321
Views
4
CrossRef citations to date
0
Altmetric
Research Article

Synthesis of indole derivatives as Alzheimer inhibitors and their molecular docking study

, ORCID Icon, ORCID Icon, , ORCID Icon, , , , , , , & ORCID Icon show all
Pages 9865-9878 | Received 31 May 2022, Accepted 10 Nov 2022, Published online: 20 Nov 2022

References

  • Adams, R. L., Craig, P. L., & Parsons, O. A. (1986). Neuropsychology of dementia. Neurologic Clinics, 4(2), 387–404. https://doi.org/10.1016/S0733-8619(18)30976-9
  • Agarwal, A., Srivastava, K., Puri, S., & Chauhan, P. M. (2005). Synthesis of substituted indole derivatives as a new class of antimalarial agents. Bioorganic & Medicinal Chemistry Letters, 15(12), 3133–3136. https://doi.org/10.1016/j.bmcl.2005.04.011
  • Agarwal, S. P., Khanna, R., Karmarkar, R., Anwer, M. K., & Khar, R. K. (2007). Shilajit: A review. Phytotherapy Research: PTR, 21(5), 401–405. https://doi.org/10.1002/ptr.2100
  • Ahmad, S., Iftikhar, F., Ullah, F., Sadiq, A., & Rashid, U. (2016). Rational design and synthesis of dihydropyrimidine based dual binding site acetylcholinesterase inhibitors. Bioorganic Chemistry, 69, 91–101. https://doi.org/10.1016/j.bioorg.2016.10.002
  • Aisen, P. S., & Davis, K. L. (1997). The search for disease-modifying treatment for Alzheimer’s disease. Neurology, 48(Issue 5, Supplement 6), 35S–41S. https://doi.org/10.1212/WNL.48.5_Suppl_6.35S
  • Alam, N., Najnin, H., Islam, M., Iqbal, S., & Zaidi, R. (2021). Development of a lung cancer model in wistar rat and in silico screening of its biomarkers. Current Computer-Aided Drug Design, 17(3), 458–468. https://doi.org/10.2174/1574893615999200505075713
  • Auld, D. S., Kornecook, T. J., Bastianetto, S., & Quirion, R. (2002). Alzheimer’s disease and the basal forebrain cholinergic system: Relations to β-amyloid peptides, cognition, and treatment strategies. Progress in Neurobiology, 68(3), 209–245. https://doi.org/10.1016/S0301-0082(02)00079-5
  • Berger, L., & Corraz, A. J. (1977). Cyclopenta [b] indole-2-carboxylic acids and derivatives thereof. Google Patents,
  • Büyükbingöl, E., Süzen, S., & Klopman, G. (1994). Studies on the synthesis and structure-activity relationships of 5-(3'-indolal)-2-thiohydantoin derivatives as aldose reductase enzyme inhibitors. Farmaco (Societa Chimica Italiana: 1989), 49(6), 443–447.
  • C. Inc, Molecular operating environment (MOE). (2016). Chemical Computing Group Inc. 1010 Sherbooke St, West, Suite 910.
  • Case, D., Ben-Shalom, I., Brozell, S., Cerutti, D., Cheatham, T., III, Cruzeiro, V., Darden, T., Duke, R., Ghoreishi, D., & Gilson, M. (2018). AMBER 2018; 2018. University of California.
  • Cavalli, A., Bolognesi, M. L., Minarini, A., Rosini, M., Tumiatti, V., Recanatini, M., & Melchiorre, C. (2008). Multi-target-directed ligands to combat neurodegenerative diseases. Journal of Medicinal Chemistry, 51(3), 347–372. https://doi.org/10.1021/jm7009364
  • Darden, T., York, D., & Pedersen, L. (1993). Particle mesh Ewald: An N log (N) method for Ewald sums in large systems. Journal of Chemical Physics. 98(12), 10089–10092. https://doi.org/10.1063/1.464397
  • Delorenzi, J. C., Attias, M., Gattass, C. R., Andrade, M., Rezende, C., da Cunha Pinto, Â., Henriques, A. T., Bou-Habib, D. C., & Saraiva, E. M. (2001). Antileishmanial activity of an indole alkaloid from Peschiera australis. Antimicrobial Agents and Chemotherapy, 45(5), 1349–1354. https://doi.org/10.1128/AAC.45.5.1349-1354.2001
  • Ecobichon, D., & Comeau, A. (1973). Pseudocholinesterases of mammalian plasma: Physicochemical properties and organophosphate inhibition in eleven species. Toxicology and Applied Pharmacology, 24(1), 92–100. https://doi.org/10.1016/0041-008X(73)90184-1
  • Gabr, M. T., & Abdel-Raziq, M. S. (2018). Design and synthesis of donepezil analogues as dual AChE and BACE-1 inhibitors. Bioorganic Chemistry, 80, 245–252. https://doi.org/10.1016/j.bioorg.2018.06.031
  • Ghufran, M., Rehman, A. U., Shah, M., Ayaz, M., Ng, H. L., & Wadood, A. (2020). In-silico design of peptide inhibitors of K-Ras target in cancer disease. Journal of Biomolecular Structure & Dynamics, 38(18), 5488–5499. https://doi.org/10.1080/07391102.2019.1704880
  • Greig, N. H., Utsuki, T., Yu, Q-s., Zhu, X., Holloway, H. W., Perry, T., Lee, B., Ingram, D. K., & Lahiri, D. K. (2001). A new therapeutic target in Alzheimer’s disease treatment: Attention to butyrylcholinesterase. Current Medical Research and Opinion, 17(3), 159–165. https://doi.org/10.1185/03007990152673800
  • Gul, H. I., Yamali, C., Sakagami, H., Angeli, A., Leitans, J., Kazaks, A., Tars, K., Ozgun, D. O., & Supuran, C. T. (2018). New anticancer drug candidates’ sulfonamides as selective hCA IX or hCA XII inhibitors. Bioorganic Chemistry, 77, 411–419. https://doi.org/10.1016/j.bioorg.2018.01.021
  • Henry, R. J. (1943). The mode of action of sulfonamides. Bacteriological Reviews, 7(4), 175–262. https://doi.org/10.1128/br.7.4.175-262.1943
  • Jann, M. W. (1998). Preclinical pharmacology of metrifonate. Pharmacotherapy: The Journal of Human Pharmacology and Drug Therapy, 18(2P2), 55–67.
  • Khan, I. M., Islam, M., Shakya, S., Alam, N., Imtiaz, S., & Islam, M. R. (2021). Synthesis, spectroscopic characterization, antimicrobial activity, molecular docking and DFT studies of proton transfer (H-bonded) complex of 8-aminoquinoline (donor) with chloranilic acid (acceptor). Journal of Biomolecular Structure and Dynamics. 1–15. https://doi.org/10.1080/07391102.2021.1969280
  • Košak, U., Brus, B., Knez, D., Šink, R., Žakelj, S., Trontelj, J., Pišlar, A., Šlenc, J., Gobec, M., Živin, M., Tratnjek, L., Perše, M., Sałat, K., Podkowa, A., Filipek, B., Nachon, F., Brazzolotto, X., Więckowska, A., Malawska, B., … Gobec, S. (2016). Development of an in-vivo active reversible butyrylcholinesterase inhibitor. Scientific Reports, 6(1), 1–16. https://doi.org/10.1038/srep39495
  • Košak, U., Brus, B., Knez, D., Žakelj, S., Trontelj, J., Pišlar, A., Šink, R., Jukič, M., Živin, M., Podkowa, A., Nachon, F., Brazzolotto, X., Stojan, J., Kos, J., Coquelle, N., Sałat, K., Colletier, J.-P., & Gobec, S. (2018). The magic of crystal structure-based inhibitor optimization: Development of a butyrylcholinesterase inhibitor with picomolar affinity and in vivo activity. Journal of Medicinal Chemistry, 61(1), 119–139. https://doi.org/10.1021/acs.jmedchem.7b01086
  • MacDonough, M. T., Strecker, T. E., Hamel, E., Hall, J. J., Chaplin, D. J., Trawick, M. L., & Pinney, K. G. (2013). Synthesis and biological evaluation of indole-based, anti-cancer agents inspired by the vascular disrupting agent 2-(3′-hydroxy-4′-methoxyphenyl)-3-(3 ″, 4 ″, 5 ″-trimethoxybenzoyl)-6-methoxyindole (OXi8006). Bioorganic & Medicinal Chemistry, 21(21), 6831–6843. https://doi.org/10.1016/j.bmc.2013.07.028
  • Massoulié, J., Pezzementi, L., Bon, S., Krejci, E., & Vallette, F.-M. (1993). Molecular and cellular biology of cholinesterases. Progress in Neurobiology, 41(1), 31–91. https://doi.org/10.1016/0301-0082(93)90040-Y
  • Melzer, D. (1998). New drug treatment for Alzheimer’s disease: Lessons for healthcare policy. BMJ (Clinical Research ed.), 316(7133), 762–764.
  • Mesulam, M., Guillozet, A., Shaw, P., & Quinn, B. (2002). widely spread butyrylcholinesterase can hydrolyze acetylcholine in the normal and Alzheimer brain. Neurobiology of Disease, 9(1), 88–93. https://doi.org/10.1006/nbdi.2001.0462
  • Morris, M., Knudsen, G. M., Maeda, S., Trinidad, J. C., Ioanoviciu, A., Burlingame, A. L., & Mucke, L. (2015). Tau post-translational modifications in wild-type and human amyloid precursor protein transgenic mice. Nature Neuroscience, 18(8), 1183–1189. https://doi.org/10.1038/nn.4067
  • Mushtaq, G., Greig, N. H., Khan, J. A., & Kamal, M. A. (2014). Status of acetylcholinesterase and butyrylcholinesterase in Alzheimer’s disease and type 2 diabetes mellitus. CNS & Neurological Disorders Drug Targets, 13(8), 1432–1439. https://doi.org/10.2174/1871527313666141023141545
  • Mutahir, S., Jończyk, J., Bajda, M., Khan, I. U., Khan, M. A., Ullah, N., Ashraf, M., Riaz, S., Hussain, S., & Yar.,M. (2016). Novel biphenyl bis-sulfonamides as acetyl and butyrylcholinesterase inhibitors: Synthesis, biological evaluation and molecular modeling studies. Bioorganic Chemistry, 64, 13–20. https://doi.org/10.1016/j.bioorg.2015.11.002
  • Noreen, T., Taha, M., Imran, S., Chigurupati, S., Rahim, F., Selvaraj, M., Ismail, N. H., Mohammad, J. I., Ullah, H., Javid, M. T., Nawaz, F., Irshad, M., & Ali, M. (2017). Synthesis of alpha amylase inhibitors based on privileged indole scaffold. Bioorganic Chemistry, 72, 248–255. https://doi.org/10.1016/j.bioorg.2017.04.010
  • Park, M.-K., Rhee, Y.-H., Lee, H.-J., Lee, E.-O., Kim, K.-H., Park, M.-J., Jeon, B.-H., Shim, B.-S., Jung, C.-H., Choi, S.-H., Ahn, K.-S., & Kim, S.-H. (2008). Antiplatelet and antithrombotic activity of indole‐3‐carbinol in vitro and in vivo. Phytotherapy Research: PTR, 22(1), 58–64. https://doi.org/10.1002/ptr.2260
  • Rahim, F., Ullah, H., Taha, M., Wadood, A., Javed, M. T., Rehman, W., Nawaz, M., Ashraf, M., Ali, M., Sajid, M., Ali, F., Khan, M. N., & Khan, K. M. (2016). Synthesis and in vitro acetylcholinesterase and butyrylcholinesterase inhibitory potential of hydrazide-based Schiff bases. Bioorganic Chemistry, 68, 30–40. https://doi.org/10.1016/j.bioorg.2016.07.005
  • Rehman, A. U., Khan, M. T., Liu, H., Wadood, A., Malik, S. I., & Chen, H.-F. (2019). Exploring the pyrazinamide drug resistance mechanism of clinical mutants T370P and W403G in ribosomal protein S1 of Mycobacterium tuberculosis. Journal of Chemical Information and Modeling, 59(4), 1584–1597. https://doi.org/10.1021/acs.jcim.8b00956
  • Rehman, A. U., Rafiq, H., Rahman, M. U., Li, J., Liu, H., Luo, S., Arshad, T., Wadood, A., & Chen, H.-F. (2019). Gain-of-function SHP2 E76Q mutant rescuing autoinhibition mechanism associated with juvenile myelomonocytic leukemia. Journal of Chemical Information and Modeling, 59(7), 3229–3239. https://doi.org/10.1021/acs.jcim.9b00353
  • Rehman, A. U., Rahman, M. U., Lu, S., Liu, H., Li, J.-Y., Arshad, T., Wadood, A., Ng, H. L., & Chen, H.-F. (2020). Decoding allosteric communication pathways in protein lysine acetyltransferase. International Journal of Biological Macromolecules, 149, 70–80. https://doi.org/10.1016/j.ijbiomac.2020.01.213
  • Rehman, A. U., Zhen, G., Zhong, B., Ni, D., Li, J., Nasir, A., Gabr, M. T., Rafiq, H., Wadood, A., Lu, S., Zhang, J., & Chen, H.-F. (2021). Mechanism of zinc ejection by disulfiram in nonstructural protein 5A. Physical Chemistry Chemical Physics: PCCP, 23(21), 12204–12215. https://doi.org/10.1039/d0cp06360f
  • Riaz, M., Rehman, A. U., Shah, S. A., Rafiq, H., Lu, S., Qiu, Y., & Wadood, A. (2021). Predicting multi-interfacial binding mechanisms of NLRP3 and ASC pyrin domains in inflammasome activation. ACS Chemical Neuroscience, 12(4), 603–612. https://doi.org/10.1021/acschemneuro.0c00519
  • Riaz, S., Khan, I. U., Bajda, M., Ashraf, M., Shaukat, A., Rehman, T. U., Mutahir, S., Hussain, S., Mustafa, G., Yar., & M., Qurat-Ul-Ain. (2015). Pyridine sulfonamide as a small key organic molecule for the potential treatment of type-II diabetes mellitus and Alzheimer’s disease: In vitro studies against yeast α-glucosidase, acetylcholinesterase and butyrylcholinesterase. Bioorganic Chemistry, 63, 64–71. https://doi.org/10.1016/j.bioorg.2015.09.008
  • Rockwood, K., Mintzer, J., Truyen, L., Wessel, T., & Wilkinson, D. (2001). Effects of a flexible galantamine dose in Alzheimer’s disease: A randomised, controlled trial. Journal of Neurology, Neurosurgery, and Psychiatry, 71(5), 589–595. https://doi.org/10.1136/jnnp.71.5.589
  • Sharma, V., Kumar, P., & Pathak, D. (2010). Biological importance of the indole nucleus in recent years: A comprehensive review. Journal of Heterocyclic Chemistry. 47(3), 491–502.
  • Small, G. W., Rabins, P. V., Barry, P. P., Buckholtz, N. S., DeKosky, S. T., Ferris, S. H., Finkel, S. I., Gwyther, L. P., Khachaturian, Z. S., & Lebowitz, B. D. (1997). Diagnosis and treatment of Alzheimer disease and related disorders: Consensus statement of the American Association for Geriatric Psychiatry, the Alzheimer’s Association, and the American Geriatrics Society. JAMA, 278(16), 1363–1371. https://doi.org/10.1001/jama.1997.03550160083043
  • Süzen, S. (2007). Antioxidant activities of synthetic indole derivatives and possible activity mechanisms. In Bioactive Heterocycles V (pp. 145–178). Springer.
  • Taha, M., Alshamrani, F. J., Rahim, F., Anouar, E. H., Uddin, N., Chigurupati, S., Almandil, N. B., Farooq, R. K., Iqbal, N., Aldubayan, M., Venugopal, V., & Khan, K. M. (2021). Synthesis, characterization, biological evaluation, and kinetic study of indole base sulfonamide derivatives as acetylcholinesterase inhibitors in search of potent anti-Alzheimer agent. Journal of King Saud University, Science. 33(3), 101401. https://doi.org/10.1016/j.jksus.2021.101401
  • Taha, M., Baharudin, M. S., Ismail, N. H., Imran, S., Khan, M. N., Rahim, F., Selvaraj, M., Chigurupati, S., Nawaz, M., Qureshi, F., & Vijayabalan, S. (2018). Synthesis, α-amylase inhibitory potential and molecular docking study of indole derivatives. Bioorganic Chemistry, 80, 36–42. https://doi.org/10.1016/j.bioorg.2018.05.021
  • Taha, M., Imran, S., Ismail, N. H., Selvaraj, M., Rahim, F., Chigurupati, S., Ullah, H., Khan, F., Salar, U., Javid, M. T., Vijayabalan, S., Zaman, K., & Khan, K. M. (2017). Biology-oriented drug synthesis (BIODS) of 2-(2-methyl-5-nitro-1H-imidazol-1-yl) ethyl aryl ether derivatives, in vitro α-amylase inhibitory activity and in silico studies. Bioorganic Chemistry, 74, 1–9. https://doi.org/10.1016/j.bioorg.2017.07.001
  • Taha, M., Imran, S., Rahim, F., Wadood, A., & Khan, K. M. (2018). Oxindole based oxadiazole hybrid analogs: Novel α-glucosidase inhibitors. Bioorganic Chemistry, 76, 273–280. https://doi.org/10.1016/j.bioorg.2017.12.001
  • Taha, M., Javid, M. T., Imran, S., Selvaraj, M., Chigurupati, S., Ullah, H., Rahim, F., Khan, F., Mohammad, J. I., & Khan, K. M. (2017). Synthesis and study of the α-amylase inhibitory potential of thiadiazole quinoline derivatives. Bioorganic Chemistry, 74, 179–186. https://doi.org/10.1016/j.bioorg.2017.08.003
  • Taha, M., Rahim, F., Imran, S., Ismail, N. H., Ullah, H., Selvaraj, M., Javid, M. T., Salar, U., Ali, M., & Khan, K. M. (2017). Synthesis, α-glucosidase inhibitory activity and in silico study of tris-indole hybrid scaffold with oxadiazole ring: As potential leads for the management of type-II diabetes mellitus. Bioorganic Chemistry, 74, 30–40. https://doi.org/10.1016/j.bioorg.2017.07.009
  • Taha, M., Shah, S. A. A., Afifi, M., Imran, S., Sultan, S., Rahim, F., & Khan, K. M. (2018). Synthesis, α-glucosidase inhibition and molecular docking study of coumarin based derivatives. Bioorganic Chemistry, 77, 586–592. https://doi.org/10.1016/j.bioorg.2018.01.033
  • Taha, M., Shah, S. A. A., Afifi, M., Imran, S., Sultan, S., Rahim, F., Ismail, N. H., & Khan, K. M. (2018). Synthesis, molecular docking study and thymidine phosphorylase inhibitory activity of 3-formylcoumarin derivatives. Bioorganic Chemistry, 78, 17–23. https://doi.org/10.1016/j.bioorg.2018.02.028
  • Takahashi, T., Inoue, H., Horigome, M., Momose, K., Sugita, M., Katsuyama, K., Suzuki, C., Nagai, S., Nagase, M., & Nakamaru, K. (1993). Indole derivatives and anti-ulcer compositions thereof. Google Patents,
  • Ullah, H., Rahim, F., Taha, M., Uddin, I., Wadood, A., Shah, S. A. A., Farooq, R. K., Nawaz, M., Wahab, Z., & Khan, K. M. (2018). Synthesis, molecular docking study and in vitro thymidine phosphorylase inhibitory potential of oxadiazole derivatives. Bioorganic Chemistry, 78, 58–67. https://doi.org/10.1016/j.bioorg.2018.02.020
  • Wadood, A., Shareef, A., Ur Rehman, A., Muhammad, S., Khurshid, B., Khan, R. S., Shams, S., & Afridi, S. G. (2022). In silico drug designing for ala438 deleted ribosomal protein S1 (RpsA) since the active compound Zrl 15. ACS Omega,.7(1), 397–408. https://doi.org/10.1021/acsomega.1c04764
  • Wang, J., Wang, W., Kollman, P. A., & Case, D. A. (2006). Automatic atom type and bond type perception in molecular mechanical calculations. Journal of Molecular Graphics & Modelling, 25(2), 247–260. https://doi.org/10.1016/j.jmgm.2005.12.005
  • Wang, J., Wolf, R. M., Caldwell, J. W., Kollman, P. A., & Case, D. A. (2004). Development and testing of a general amber force field. Journal of Computational Chemistry, 25(9), 1157–1174. https://doi.org/10.1002/jcc.20035
  • Wegst-Uhrich, S. R., Navarro, D. A., Zimmerman, L., & Aga, D. S. (2014). Assessing antibiotic sorption in soil: A literature review and new case studies on sulfonamides and macrolides. Chemistry Central Journal, 8(1), 5–12. https://doi.org/10.1186/1752-153X-8-5
  • Yamamoto, Y., & Kurazono, M. (2007). A new class of anti-MRSA and anti-VRE agents: Preparation and antibacterial activities of indole-containing compounds. Bioorganic & Medicinal Chemistry Letters, 17(6), 1626–1628. https://doi.org/10.1016/j.bmcl.2006.12.081
  • Yu, D., Suzuki, M., Xie, L., Morris‐Natschke, S. L., & Lee, K. H. (2003). Recent progress in the development of coumarin derivatives as potent anti‐HIV agents. Medicinal Research Reviews, 23(3), 322–345. https://doi.org/10.1002/med.10034
  • Zajdel, P., Partyka, A., Marciniec, K., Bojarski, A. J., Pawlowski, M., & Wesolowska, A. (2014). Quinoline-and isoquinoline-sulfonamide analogs of aripiprazole: Novel antipsychotic agents? Future Medicinal Chemistry, 6(1), 57–75. https://doi.org/10.4155/fmc.13.158

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.