchant, R., & Banat, I. M. (2016). Resazurin-based 96-well plate microdilution method for the determination of minimum inhibitory concentration of biosurfactants. Biotechnology Letters, 38, 1015–1019. https://doi.org/10.1007/s10529-016-2079-2
  • Faisal, M., Larik, F. A., & Saeed, A. (2019). A highly promising approach for the one-pot synthesis of biscoumarins using HY zeolite as recyclable and green catalyst. Journal of Porous Materials, 26(2), 455–466. https://doi.org/10.1007/s10934-018-0625-0
  • Fatima, I., Zafar, H., Khan, K. M., Saad, S. M., Javaid, S., Perveen, S., & Choudhary, M. I. (2018). Synthesis, molecular docking and xanthine oxidase inhibitory activity of 5-aryl-1H-tetrazoles. Bioorganic Chemistry, 79(May), 201–211. https://doi.org/10.1016/j.bioorg.2018.04.021
  • Fu, Y., Lu, Z., Fang, K., He, X., Huang, H., & Hu, Y. (2019). Promiscuous enzyme-catalyzed cascade reaction in water: Synthesis of dicoumarol derivatives. Bioorganic & Medicinal Chemistry Letters, 29(10), 1236–1240. https://doi.org/10.1016/j.bmcl.2019.03.007
  • Gorai, S., Junghare, V., Kundu, K., Gharui, S., Kumar, M., Patro, B. S., Nayak, S. K., Hazra, S., & Mula, S. (2022). Synthesis of dihydrobenzofuro[3,2-b]Chromenes as potential 3CLpro inhibitors of SARS-CoV-2: A molecular docking and molecular dynamics study. ChemMedChem, 17(8), 1–12. https://doi.org/10.1002/cmdc.202100782
  • Heaslet, H., Harris, M., Fahnoe, K., Sarver, R., Putz, H., Chang, J., Subramanyam, C., Barreiro, G., & Miller, J. R. (2009). Structural comparison of chromosomal and exogenous dihydrofolate reductase from Staphylococcus aureus in complex with the potent inhibitor trimethoprim. Proteins, 76(3), 706–717. https://doi.org/10.1002/prot.22383
  • Kadhum, A. A. H., Al-Amiery, A. A., Musa, A. Y., & Mohamad, A. B. (2011). The antioxidant activity of new coumarin derivatives. International Journal of Molecular Sciences, 12(9), 5747–5761. https://doi.org/10.3390/ijms12095747
  • Kamble, S. B., Kumbhar, A. S., Jadhav, S. N., & Salunkhe, R. S. (2014). Microwave assisted attractive and rapid process for synthesis of octahydroquinazolinone in aqueous hydrotropic solutions. Procedia Materials Science, 6, 1850–1856. https://doi.org/10.1016/j.mspro.2014.07.215
  • Kamble, S., Rashinkar, G., Kumbhar, A., & Salunkhe, R. (2012). Hydrotrope induced catalysis in water: A clean and green approach for the synthesis of medicinally relevant Bis-(Indolyl) methanes and 2-aryl benzimidazoles. Synthetic Communications, 42(5), 756–766. https://doi.org/10.1080/00397911.2010.530730
  • Kandaswamy, N., & Raveendiran, N. (2015). Synthesis, characterization, in vitro antimicrobial and anticancer evaluation of random copolyesters bearing biscoumarin units in the main chains. Research on Chemical Intermediates, 41(10), 7189–7206. https://doi.org/10.1007/s11164-014-1806-3
  • Kapoor, N., & Saxena, S. (2016). Xanthine oxidase inhibitory and antioxidant potential of Indian Muscodor species. 3 Biotech, 6(2), 1–6. https://doi.org/10.1007/s13205-016-0569-5
  • Karmakar, B., Nayak, A., & Banerji, J. (2012). Sulfated titania catalyzed water mediated efficient synthesis of dicoumarols - A green approach. Tetrahedron Letters, 53(33), 4343–4346. https://doi.org/10.1016/j.tetlet.2012.06.024
  • Kasperkiewicz, K., Ponczek, M. B., Owczarek, J., Guga, P., & Budzisz, E. (2020). Antagonists of vitamin K-popular coumarin drugs and new synthetic and natural coumarin derivatives. Molecules, 25(6), 1465–1424. https://doi.org/10.3390/molecules25061465
  • Keri, R. S., Budagumpi, S., Pai, R. K., & Balakrishna, R. G. (2014). Chromones as a privileged scaffold in drug discovery: A review. European Journal of Medicinal Chemistry, 78, 340–374. https://doi.org/10.1016/j.ejmech.2014.03.047
  • Khan, K. M., Iqbal, S., Lodhi, M. A., Maharvi, G. M., Ullah, Zia., Choudhary, M. I., Rahman, Atta-ur., & Perveen, S. (2004). Biscoumarin: New class of urease inhibitors; economical synthesis and activity. Bioorganic & Medicinal Chemistry, 12(8), 1963–1968. https://doi.org/10.1016/j.bmc.2004.01.010
  • Kishida, H., Unzai, S., Roper, D. I., Lloyd, A., Park, S. Y., & Tame, J. R. H. (2006). Crystal structure of penicillin binding protein 4 (DacB) from Escherichia coli, both in the native form and covalently linked to various antibiotics. Biochemistry, 45(3), 783–792. https://doi.org/10.1021/bi051533t
  • Kumbhar, A., Kanase, D., Mohite, S., Salunkhe, R., & Lohar, T. (2021). Bronsted acid hydrotrope combined catalysis in water: A green approach for the synthesis of indoloquinoxalines and bis-tetronic acids. Research on Chemical Intermediates, 47(6), 2263–2278. https://doi.org/10.1007/s11164-021-04430-w
  • Li, Y., Cao, T. T., Guo, S., Zhong, Q., Li, C. H., Li, Y., Dong, L., Zheng, S., Wang, G., & Yin, S. F. (2016). Discovery of novel allopurinol derivatives with anticancer activity and attenuated xanthine oxidase inhibition. Molecules, 21(6), 771. https://doi.org/10.3390/molecules21060771
  • Lončarić, M., Gašo-Sokač, D., Jokić, S., & Molnar, M. (2020). Recent advances in the synthesis of coumarin derivatives from different starting materials. Biomolecules, 10(1), 151. https://doi.org/10.3390/biom10010151
  • Mahmoodi, N. O., Jalalifard, Z., & Fathanbari, G. P. (2020). Green synthesis of bis-coumarin derivatives using Fe(SD)3 as a catalyst and investigation of their biological activities. Journal of the Chinese Chemical Society, 67(1), 172–182. https://doi.org/10.1002/jccs.201800444
  • Mali, G., Shaikh, B. A., Garg, S., Kumar, A., Bhattacharyya, S., Erande, R. D., & Chate, A. V. (2021). Design, synthesis, and biological evaluation of densely substituted Dihydropyrano[2,3-c]Pyrazoles via a taurine-catalyzed green multicomponent approach. ACS Omega, 6(45), 30734–30742. https://doi.org/10.1021/acsomega.1c04773
  • Malik, N., Dhiman, P., & Khatkar, A. (2019). In silico design and synthesis of targeted rutin derivatives as xanthine oxidase inhibitors. BMC Chemistry, 13(3), 1–13. https://doi.org/10.1186/s13065-019-0585-8
  • Mathavan, S., Kannan, K., & Yamajala, R. B. R. D. (2019). Thiamine hydrochloride as a recyclable organocatalyst for the synthesis of Bis(Indolyl)Methanes, Tris(Indolyl)Methanes, 3,3-Di(Indol-3-Yl)Indolin-2-Ones and biscoumarins. Organic & Biomolecular Chemistry, 17(44), 9620–9626. https://doi.org/10.1039/c9ob02090j
  • Mishra, R., Jana, A., Panday, A. K., & Choudhury, L. H. (2018). Synthesis of fused pyrroles containing 4-hydroxycoumarins by regioselective metal-free multicomponent reactions. Organic & Biomolecular Chemistry, 16(17), 3289–3302. https://doi.org/10.1039/c8ob00161h
  • Mishra, S., Pandey, A., & Manvati, S. (2020). Coumarin: An emerging antiviral agent. Heliyon, 6(1), e03217. https://doi.org/10.1016/j.heliyon.2020.e03217
  • Morris, G. M.,Huey, R.,Lindstrom, W.,Sanner, M. F.,Belew, R. K.,Goodsell, D. S., &Olson, A. J. (2009). AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. Journal of Computational Chemistry, 30(16), 2785–2791. https://doi.org/10.1002/jcc.21256
  • Mutai, P., Breuzard, G., Pagano, A., Allegro, D., Peyrot, V., & Chibale, K. (2017). Synthesis and biological evaluation of 4 aryl coumarin analogues as tubulin-targeting antitumor agents. Bioorganic & Medicinal Chemistry, 25(5), 1652–1665. https://doi.org/10.1016/j.bmc.2017.01.035
  • Nolan, K. A., Doncaster, J. R., Dunstan, M. S., Scott, K. A., Frenkel, A. D., Siegel, D., Ross, D., Barnes, J., Levy, C., Leys, D., Whitehead, R. C., Stratford, I. J., & Bryce, R. A. (2009). Synthesis and biological evaluation of coumarin-based inhibitors of NAD(P)H: Quinone oxidoreductase-1 (NQO1). Journal of Medicinal Chemistry, 52(22), 7142–7156. https://doi.org/10.1021/jm9011609
  • Obi, J., & Ezenwa, T. (2018). Synthesis of analogues of dicoumarol and their biological evaluation. International Journal of Chemistry, 10(3), 1. https://doi.org/10.5539/ijc.v10n3p1
  • Olyaei, A., Dortaj, E., Khoeiniha, R., & Rajabi, F. (2018). One-pot synthesis of novel 3-(Aryl(Heteroaryl amino)methyl)-2H-chromen-2-one derivatives. Journal of Heterocyclic Chemistry, 55(12), 2971–2976. https://doi.org/10.1002/jhet.3379
  • Olyaei, A., Moghadam, H. R., & Sadeghpour, M. (2020). Catalyst-free one-pot synthesis of a new class of 2H-Furo[3,2-c]chromene-2,4(3H)-dione and aryl amino-bis(coumarin)methane derivatives on water. Journal of Heterocyclic Chemistry, 57(8), 3029–3036. https://doi.org/10.1002/jhet.4007
  • Owis, A. I., El-Hawary, M., S., El Amir, D., Aly, O. M., Abdel Mohsen, U. R., & Kamel, M. S. (2020). Molecular docking reveals the potential of Salvadora Persica flavonoids to inhibit COVID-19 virus main protease. RSC Advances, 10(33), 19570–19575. https://doi.org/10.1039/d0ra03582c
  • Pancholi, K., Borisagar, M., & Karia, D. (2016). Research article evaluation of 4-hydroxy-coumarin derivatives as antimicrobial agents. Journal of Chemical and Pharmaceutical Research, 8(9), 85–88.
  • Pancu, D. F., Scurtu, A., Macasoi, I. G., Marti, D., Mioc, M., Soica, C., Coricovac, D., Horhat, D., Poenaru, M., & Dehelean, C. (2021). Antibiotics: Conventional therapy and natural compounds with antibacterial activity-a pharmaco-toxicological screening. Antibiotics, 10(4), 401. https://doi.org/10.3390/antibiotics10040401
  • Patil, A., Mane, A., Kamat, S., Lohar, T., & Salunkhe, R. (2019). Aqueous hydrotropic solution: Green reaction medium for synthesis of pyridopyrimidine carbonitrile and spiro-oxindole dihydroquinazolinone derivatives. Research on Chemical Intermediates, 45(6), 3441–3452. https://doi.org/10.1007/s11164-019-03801-8
  • Prabhakar, M. (2013). EDTA-catalyzed fast and efficient eco-friendly synthesis of dicoumarol derivatives in water. Journal of Chemical and Pharmaceutical Research, 5(5), 89–93.
  • Rousta, A. M., Mirahmadi, S. M., Shahmohammadi, A., Ramzi, S., Baluchnejadmojarad, T., & Roghani, M. (2020). S-allyl cysteine, an active ingredient of garlic, attenuates acute liver dysfunction induced by lipopolysaccharide/d-galactosamine in mouse: underlying mechanisms. Journal of Biochemical and Molecular Toxicology, 34(9), e22518. https://doi.org/10.1002/jbt.22518
  • Sarker, S. D., Nahar, L., & Kumarasamy, Y. (2007). Microtitre plate-based antibacterial assay incorporating resazurin as an indicator of cell growth, and its application in the in vitro antibacterial screening of phytochemicals. Methods (San Diego, Calif.), 42(4), 321–324. https://doi.org/10.1016/j.ymeth.2007.01.006
  • Sethiya, A., Teli, P., Manhas, A., Agarwal, D., Soni, J., Sahiba, N., Jha, P., & Agarwal, S. (2020). Carbon-SO3H: An efficient catalyst for the synthesis of biscoumarin under ambient reaction conditions and their in silico studies. Synthetic Communications. 50(16), 2440–2460. https://doi.org/10.1080/00397911.2020.1780613
  • Shahzad, S., Qadir, M. A., Ahmed, M., Ahmad, S., Khan, M. J., Gulzar, A., & Muddassar, M. (2020). Folic acid-sulfonamide conjugates as antibacterial agents: Design, synthesis and molecular docking studies. RSC Advances, 10(70), 42983–42992. https://doi.org/10.1039/d0ra09051d
  • Simijonović, D., Vlachou, E. E., Petrović, Z. D., Hadjipavlou-Litina, D. J., Litinas, Κ. E., Stanković, N., Mihović, N., & Mladenović, M. P. (2018). Dicoumarol derivatives: Green synthesis and molecular modelling studies of their anti-LOX activity. Bioorganic Chemistry, 80, 741–752. https://doi.org/10.1016/j.bioorg.2018.07.021
  • Singhal, S., Khanna, P., & Khanna, L. (2019). Synthesis, DFT studies, molecular docking, antimicrobial screening and UV fluorescence studies on Ct-DNA for novel Schiff bases of 2-(1-Aminobenzyl) benzimidazole. Heliyon, 5(10), e02596. https://doi.org/10.1016/j.heliyon.2019.e02596
  • Singhal, S., Khanna, P., & Khanna, L. (2021). Synthesis, comparative in vitro antibacterial, antioxidant and UV Fluorescence studies of bis indole schiff bases and molecular docking with Ct-DNA and SARS-CoV-2 Mpro. Luminescence : The Journal of Biological and Chemical Luminescence, 36(6), 1531–1543. https://doi.org/10.1002/bio.4098
  • Smelcerovic, Z., Veljkovic, A., Kocic, G., Yancheva, D., Petronijevic, Z., Anderluh, M., & Smelcerovic, A. (2015). Xanthine oxidase inhibitory properties and anti-inflammatory activity of 2-amino-5-alkylidene-thiazol-4-ones. Chemico-Biological Interactions, 229(January), 73–81. https://doi.org/10.1016/j.cbi.2015.01.022
  • Srivastava, P., Vyas, V. K., Variya, B., Patel, P., Qureshi, G., & Ghate, M. (2016). Synthesis, anti-inflammatory, analgesic, 5-lipoxygenase (5-LOX) inhibition activities, and molecular docking study of 7-substituted coumarin derivatives. Bioorganic Chemistry, 67, 130–138. https://doi.org/10.1016/j.bioorg.2016.06.004
  • Van Der Spoel, D.,Lindahl, E.,Hess, B.,Groenhof, G.,Mark, A. E., &Berendsen, H. J. C. (2005). GROMACS: fast, flexible, and free. Journal of Computational Chemistry, 26(16), 1701–1718. https://doi.org/10.1002/jcc.20291
  • Wang, S. F., Yin, Y., Wu, X., Qiao, F., Sha, S., Lv, P. C., Zhao, J., & Zhu, H. L. (2014). Synthesis, molecular docking and biological evaluation of coumarin derivatives containing piperazine skeleton as potential antibacterial agents. Bioorganic & Medicinal Chemistry, 22(21), 5727–5737. https://doi.org/10.1016/j.bmc.2014.09.048
  • Wright, D. L., & Anderson, A. C. (2011). Antifolate agents: A patent review (2006-2010). Expert Opinion on Therapeutic Patents, 21(9), 1293–1308. https://doi.org/10.1517/13543776.2011.587804
  • Xu, G. D., & Huang, Z. Z. (2018). A Rh(III)-catalyzed cascade C-H functionalization/cyclization reaction of salicylaldehydes with diazomalonates for the synthesis of 4-hydroxycoumarin derivatives. New Journal of Chemistry, 42(22), 18358–18362. https://doi.org/10.1039/C8NJ04576C
  • Yaqoob, S., Hameed, A., Ahmed, M., Imran, M., Qadir, M. A., Ramzan, M., Yousaf, N., Iqbal, J., & Muddassar, M. (2022). Antiurease screening of alkyl chain-linked thiourea derivatives: In vitro biological activities, molecular docking, and dynamic simulations studies. RSC Advances, 12(10), 6292–6302. https://doi.org/10.1039/d1ra08694d
  • Zajączkowski, S., Ziółkowski, W., Badtke, P., Zajączkowski, M. A., Flis, D. J., Figarski, A., Bylańska, M. S., & Wierzba, T. H. (2018). Promising effects of xanthine oxidase inhibition by allopurinol on autonomic heart regulation estimated by heart rate variability (HRV) analysis in rats exposed to hypoxia and hyperoxia. PLoS One, 13(2), e0192781. https://doi.org/10.1371/journal.pone.0192781
  • Zengin Kurt, B., Sonmez, F., Ozturk, D., Akdemir, A., Angeli, A., & Supuran, C. T. (2019). Synthesis of coumarin-sulfonamide derivatives and determination of their cytotoxicity, carbonic anhydrase inhibitory and molecular docking studies. European Journal of Medicinal Chemistry, 183, 111702. https://doi.org/10.1016/j.ejmech.2019.111702

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.