469
Views
1
CrossRef citations to date
0
Altmetric
Research Article

In vitro and computational studies of the β-lactamase inhibition and β-lactam potentiating properties of plant secondary metabolites

, , , & ORCID Icon
Pages 10326-10346 | Received 05 Jul 2022, Accepted 28 Nov 2022, Published online: 12 Dec 2022

References

  • Abraham, M. J., & Gready, J. E. (2011). Optimization of parameters for molecular dynamics simulation using smooth particle-mesh Ewald in GROMACS 4.5. Journal of Computational Chemistry, 32(9), 2031–2040. https://doi.org/10.1002/JCC.21773
  • Abreu, A. C., McBain, A. J., & Simões, M. (2012). Plants as sources of new antimicrobials and resistance-modifying agents. Natural Product Reports, 29(9), 1007–1021. https://doi.org/10.1039/c2np20035j
  • Adachi, H., Ohta, T., Matsuzawa, H., Ishiguro, M., & Imajoh, S. (1992). Active-site residues of the transpeptidase domain of penicillin-binding protein 2 from Escherichia coli: Similarity in catalytic mechanism to class A β-lactamases. Biochemistry, 31(2), 430–437. https://doi.org/10.1021/BI00117A018
  • Adamski, C. J., Cardenas, A. M., Brown, N. G., Horton, L. B., Sankaran, B., Prasad, B. V. V., Gilbert, H. F., & Palzkill, T. (2015). Molecular basis for the catalytic specificity of the CTX-M extended-spectrum β-lactamases. Biochemistry, 54(2), 447–457. https://doi.org/10.1021/BI501195G
  • Alfei, S., & Zuccari, G. (2022). Recommendations to synthetize old and new β-lactamases inhibitors: A review to encourage further production. Pharmaceuticals, 15(3), 384. https://doi.org/10.3390/ph15030384
  • Amaro, R. E., Baudry, J., Chodera, J., Demir, Ö., McCammon, J. A., Miao, Y., & Smith, J. C. (2018). Ensemble docking in drug discovery. Biophysical Journal, 114(10), 2271–2278. https://doi.org/10.1016/J.BPJ.2018.02.038
  • Ambler, R. P., Coulson, A. F. W., Frere, J. M., Ghuysen, J. M., Joris, B., Forsman, M., Levesque, R. C., Tiraby, G., & Waley, S. G. (1991). A standard numbering scheme for the class A beta-lactamases. Biochemical Journal, 276(1), 269–270. https://doi.org/10.1042/bj2760269
  • Amin, M. U., Khurram, M., Khan, T. A., Faidah, H. S., Shah, Z. U., Ur Rahman, S., Haseeb, A., Ilyas, M., Ullah, N., Khayam, S. M. U., & Iriti, M. (2016). Effects of luteolin and quercetin in combination with some conventional antibiotics against methicillin-resistant Staphylococcus aureus. International Journal of Molecular Sciences, 17(11), 1947. https://doi.org/10.3390/ijms17111947
  • Baker, N. A., Sept, D., Joseph, S., Holst, M. J., & McCammon, J. A. (2001). Electrostatics of nanosystems: Application to microtubules and the ribosome. Proceedings of the National Academy of Sciences of the United States of America, 98(18), 10037–10041. https://doi.org/10.1073/PNAS.181342398
  • Balouiri, M., Sadiki, M., & Ibnsouda, S. K. (2016). Methods for in vitro evaluating antimicrobial activity: A review. Journal of Pharmaceutical Analysis, 6(2), 71–79. https://doi.org/10.1016/J.JPHA.2015.11.005
  • Berendsen, H. J. C., Postma, J. P. M., Van Gunsteren, W. F., Dinola, A., & Haak, J. R. (1984). Molecular dynamics with coupling to an external bath. The Journal of Chemical Physics, 81(8), 3684–3690. https://doi.org/10.1063/1.448118
  • Brooks, B. R., Brooks, C. L., Mackerell, A. D., Nilsson, L., Petrella, R. J., Roux, B., Won, Y., Archontis, G., Bartels, C., Boresch, S., Caflisch, A., Caves, L., Cui, Q., Dinner, A. R., Feig, M., Fischer, S., Gao, J., Hodoscek, M., Im, W., … Karplus, M. (2009). CHARMM: The biomolecular simulation program. Journal of Computational Chemistry, 30(10), 1545–1614. https://doi.org/10.1002/JCC.21287
  • Buchmann, D., Schultze, N., Borchardt, J., Böttcher, I., Schaufler, K., & Guenther, S. (2022). Synergistic antimicrobial activities of epigallocatechin gallate, myricetin, daidzein, gallic acid, epicatechin, 3-hydroxy-6-methoxyflavone and genistein combined with antibiotics against ESKAPE pathogens. Journal of Applied Microbiology, 132(2), 949–963. https://doi.org/10.1111/JAM.15253
  • Bush, K. (1988). Beta-lactamase inhibitors from laboratory to clinic. Clinical Microbiology Reviews, 1(1), 109–123. https://doi.org/10.1128/CMR.1.1.109
  • Bush, K. (2018). Past and present perspectives on β-lactamases. Antimicrobial Agents and Chemotherapy, 62(10), e01076-18. https://doi.org/10.1128/AAC.01076-18
  • Bush, K., & Bradford, P. A. (2016). β-lactams and β-lactamase inhibitors: An overview. Cold Spring Harbor Perspectives in Medicine, 6(8), a025247. https://doi.org/10.1101/cshperspect.a025247
  • Bush, K., & Bradford, P. A. (2019). Interplay between β-lactamases and new β-lactamase inhibitors. Nature Reviews. Microbiology, 17(5), 295–306. https://doi.org/10.1038/s41579-019-0159-8
  • Bush, K., & Fisher, J. F. (2011). Epidemiological expansion, structural studies, and clinical challenges of new β-lactamases from gram-negative bacteria. Annual Review of Microbiology, 65, 455–478. https://doi.org/10.1146/ANNUREV-MICRO-090110-102911
  • Bush, K., & Jacoby, G. A. (2010). Updated functional classification of β-lactamases. Antimicrobial Agents and Chemotherapy, 54(3), 969–976. https://doi.org/10.1128/AAC.01009-09
  • Buynak, J. D. (2006). Understanding the longevity of the β-lactam antibiotics and of antibiotic/β-lactamase inhibitor combinations. Biochemical Pharmacology, 71(7), 930–940. https://doi.org/10.1016/J.BCP.2005.11.012
  • Chaïbi, E. B., Sirot, D., Paul, G., & Labia, R. (1999). Inhibitor-resistant TEM β-lactamases: Phenotypic, genetic and biochemical characteristics. The Journal of Antimicrobial Chemotherapy, 43(4), 447–458. https://doi.org/10.1093/JAC/43.4.447
  • Chandar, B., Poovitha, S., Ilango, K., MohanKumar, R., & Parani, M. (2017). Inhibition of New Delhi metallo-β-lactamase 1 (NDM-1) producing Escherichia coli IR-6 by selected plant extracts and their synergistic actions with antibiotics. Frontiers in Microbiology, 8, 1580. https://doi.org/10.3389/FMICB.2017.01580
  • Daina, A., Michielin, O., & Zoete, V. (2017). SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Scientific Reports, 7(1), 42717–42713. https://doi.org/10.1038/srep42717
  • Dallakyan, S., & Olson, A. J. (2015). Small-molecule library screening by docking with PyRx. In Chemical biology (pp. 243–250). Humana Press.
  • Darwish, R. M., & Aburjai, T. A. (2010). Effect of ethnomedicinal plants used in folklore medicine in Jordan as antibiotic resistant inhibitors on Escherichia coli. BMC Complementary and Alternative Medicine, 10(1), 9–8. https://doi.org/10.1186/1472-6882-10-9
  • Daura, X., Gademann, K., Jaun, B., Seebach, D., van Gunsteren, W. F., Mark, A. E., Rigault, A., Siegel, J., Harrowfield, J., Chevrier, B., Moras, D., Lehn, J., Garrett, M., Koert, U., Meyer, D., & Fischer, J. (1999). Peptide folding: When simulation meets experiment. Angewandte Chemie International Edition, 38(1–2), 236–240. https://doi.org/10.1002/(SICI)1521-3773(19990115)38:1/2
  • De Marino, S., Festa, C., Zollo, F., Nini, A., Antenucci, L., Raimo, G., & Iorizzi, M. (2014). Antioxidant activity and chemical components as potential anticancer agents in the olive leaf (Olea europaea L. cv Leccino.) decoction. Anti-Cancer Agents in Medicinal Chemistry, 14(10), 1376–1385.
  • Delaire, M., Labia, R., Samama, J. P., & Masson, J. M. (1992). Site-directed mutagenesis at the active site of Escherichia coli TEM-1 beta-lactamase. Suicide inhibitor-resistant mutants reveal the role of arginine 244 and methionine 69 in catalysis. The Journal of Biological Chemistry, 267(29), 20600–20606. https://doi.org/10.1016/S0021-9258(19)36729-8
  • Dey, D., Debnath, S., Hazra, S., Ghosh, S., Ray, R., & Hazra, B. (2012). Pomegranate pericarp extract enhances the antibacterial activity of ciprofloxacin against extended-spectrum β-lactamase (ESBL) and metallo-β-lactamase (MBL) producing Gram-negative bacilli. Food and Chemical Toxicology : An International Journal Published for the British Industrial Biological Research Association, 50(12), 4302–4309. https://doi.org/10.1016/J.FCT.2012.09.001
  • Eberhardt, J., Santos-Martins, D., Tillack, A. F., & Forli, S. (2021). AutoDock Vina 1.2. 0: New docking methods, expanded force field, and python bindings. Journal of Chemical Information and Modeling, 61(8), 3891–3898. https://doi.org/10.1021/acs.jcim.1c00203
  • Egorov, A., Rubtsova, M., Grigorenko, V., Uporov, I., & Veselovsky, A. (2019). The role of the ω-loop in regulation of the catalytic activity of TEM-type β-lactamases. Biomolecules, 9(12), 854. https://doi.org/10.3390/biom9120854
  • Essmann, U., Perera, L., Berkowitz, M. L., Darden, T., Lee, H., & Pedersen, L. G. (1995). A smooth particle mesh Ewald method. The Journal of Chemical Physics, 103(19), 8577–8593. https://doi.org/10.1063/1.470117
  • Gangoué-Piéboji, J., Baurin, S., Frère, J. M., Ngassam, P., Ngameni, B., Azebaze, A., Pegnyemb, D. E., Watchueng, J., Goffin, C., & Galleni, M. (2007). Screening of some medicinal plants from cameroon for β-Lactamase inhibitory activity. Phytotherapy Research : PTR, 21(3), 284–287. https://doi.org/10.1002/PTR.2001
  • Glasset, B., Herbin, S., Guillier, L., Cadel-Six, S., Vignaud, M., Grout, J., Pairaud, S., Michel, V., Hennekinne, J., Ramarao, N., & Brisabois, A. (2016). Bacillus cereus-induced food-borne outbreaks in France, 2007 to 2014: Epidemiology and genetic characterisation. Eurosurveillance, 21(48), 30413. https://doi.org/10.2807/1560-7917.ES.2016.21.48.30413
  • Griffith, D. C., Sabet, M., Tarazi, Z., Lomovskaya, O., & Dudley, M. N. (2019). Pharmacokinetics/pharmacodynamics of vaborbactam, a novel beta-lactamase inhibitor, in combination with meropenem. Antimicrobial Agents and Chemotherapy, 63(1), e01659–18. https://doi.org/10.1128/AAC.01659-18
  • Hess, B. (2008). P-LINCS: A parallel linear constraint solver for molecular simulation. Journal of Chemical Theory and Computation, 4(1), 116–122. https://doi.org/10.1021/CT700200B
  • Hess, B., Bekker, H., Berendsen, H. J. C., & Fraaije, J. G. E. M. (1997). LINCS: A linear constraint solver for molecular simulations. Journal of Computational Chemistry, 18(12), 1463–1472. https://doi.org/10.1002/(SICI)1096-987X(199709)18:12
  • Humphrey, W., Dalke, A., & Schulten, K. (1996). VMD: visual molecular dynamics. Journal of Molecular Graphics, 14(1), 33–38.
  • Jorgensen, W. L., Chandrasekhar, J., Madura, J. D., Impey, R. W., & Klein, M. L. (1983). Comparison of simple potential functions for simulating liquid water. The Journal of Chemical Physics, 79(2), 926–935. https://doi.org/10.1063/1.445869
  • Ke, W., Bethel, C. R., Thomson, J. M., Bonomo, R. A., & Van Den Akker, F. (2007). Crystal Structure of KPC-2: Insights into carbapenemase activity in class A β-lactamases. Biochemistry, 46(19), 5732–5740. https://doi.org/10.1021/BI700300U
  • Kongkham, B., Prabakaran, D., & Puttaswamy, H. (2020). Opportunities and challenges in managing antibiotic resistance in bacteria using plant secondary metabolites. Fitoterapia, 147, 104762. https://doi.org/10.1016/J.FITOTE.2020.104762
  • Kumar Makhija, I., Sharma, I. P., & Khamar, D. (2010). Phytochemistry and pharmacological properties of Ficus religiosa: An overview. Annals of Biological Research, 1(4), 171–180.
  • Kumari, R., Kumar, R., & Lynn, A. (2014). g-mmpbsa -A GROMACS tool for high-throughput MM-PBSA calculations. Journal of Chemical Information and Modeling, 54(7), 1951–1962. https://doi.org/10.1021/CI500020M
  • Lipinski, C. A., Lombardo, F., Dominy, B. W., & Feeney, P. J. (1997). Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Advanced Drug Delivery Reviews, 23(1–3), 3–25. https://doi.org/10.1016/S0169-409X(96)00423-1
  • Liu, I. X., Durham, D. G., & Richards, R. M. E. (2000). Baicalin synergy with β-lactam antibiotics against methicillin-resistant Staphylococcus aureus and other β-lactam-resistant strains of S. aureus. The Journal of Pharmacy and Pharmacology, 52(3), 361–366. https://doi.org/10.1211/0022357001773922
  • Luna, E. M., Freitas, T. S., Campina, F. F., Costa, M. S., Rocha, J. E., Cruz, R. P., Sena Júnior, D. L., Silveira, Z. S., Macedo, N. S., Pinheiro, J. C. A., Pereira-Júnior, F. N., Lisboa, M. A. N., Cruz, G. V., Calixto Júnior, J. T., Teixeira, A. M. R., & Coutinho, H. D. M. (2021). Evaluation of phytochemical composition, toxicity in Drosophila melanogaster and effects on antibiotics modulation of Plathymenia reticulata Benth extract. Toxicology Reports, 8, 732–739. https://doi.org/10.1016/J.TOXREP.2021.03.020
  • Mandal, S. M., Dias, R. O., & Franco, O. L. (2017). Phenolic compounds in antimicrobial therapy. Journal of Medicinal Food, 20(10), 1031–1038. https://doi.org/10.1089/JMF.2017.0017
  • Naouel, B., Baghiani, A., Boussoualim, N., & Meziane-Cherif, D. (2011). Kinetic study of different flavonoids as inhibitors of beta-lactamase enzyme. African Journal of Biochemistry Research, 5(10), 321–327.
  • Oztekin, A., Karagoz, K., Adem, S., & Comakli, V. (2022). Enhancing bactericidal strategy with selected aromatic compounds: In vitro and in silico study. Journal of Biomolecular Structure and Dynamics, 40(12), 5547–5555. https://doi.org/10.1080/07391102.2021.1871864
  • Padalia, H., & Chanda, S. (2015). Antimicrobial efficacy of different solvent extracts of Tagetes erecta L. flower, alone and in combination with antibiotics. Applied Microbiology: Open Access, 1(1), 1–10. https://doi.org/10.4172/2471-9315.1000106
  • Pal, A., Dhara, L., & Tripathi, A. (2019). Contribution of acrB upregulation & OmpC/Ompk36 loss over the presence of blaNDM towards carbapenem resistance development among pathogenic Escherichia coli & Klebsiella spp. Indian Journal of Medical Research, 149(4), 528. https://doi.org/10.4103/ijmr.IJMR_716_17
  • Palzkill, T. (2018). Structural and mechanistic basis for extended-spectrum drug-resistance mutations in altering the specificity of TEM, CTX-M, and KPC β-lactamases. Frontiers in Molecular Biosciences, 5, 16. https://doi.org/10.3389/FMOLB.2018.00016
  • Parida, P., Bhowmick, S., Saha, A., & Islam, M. A. (2021). Insight into the screening of potential beta-lactamase inhibitors as anti-bacterial chemical agents through pharmacoinformatics study. Journal of Biomolecular Structure & Dynamics, 39(3), 923–942. https://doi.org/10.1080/07391102.2020.1720819
  • Parrinello, M., & Rahman, A. (1981). Polymorphic transitions in single crystals: A new molecular dynamics method. Journal of Applied Physics, 52(12), 7182–7190. https://doi.org/10.1063/1.328693
  • Pemberton, O. A., Zhang, X., & Chen, Y. (2017). Molecular basis of substrate recognition and product release by the Klebsiella pneumoniae carbapenemase (KPC-2). Journal of Medicinal Chemistry, 60(8), 3525–3530. https://doi.org/10.1021/ACS.JMEDCHEM.7B00158
  • Pendleton, J. N., Gorman, S. P., & Gilmore, B. F. (2013). Clinical relevance of the ESKAPE pathogens. Expert Review of anti-Infective Therapy, 11(3), 297–308. https://doi.org/10.1586/ERI.13.12
  • Pettersen, E. F., Goddard, T. D., Huang, C. C., Couch, G. S., Greenblatt, D. M., Meng, E. C., & Ferrin, T. E. (2004). UCSF Chimera—A visualization system for exploratory research and analysis. Journal of Computational Chemistry, 25(13), 1605–1612. https://doi.org/10.1002/jcc.20084
  • Philippon, A., Slama, P., Dény, P., & Labia, R. (2016). A structure-based classification of class A β-Lactamases, a broadly diverse family of enzymes. Clinical Microbiology Reviews, 29(1), 29–57. https://doi.org/10.1128/CMR.00019-15
  • Ramakrishnaiah, G., & Hariprasad, T. (2013). In vitro antimicrobial activity of leaves and bark extracts of Ficus religiosa (Linn.). Indian Journal of Pharmaceutical and Biological Research, 1(01), 38–43. https://doi.org/10.30750/ijpbr.1.1.3
  • Rappé, A. K., Casewit, C. J., Colwell, K. S., Goddard, W. A., & Skiff, W. M. (1992). UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations. Journal of the American Chemical Society, 114(25), 10024–10035. https://doi.org/10.1021/ja00051a040
  • Sander, T., Freyss, J., Von Korff, M., & Rufener, C. (2015). DataWarrior: An open-source program for chemistry aware data visualization and analysis. Journal of Chemical Information and Modeling, 55(2), 460–473. https://doi.org/10.1021/CI500588J
  • Siriwong, S., Teethaisong, Y., Thumanu, K., Dunkhunthod, B., & Eumkeb, G. (2016). The synergy and mode of action of quercetin plus amoxicillin against amoxicillin-resistant Staphylococcus epidermidis. BMC Pharmacology and Toxicology, 17(1), 1–14. https://doi.org/10.1186/S40360-016-0083-8/FIGURES/11
  • Siriwong, S., Thumanu, K., Hengpratom, T., & Eumkeb, G. (2015). Synergy and mode of action of ceftazidime plus quercetin or luteolin on Streptococcus pyogenes. Evidence-Based Complementary and Alternative Medicine : eCAM, 2015, 759459. https://doi.org/10.1155/2015/759459
  • Tian, W., Chen, C., Lei, X., Zhao, J., & Liang, J. (2018). CASTp 3.0: Computed atlas of surface topography of proteins. Nucleic Acids Research, 46(W1), W363–W367.
  • Trott, O., & Olson, A. J. (2010). AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal of Computational Chemistry, 31(2), 455–461. https://doi.org/10.1002/jcc.21334
  • Uma, B., Prabhakar, K., & Rajendran, S. (2009). Invitro antimicrobial activity and phytochemical analysis of Ficus religiosa L. and Ficus bengalensis L. against Diarrhoeal Enterotoxigenic E. coli. Ethnobotanical Leaflets, 2009(4), 7.
  • Van Der Spoel, D., Lindahl, E., Hess, B., Groenhof, G., Mark, A. E., & Berendsen, H. J. (2005). GROMACS: Fast, flexible, and free. Journal of Computational Chemistry, 26(16), 1701–1718. https://doi.org/10.1002/jcc.20291
  • Verlet, L. (1967). Computer “experiments” on classical fluids. I. Thermodynamical properties of Lennard-Jones molecules. Physical Review, 159(1), 98–103. https://doi.org/10.1103/PhysRev.159.98
  • Wilke, M. S., Lovering, A. L., Strynadka,., & N. C. J. (2005). β-Lactam antibiotic resistance: A current structural perspective. Current Opinion in Microbiology, 8(5), 525–533. https://doi.org/10.1016/J.MIB.2005.08.016
  • Zhao, W. H., Hu, Z. Q., Okubo, S., Hara, Y., & Shimamura, T. (2001). Mechanism of synergy between epigallocatechin gallate and β-lactams against methicillin-resistant Staphylococcus aureus. Antimicrobial Agents and Chemotherapy, 45(6), 1737–1742. https://doi.org/10.1128/AAC.45.6.1737-1742.2001
  • Zoete, V., Cuendet, M. A., Grosdidier, A., & Michielin, O. (2011). SwissParam: A fast force field generation tool for small organic molecules. Journal of Computational Chemistry, 32(11), 2359–2368. https://doi.org/10.1002/JCC.21816

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.