183
Views
7
CrossRef citations to date
0
Altmetric
Research Article

In silico molecular docking, dynamics simulation and repurposing of some VEGFR-2 inhibitors based on the SARS-CoV-2-main-protease inhibitor N3

, , &
Pages 9267-9281 | Received 09 Aug 2022, Accepted 09 Nov 2022, Published online: 18 Nov 2022

References

  • Abbruzzese, C., Matteoni, S., Persico, M., Villani, V., & Paggi, M. G. (2020). Repurposing chlorpromazine in the treatment of glioblastoma multiforme: Analysis of literature and forthcoming steps. Journal of Experimental & Clinical Cancer Research : CR, 39(1), 26. https://doi.org/10.1186/s13046-020-1534-z
  • Alnajjar, R., Mostafa, A., Kandeil, A., & Al-Karmalawy, A. A. (2020). Molecular docking, molecular dynamics, and in vitro studies reveal the potential of angiotensin II receptor blockers to inhibit the COVID-19 main protease. Heliyon, 6(12), e05641. https://doi.org/10.1016/j.heliyon.2020.e05641
  • Al-Obaidi, A., Elmezayen, A. D., & Yelekçi, K. (2021). Homology modeling of human GABA-AT and devise some novel and potent inhibitors via computeraided drug design techniques. Journal of Biomolecular Structure and Dynamics, 39(11), 4100–4110. https://doi.org/10.1080/07391102.2020.1774417
  • Anand, K., Ziebuhr, J., Wadhwani, P., Mesters, J. R., & Hilgenfeld, R. (2003). Coronavirus main proteinase (3CLpro) structure: Basis for design of anti-SARS drugs. Science (New York, N.Y.), 300(5626), 1763–1767. https://doi.org/10.1126/science.1085658
  • Arafet, K., Serrano-Aparicio, N., Lodola, A., Mulholland, A. J., González, F. V., Świderek, K., & Moliner, V. (2021). Mechanism of inhibition of SARS-CoV-2 Mpro by N3 peptidyl Michael acceptor explained by QM/MM simulations and design of new derivatives with tunable chemical reactivity. Chemical Science, 12(4), 1433–1444. https://doi.org/10.1039/D0SC06195F
  • Arnittali, M., Rissanou, A. N., & Harmandaris, V. (2019). Structure of biomolecules through molecular dynamics simulations. Procedia Computer Science, 156, 69–78. https://doi.org/10.1016/j.procs.2019.08.181
  • Baron, S. A., Devaux, C., Colson, P., Raoult, D., & Rolain, J. M. (2020). Teicoplanin: an alternative drug for the treatment of coronavirus COVID-19? International Journal of Antimicrobial Agents, 55(4), 105944. https://doi.org/10.1016/j.ijantimicag.2020.105944
  • Case, D. A., Ben-Shalom, I. Y., & Brozell, S. R. (2018). AMBER. University of California. 2018.
  • Cavasotto, C. N. (2020). Binding Free energy calculation using quantum mechanics aimed for drug lead optimization. Methods in Molecular Biology (Clifton, N.J.), 2114, 257–268.
  • Chen, Y., Liu, Q., & Guo, D. (2020). Emerging coronaviruses: Genome structure, replication, and pathogenesis. Journal of Medical Virology, 92(4), 418–423. https://doi.org/10.1002/jmv.25681
  • Chen, Y. W., Yiu, C. B., & Wong, K. Y. (2020). Prediction of the SARS-CoV-2 (2019-nCoV) 3Clike protease (3CL (pro)) structure: Virtual screening reveals velpatasvir, ledipasvir, and other drug repurposing candidates. F1000Research, 9, 129. https://doi.org/10.12688/f1000research.22457.1
  • Dai, W., Zhang, B., Jiang, X.-M., Su, H., Li, J., Zhao, Y., Xie, X., Jin, Z., Peng, J., Liu, F., Li, C., Li, Y., Bai, F., Wang, H., Cheng, X., Cen, X., Hu, S., Yang, X., Wang, J., … Liu, H. (2020). Structure-based design of antiviral drug candidates targeting the SARS-CoV-2 main protease. Science (New York, N.Y.), 368(6497), 1331–1335. https://doi.org/10.1126/science.abb4489
  • Davis, I. W., & Baker, D. (2009). RosettaLigand docking with full ligand and receptor flexibility. Journal of Molecular Biology, 385(2), 381–392. https://doi.org/10.1016/j.jmb.2008.11.010
  • de Wit, E., Feldmann, F., Cronin, J., Jordan, R., Okumura, A., Thomas, T., Scott, D., Cihlar, T., & Feldmann, H. (2020). Prophylactic and therapeutic remdesivir (GS-5734) treatment in the rhesus macaque model of MERS-CoV infection. Proceedings of the National Academy of Sciences of the United States of America, 117(12), 6771–6776. https://doi.org/10.1073/pnas.1922083117
  • El‐Adl, K., El‐Helby, A. ‐G A., Sakr, H., Ayyad, R. R., Mahdy, H. A., Nasser, M., Abulkhair, H. S., & El‐Hddad, S. S. A. (2020). Design, synthesis, molecular docking, anticancer evaluations, and in silico pharmacokinetic studies of novel 5‐[(4‐chloro/2,4‐dichloro)benzylidene]thiazolidine‐2,4‐dione derivatives as VEGFR‐2 inhibitors. Archiv der Pharmazie, 354(2), e2000279. https://doi.org/10.1002/ardp.202000279
  • El‐Adl, K., Sakr, H., El‐Hddad, S. S. El‐Helby, A.-G. A., Nasser, M., & Abulkhair, H. S. (2021). Design, synthesis, docking, ADMET profile, and anticancer evaluations of novel thiazolidine‐2,4‐dione derivatives as VEGFR‐2 inhibitors. Archiv der Pharmazie, 354(7), e2000491. https://doi.org/10.1002/ardp.202000491
  • Elfiky, A. A. (2020). Anti-HCCV, nucleotide inhibitors, repurposing against COVID-19. Life Sciences, 248, 117477. https://doi.org/10.1016/j.lfs.2020.117477
  • Elmaaty, A. A., Alnajjar, R., Hamed, M. I. A., Khattab, M., Khalifa, M. M., & Al-Karmalawy, A. A. (2021). Revisiting activity of some glucocorticoids as a potential inhibitor of SARS-CoV-2 main protease: theoretical study. RSC Advances, 11(17), 10027–10042. https://doi.org/10.1039/d0ra10674g
  • Elmaaty, A. A., Darwish, K. M., Khattab, M., Elhady, S. S., Salah, M., Hamed, M. I. A., Al‐Karmalawy, A. A., & Saleh, M. M. (2021). In a search for potential drug candidates for combating COVID-19: Computational study revealed salvianolic acid B as a potential therapeutic targeting 3CLpro and spike proteins. Journal of Biomolecular Structure and Dynamics, 30, 1–28. https://doi.org/10.1080/07391102.2021.1918256
  • Elmezayen, A. D., Al-Obaidi, A., Şahin, A. T., & Yelekçi, K. (2021). Drug repurposing for coronavirus (COVID-19): In silico screening of known drugs against coronavirus 3CL hydrolase and protease enzymes. Journal of Biomolecular Structure & Dynamics, 39(8), 2980–2992. https://doi.org/10.1080/07391102.2020.1758791
  • Elmezayen, A. D., Al-Obaidi, A., & Yelekçi, K. (2021). Discovery of novel isoform-selective histone deacetylases 5 and 9 inhibitors through combined ligand-based pharmacophore modeling, molecular mocking, and molecular dynamics simulations for cancer treatment. Journal of Molecular Graphics & Modelling, 106, 107937. https://doi.org/10.1016/j.jmgm.2021.107937
  • Elzupir, A. O. (2020). Inhibition of SARS-CoV-2 main protease 3CLpro by means of α-ketoamide and pyridone-containing pharmaceuticals using in silico molecular docking. Journal of Molecular Structure, 1222, 128878.
  • Fan, H. H., Wang, L. Q., Liu, W. L., An, X. P., Liu, Z. D., He, X. Q., Song, L.-H., & Tong, Y.-G. (2020). Repurposing of clinically approved drugs for treatment of coronavirus disease 2019 in a 2019-novel coronavirus (2019-nCoV) related coronavirus model. Chinese Medical Journal, 133(9), 1051-1056. https://doi.org/10.1097/CM9.0000000000000797
  • Forouzesh, N., & Mishra, N. (2021). An effective MM/GBSA protocol for absolute binding free energy calculations: A case study on SARS-CoV-2 spike protein and the human ACE2 receptor. Molecules, 26(8), 2383. https://doi.org/10.3390/molecules26082383
  • Ghanem, A., Emara, H. A., Muawia, S., Abd El Maksoud, A. I., Al-Karmalawy, A. A., & Elshal, M. F. (2020). Tanshinone IIA synergistically enhances the antitumor activity of doxorubicin by interfering with the PI3K/AKT/mTOR pathway and inhibition of topoisomerase II: In vitro and molecular docking studies. New Journal of Chemistry, 44(40), 17374–17381. https://doi.org/10.1039/D0NJ04088F
  • Hou, T., Wang, J., Li, Y., & Wang, W. (2011). Assessing the performance of the MM/PBSA and MM/GBSA Methods. 1. The accuracy of binding free energy calculations based on molecular dynamics simulations. Journal of Chemical Information and Modeling, 51(1), 69–82. https://doi.org/10.1021/ci100275a
  • Jain, R. P., Pettersson, H. I., Zhang, J., Aull, K. D., Fortin, P. D., Huitema, C., Eltis, L. D., Parrish, J. C., James, M. N. G., Wishart, D. S., & Vederas, J. C. (2004). Synthesis and evaluation of keto-glutamine analogues as potent inhibitors of severe acute respiratory syndrome 3CLpro. Journal of Medicinal Chemistry, 47(25), 6113–6116. https://doi.org/10.1021/jm0494873
  • Wu, P., Nielsen, T. E., & Clausen, M. H. (2015). FDA-approved small-molecule kinase inhibitors. Trends in Pharmacological Sciences, 36(7), 422–439. https://doi.org/10.1016/j.tips.2015.04.005
  • Eliaa, S. G., Al-Karmalawy, A. A., Saleh, R. M., & Elshal, M. F. (2020). Empagliflozin and doxorubicin synergistically inhibit the survival of triple-negative breast cancer cells via interfering with the mTOR pathway and inhibition of Calmodulin: In vitro and molecular docking studies. ACS Pharmacology & Translational Science, 3(6), 1330–1338. https://doi.org/10.1021/acsptsci.0c00144
  • Jin, Z., Du, X., Xu, Y., Deng, Y., Liu, M., Zhao, Y., Zhang, B., Li, X., Zhang, L., Peng, C., Duan, Y., Yu, J., Wang, L., Yang, K., Liu, F., Jiang, R., Yang, X., You, T., Liu, X., … Yang, H. (2020). Structure of Mpro from SARS-CoV-2 and discovery of its inhibitors. Nature, 582(7811), 289–293. https://doi.org/10.1038/s41586-020-2223-y
  • Karplus, M., & Petsko, G. A. (1990). Molecular dynamics simulations in biology. Nature, 347(6294), 631–639. https://doi.org/10.1038/347631a0
  • Khattab, M., & Al‐Karmalawy, A. A. (2021). Revisiting activity of some nocodazole analogues as a potential anticancer drugs using molecular docking and DFT calculations. Frontiers in Chemistry, 9, 92. https://doi.org/10.3389/fchem.2021.628398
  • Li, G., & De Clercq, E. (2020). Therapeutic options for the 2019 novel coronavirus (2019-nCoV). Nature Reviews. Drug Discovery, 19(3), 149–150. https://doi.org/10.1038/d41573-020-00016-0
  • Li, J.-Y., You, Z., Wang, Q., Zhou, Z.-J., Qiu, Y., Luo, R., & Ge, X.-Y. (2020). The epidemic of 2019-novel-coronavirus (2019-nCoV) pneumonia and insights for emerging infectious diseases in the future. Microbes and Infection, 22(2), 80–85. https://doi.org/10.1016/j.micinf.2020.02.002
  • Liu, K., Watanabe, E., & Kokubo, H. (2017). Exploring the stability of ligand binding modes to proteins by molecular dynamics simulations. Journal of Computer-Aided Molecular Design, 31(2), 201–211. https://doi.org/10.1007/s10822-016-0005-2
  • Maier, J. A., Martinez, C., Kasavajhala, K., Wickstrom, L., Hauser, K. E., & Simmerling, C. (2015). ff14SB: Improving the accuracy of protein side chain and backbone parameters from ff99SB. Journal of Chemical Theory and Computation, 11(8), 3696–3713. https://doi.org/10.1021/acs.jctc.5b00255
  • McConkey, B. J., Sobolev, V., & Edelman, M. (2002). The performance of current methods in ligand–protein docking. Current Science, 83(7), 845–856.
  • Milite, C., Amendola, G., Nocentini, A., Bua, S., Cipriano, A., Barresi, E., Feoli, A., Novellino, E., Da Settimo, F., Supuran, C. T., Castellano, S., Cosconati, S., & Taliani, S. (2019). Novel 2-substituted-benzimidazole-6-sulfonamides as carbonic anhydrase inhibitors: Synthesis, biological evaluation against isoforms I, II, IX and XII and molecular docking studies. Journal of Enzyme Inhibition and Medicinal Chemistry, 34(1), 1697–1710. https://doi.org/10.1080/14756366.2019.1666836
  • Miller, B. R., McGee, T. D., Swails, J. M., Homeyer, N., Gohlke, H., & Roitberg, A. E. (2012). MMPBSA.py: An efficient program for end-state free energy calculations. Journal of Chemical Theory and Computation, 8(9), 3314–3321. https://doi.org/10.1021/ct300418h
  • Morris, G. M., Huey, R., Lindstrom, W., Sanner, M. F., Belew, R. K., Goodsell, D. S., & Olson, A. J. (2009). AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. Journal of Computational Chemistry, 30(16), 2785–2791. https://doi.org/10.1002/jcc.21256
  • Nicola, M., Sohrabi, C., Mathew, G., Kerwan, A., Al-Jabir, A., Griffin, M., Agha, M., & Agha, R. (2020). Health policy and leadership models during the COVID-19 pandemic-review article. International Journal of Surgery, 81, 122–129. https://doi.org/10.1016/j.ijsu.2020.07.026
  • Samra, R. M., Soliman, A. F., Zaki, A. A., Ashour, A., Al-Karmalawy, A. A., Hassan, M. A., & Zaghloul, A. M. (2021). Bioassay-guided isolation of a new cytotoxic ceramide from Cyperus rotundus L. South African Journal of Botany, 139, 210–216. https://doi.org/10.1016/j.sajb.2021.02.007
  • Soltane, R., Chrouda, A., Mostafa, A., Al-Karmalawy, A. A., Chouaïb, K., Dhahri, A., Pashameah, R. A., Alasiri, A., Kutkat, O., Shehata, M., Jannet, H. B., Gharbi, J., & Ali, M. A. (2021). Strong inhibitory activity and action modes of synthetic maslinic acid derivative on highly pathogenic coronaviruses: COVID-19 Drug Candidate. Pathogens, 10(5), 623. https://doi.org/10.3390/pathogens10050623
  • Takahashi, S. (2011). Vascular endothelial growth factor (VEGF), VEGF receptors and their inhibitors for antiangiogenic tumor therapy. Biological & Pharmaceutical Bulletin, 34(12), 1785–1788. https://doi.org/10.1248/bpb.34.1785
  • Wang, J., Wolf, R. M., Caldwell, J. W., Kollman, P. A., & Case, D. A. (2004). Development and testing of a general amber force field. Journal of Computational Chemistry, 25(9), 1157–1174. https://doi.org/10.1002/jcc.20035
  • Wilson, C. O., Jr. (2004). Wilson and Gisvold’s textbook of organic medicinal and pharmaceutical chemistry (J. H. Block, & J. M. Beale, Eds.). Lippincott Williams & Wilkins.
  • Wu, F., Zhao, S., Yu, B., Chen, Y.-M., Wang, W., Song, Z.-G., Hu, Y., Tao, Z.-W., Tian, J.-H., Pei, Y.-Y., Yuan, M.-L., Zhang, Y.-L., Dai, F.-H., Liu, Y., Wang, Q.-M., Zheng, J.-J., Xu, L., Holmes, E. C., & Zhang, Y.-Z. (2020). A new coronavirus associated with human respiratory disease in China. Nature, 579(7798), 265–269. https://doi.org/10.1038/s41586-020-2008-3
  • Yamamoto, N., Yang, R., Yoshinaka, Y., Amari, S., Nakano, T., Cinatl, J., Rabenau, H., Doerr, H. W., Hunsmann, G., Otaka, A., Tamamura, H., Fujii, N., & Yamamoto, N. (2004). HIV protease inhibitor nelfinavir inhibits replication of SARS-associated coronavirus. Biochemical and Biophysical Research Communications, 318(3), 719–725. https://doi.org/10.1016/j.bbrc.2004.04.083
  • Yang, H., Xie, W., Xue, X., Yang, K., Ma, J., Liang, W., Zhao, Q., Zhou, Z., Pei, D., Ziebuhr, J., Hilgenfeld, R., Yuen, K. Y., Wong, L., Gao, G., Chen, S., Chen, Z., Ma, D., Bartlam, M., & Rao, Z. (2005). Design of wide-spectrum inhibitors targeting coronavirus main ProteasesPLoS. PLoS Biology, 3(10), e324. https://doi.org/10.1371/journal.pbio.0030324
  • Zaki, A. A., Al-Karmalawy, A. A., El-Amier, Y. A., & Ashour, A. (2020). Molecular docking reveals the potential of Cleome amblyocarpa isolated compounds to inhibit COVID-19 virus main protease. New Journal of Chemistry, 44(39), 16752–16758. https://doi.org/10.1039/D0NJ03611K
  • Zaki, A. A., Ashour, A., Elhady, S. S., Darwish, K. M., & Al-Karmalawy, A. A. (2022). Calendulaglycoside A showing potential activity against SARS-CoV-2 main protease: Molecular docking, molecular dynamics, and SAR studies. Journal of Traditional and Complementary Medicine, 12(1), 16–34. https://doi.org/10.1016/j.jtcme.2021.05.001
  • Zhang, L., Lin, D., Sun, X., Curth, U., Drosten, C., Sauerhering, L., Becker, S., Rox, K., & Hilgenfeld, R. (2020). Crystal structure of SARS-CoV-2 main protease provides a basis for design of improved α-ketoamide inhibitors. Science (New York, N.Y.), 368(6489), 409–412. https://doi.org/10.1126/science.abb3405
  • Zhou, Y., Hou, Y., Shen, J., Huang, Y., Martin, W., & Cheng, F. (2020). Network-based drug repurposing for novel coronavirus 2019-nCoV/SARS-CoV-2. Cell Discovery, 6, 14. https://doi.org/10.1038/s41421-020-0153-3

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.