247
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Comprehensive analysis of non-synonymous missense SNPs of human galactose mutarotase (GALM) gene: an integrated computational approach

ORCID Icon, , , , , , , , & show all
Pages 11178-11192 | Received 12 May 2022, Accepted 15 Dec 2022, Published online: 02 Jan 2023

References

  • Adzhubei, I. A., Schmidt, S., Peshkin, L., Ramensky, V. E., Gerasimova, A., Bork, P., Kondrashov, A. S., & Sunyaev, S. R. (2010). A method and server for predicting damaging missense mutations. Nature Methods, 7(4), 248–249. https://doi.org/10.1038/nmeth0410-248
  • Aier, I., Varadwaj, P. K., & Raj, U. (2016). Structural insights into conformational stability of both wild-type and mutant EZH2 receptor. Scientific Reports, 6(1), 34984. https://doi.org/10.1038/srep34984
  • Ancien, F., Pucci, F., Godfroid, M., & Rooman, M. (2018). Prediction and interpretation of deleterious coding variants in terms of protein structural stability. Scientific Reports, 8(1), 4480. https://doi.org/10.1038/s41598-018-22531-2
  • Ashkenazy, H., Abadi, S., Martz, E., Chay, O., Mayrose, I., Pupko, T., & Ben-Tal, N. (2016). ConSurf 2016: An improved methodology to estimate and visualize evolutionary conservation in macromolecules. Nucleic Acids Research, 44(W1), W344–W350. https://doi.org/10.1093/nar/gkw408
  • Banford, S., McCorvie, T. J., Pey, A. L., & Timson, D. J. (2021). Galactosemia: Towards pharmacological chaperones. Journal of Personalized Medicine, 11(2), 106. https://doi.org/10.3390/jpm11020106
  • Banford, S., & Timson, D. J. (2021). The structural and molecular biology of type IV galactosemia. Biochimie, 183, 13–17. https://doi.org/10.1016/j.biochi.2020.11.001
  • Bateman, A., Martin, M.-J., Orchard, S., Magrane, M., Agivetova, R., Ahmad, S., Alpi, E., Bowler-Barnett, E. H., Britto, R., Bursteinas, B., Bye-A-Jee, H., Coetzee, R., Cukura, A., Da Silva, A., Denny, P., Dogan, T., Ebenezer, T., Fan, J., Castro, L. G., … Teodoro, D. (2021). UniProt: The universal protein knowledgebase in 2021. Nucleic Acids Research, 49(D1), D480–D489. https://doi.org/10.1093/nar/gkaa1100
  • Bendl, J., Stourac, J., Salanda, O., Pavelka, A., Wieben, E. D., Zendulka, J., Brezovsky, J., & Damborsky, J. (2014). PredictSNP: Robust and accurate consensus classifier for prediction of disease-related mutations. PLoS Computational Biology, 10(1), e1003440. https://doi.org/10.1371/journal.pcbi.1003440
  • Capriotti, E., Altman, R. B., & Bromberg, Y. (2013). Collective judgment predicts disease-associated single nucleotide variants. BMC Genomics, 14(Suppl 3), S2. https://doi.org/10.1186/1471-2164-14-S3-S2
  • Capriotti, E., Calabrese, R., & Casadio, R. (2006). Predicting the insurgence of human genetic diseases associated to single point protein mutations with support vector machines and evolutionary information. Bioinformatics (Oxford, England), 22(22), 2729–2734. https://doi.org/10.1093/bioinformatics/btl423
  • Capriotti, E., Calabrese, R., Fariselli, P., Martelli, P., Altman, R. B., & Casadio, R. (2013). WS-SNPs&GO: A web server for predicting the deleterious effect of human protein variants using functional annotation. BMC Genomics. 14(Suppl 3), S6. https://doi.org/10.1186/1471-2164-14-S3-S6
  • Capriotti, E., Fariselli, P., Rossi, I., & Casadio, R. (2008). A three-state prediction of single point mutations on protein stability changes. BMC Bioinformatics, 9(S2), S6. https://doi.org/10.1186/1471-2105-9-S2-S6
  • Cheng, J., Randall, A., & Baldi, P. (2006). Prediction of protein stability changes for single-site mutations using support vector machines. Proteins, 62(4), 1125–1132. https://doi.org/10.1002/prot.20810
  • Choi, Y., & Chan, A. P. (2015). PROVEAN web server: a tool to predict the functional effect of amino acid substitutions and indels. Bioinformatics (Oxford, England), 31(16), 2745–2747. https://doi.org/10.1093/bioinformatics/btv195
  • Dehouck, Y., Kwasigroch, J. M., Gilis, D., & Rooman, M. (2011). PoPMuSiC 2.1: A web server for the estimation of protein stability changes upon mutation and sequence optimality. BMC Bioinformatics, 12(1), 151. https://doi.org/10.1186/1471-2105-12-151
  • Dvornik, E. ,Simard-Duquesne, N. ,Krami, M. ,Sestanj, K. ,Gabbay, K. H. ,Kinoshita, J. H. ,Varma, S. D. ,& Merola, L. O. (1973). Polyol accumulation in galactosemic and diabetic rats: Control by an aldose reductase inhibitor. Science, 182(4117), 1146–1148. https://doi.org/10.1126/science.182.4117.1146
  • Fang, C., Shang, Y., & Xu, D. (2019). Prediction of protein backbone torsion angles using deep residual inception neural networks. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 16(3), 1020–1028. https://doi.org/10.1109/TCBB.2018.2814586
  • Glaser, F., Pupko, T., Paz, I., Bell, R. E., Bechor-Shental, D., Martz, E., & Ben-Tal, N. (2003). ConSurf: Identification of functional regions in proteins by surface-mapping of phylogenetic information. Bioinformatics (Oxford, England), 19(1), 163–164. https://doi.org/10.1093/bioinformatics/19.1.163
  • Habib, I., Khan, S., Mohammad, T., Hussain, A., Alajmi, M. F., Rehman, T., Anjum, F., & Hassan, M. I. (2022). Impact of non-synonymous mutations on the structure and function of telomeric repeat binding factor 1. Journal of Biomolecular Structure and Dynamics, 40(19), 9053–9066. https://doi.org/10.1080/07391102.2021.1922313
  • Hecht, M., Bromberg, Y., & Rost, B. (2015). Better prediction of functional effects for sequence variants. BMC Genomics, 16(8), 1-12. https://doi.org/10.1186/1471-2164-16-S8-S1
  • Hess, B., Kutzner, C., van der Spoel, D., & Lindahl, E. (2008). GROMACS 4: Algorithms for highly efficient, load-balanced, and scalable molecular simulation. Journal of Chemical Theory and Computation, 4(3), 435–447. https://doi.org/10.1021/ct700301q
  • Holden, H. M., Rayment, I., & Thoden, J. B. (2003). Structure and function of enzymes of the leloir pathway for galactose metabolism. The Journal of Biological Chemistry, 278(45), 43885–43888. https://doi.org/10.1074/jbc.R300025200
  • Iwasawa, S., Kikuchi, A., Wada, Y., Arai-Ichinoi, N., Sakamoto, O., Tamiya, G., & Kure, S. (2019). The prevalence of GALM mutations that cause galactosemia: A database of functionally evaluated variants. Molecular Genetics and Metabolism, 126(4), 362–367. https://doi.org/10.1016/j.ymgme.2019.01.018
  • Ji, Y.-Y., & Li, Y.-Q. (2010). The role of secondary structure in protein structure selection. The European Physical Journal. E, Soft Matter, 32(1), 103–107. https://doi.org/10.1140/epje/i2010-10591-5
  • Keston, A. S. (1963). Inhibition of action of lens mutarotase on glucose by cataractogenic sugars and corresponding polyols. Archives of Biochemistry and Biophysics, 102(2), 306–312. https://doi.org/10.1016/0003-9861(63)90184-X
  • Kinoshita, J. H., Merola, L. O., & Dikmak, E. (1962). The accumulation of dulcitol and water in rabbit lens incubated with galactose. Biochimica et Biophysica Acta, 62(1), 176–178. https://doi.org/10.1016/0006-3002(62)90508-5
  • Klausen, M. S., Jespersen, M. C., Nielsen, H., Jensen, K. K., Jurtz, V. I., Sønderby, C. K., Sommer, M. O. A., Winther, O., Nielsen, M., Petersen, B., & Marcatili, P. (2019). NetSurfP‐2.0: Improved prediction of protein structural features by integrated deep learning. Proteins, 87(6), 520–527. https://doi.org/10.1002/prot.25674
  • Kostal, J., & Voutchkova-Kostal, A. (2016). CADRE-SS, an in silico tool for predicting skin sensitization potential based on modeling of molecular interactions. Chemical Research in Toxicology, 29(1), 58–64. https://doi.org/10.1021/acs.chemrestox.5b00392
  • Kumar, R., Bansal, A., Shukla, R., Raj Singh, T., Wasudeo Ramteke, P., Singh, S., & Gautam, B. (2019). In silico screening of deleterious single nucleotide polymorphisms (SNPs) and molecular dynamics simulation of disease associated mutations in gene responsible for oculocutaneous albinism type 6 (OCA 6) disorder. Journal of Biomolecular Structure & Dynamics, 37(13), 3513–3523. https://doi.org/10.1080/07391102.2018.1520649
  • Landau, M., Mayrose, I., Rosenberg, Y., Glaser, F., Martz, E., Pupko, T., & Ben-Tal, N. (2005). ConSurf 2005: The projection of evolutionary conservation scores of residues on protein structures. Nucleic Acids Research, 33(Web Server issue), W299–W302. https://doi.org/10.1093/nar/gki370
  • Lin, L.-R., Reddy, V. N., Giblin, F. J., Kador, P. F., & Kinoshita, J. H. (1991). Polyol accumulation in cultured human lens epithelial cells. Experimental Eye Research, 52(1), 93–100. https://doi.org/10.1016/0014-4835(91)90132-X
  • Liu, X., Cannon, D. M., Akula, N., Moya, P. R., Knudsen, G. M., Arentzen, T. E., Steele, J., Laje, G., Drevets, W. C., & McMahon, F. J. (2011). A non-synonymous polymorphism in galactose mutarotase (GALM) is associated with serotonin transporter binding potential in the human thalamus: results of a genome-wide association study. Molecular Psychiatry, 16(6), 584–585. https://doi.org/10.1038/mp.2011.1
  • López-Ferrando, V., Gazzo, A., de la Cruz, X., Orozco, M., & Gelpí, J. L. (2017). PMut: A web-based tool for the annotation of pathological variants on proteins, 2017 update. Nucleic Acids Research, 45(W1), W222–W228. https://doi.org/10.1093/nar/gkx313
  • Madeira, F., Park, Y. m., Lee, J., Buso, N., Gur, T., Madhusoodanan, N., Basutkar, P., Tivey, A. R. N., Potter, S. C., Finn, R. D., & Lopez, R. (2019). The EMBL-EBI search and sequence analysis tools APIs in 2019. Nucleic Acids Research, 47(W1), W636–W641. https://doi.org/10.1093/nar/gkz268
  • Mathis, H., & Rivail, J.-L. (1991). Molecular graphics and artificial intelligence in drug design: The SARAH system. Journal of Molecular Graphics, 9(1), 70. https://doi.org/10.1016/0263-7855(91)80092-E
  • Parthiban, V., Gromiha, M. M., & Schomburg, D. (2006). CUPSAT: Prediction of protein stability upon point mutations. Nucleic Acids Research, 34(Web Server issue), W239–W242. https://doi.org/10.1093/nar/gkl190
  • Pires, D. E. V., Ascher, D. B., & Blundell, T. L. (2014). DUET: A server for predicting effects of mutations on protein stability using an integrated computational approach. Nucleic Acids Research, 42(Web Server issue), W314–W319. https://doi.org/10.1093/nar/gku411
  • Pucci, F., Kwasigroch, J. M., & Rooman, M. (2020). Protein thermal stability engineering using HoTMuSiC. In Z. Gáspári (Ed.) Structural bioinformatics: Methods and protocols (pp. 59–73). Springer. https://doi.org/10.1007/978-1-0716-0270-6_5
  • Rahaman, M. M., Islam, R., Jewel, G. M. N. A., & Hoque, H. (2022). Implementation of computational approaches to explore the deleterious effects of non-synonymous SNPs on pRB protein. Journal of Biomolecular Structure and Dynamics, 40(16), 7256–7273. https://doi.org/10.1080/07391102.2021.1896385
  • Reva, B., Antipin, Y., & Sander, C. (2011). Predicting the functional impact of protein mutations: Application to cancer genomics. Nucleic Acids Research, 39(17), e118–e118. https://doi.org/10.1093/nar/gkr407
  • Rodrigues, C. H., Pires, D. E., & Ascher, D. B. (2018). DynaMut: Predicting the impact of mutations on protein conformation, flexibility and stability. Nucleic Acids Research, 46(W1), W350–W355. https://doi.org/10.1093/nar/gky300
  • Savojardo, C., Fariselli, P., Martelli, P. L., & Casadio, R. (2016). INPS-MD: A web server to predict stability of protein variants from sequence and structure. Bioinformatics (Oxford, England), 32(16), 2542–2544. https://doi.org/10.1093/bioinformatics/btw192
  • Saxena, S., Achyuth B, S., Murthy, T. P. K., Chandramohan, V., Yadav, A. K., & Singh, T. R. (2021). Structural and functional analysis of disease-associated mutations in GOT1 gene: An in silico study. Computers in Biology and Medicine, 136, 104695. https://doi.org/10.1016/j.compbiomed.2021.104695
  • Saxena, S., Krishna Murthy, T.P., Chandrashekhar, C.R., Patil, L.S., Aditya, A., Shukla, R., Yadav, A.K., Singh, T.R., Samantaray, M. and Ramaswamy, A. (2022). A bioinformatics approach to the identification of novel deleterious mutations of human T P MT through validated screening and molecular dynamics. Scientific Reports, 12(1), 1–21. https://www.nature.com/articles/s41598-022-23488-z
  • Saxena, S., Murthy, T.K., Chandramohan, V., Achyuth, S., Maansi, M., Das, P., Sineagha, V. & Prakash, S. (2022). In-silico analysis of deleterious single nucleotide polymorphisms of P NMT gene. Molecular Simulation, 48(16), 1411–1425. https://doi.org/10.1080/08927022.2022.2094922
  • Sherry, S. T., Ward, M. H., Kholodov, M., Baker, J., Phan, L., Smigielski, E. M., & Sirotkin, K. (2001). dbSNP: The NCBI database of genetic variation. Nucleic Acids Research, 29(1), 308–311. https://doi.org/10.1093/nar/29.1.308
  • Shukla, H., Shukla, R., Sonkar, A., Pandey, T., & Tripathi, T. (2017). Distant Phe345 mutation compromises the stability and activity of Mycobacterium tuberculosis isocitrate lyase by modulating its structural flexibility. Scientific Reports, 7(1), 1058. https://doi.org/10.1038/s41598-017-01235-z
  • Shukla, H., Shukla, R., Sonkar, A., & Tripathi, T. (2017). Alterations in conformational topology and interaction dynamics caused by L418A mutation leads to activity loss of Mycobacterium tuberculosis isocitrate lyase. Biochemical and Biophysical Research Communications, 490(2), 276–282. https://doi.org/10.1016/j.bbrc.2017.06.036
  • Shukla, R., Shukla, H., & Tripathi, T. (2018). Activity loss by H46A mutation in Mycobacterium tuberculosis isocitrate lyase is due to decrease in structural plasticity and collective motions of the active site. Tuberculosis (Edinburgh, Scotland), 108, 143–150. https://doi.org/10.1016/j.tube.2017.11.013
  • Sim, N.-L., Kumar, P., Hu, J., Henikoff, S., Schneider, G., & Ng, P. C. (2012). SIFT web server: Predicting effects of amino acid substitutions on proteins. Nucleic Acids Research, 40(Web Server issue), W452–W457. https://doi.org/10.1093/nar/gks539
  • Stank, A., Kokh, D. B., Fuller, J. C., & Wade, R. C. (2016). Protein Binding Pocket Dynamics. Accounts of Chemical Research, 49(5), 809–815. https://doi.org/10.1021/acs.accounts.5b00516
  • Thoden, J. B., Timson, D. J., Reece, R. J., & Holden, H. M. (2004). Molecular structure of human galactose mutarotase. The Journal of Biological Chemistry, 279(22), 23431–23437. https://doi.org/10.1074/jbc.M402347200
  • Thomas, P. D., Campbell, M. J., Kejariwal, A., Mi, H., Karlak, B., Daverman, R., Diemer, K., Muruganujan, A., & Narechania, A. (2003). PANTHER: A library of protein families and subfamilies indexed by function. Genome Research, 13(9), 2129–2141. https://doi.org/10.1101/gr.772403
  • Tian, W., Chen, C., & Liang, J. (2018). CASTp 3.0: Computed atlas of surface topography of proteins and beyond. Biophysical Journal, 114(3), 50a. https://doi.org/10.1016/j.bpj.2017.11.325
  • Timson, D. J. (2019). Type IV galactosemia. Genetics in Medicine, 21(6), 1283–1285. https://doi.org/10.1038/s41436-018-0359-z
  • Venselaar, H., Te Beek, T. A., Kuipers, R. K., Hekkelman, M. L., & Vriend, G. (2010). Protein structure analysis of mutations causing inheritable diseases. An e-Science approach with life scientist friendly interfaces. BMC Bioinformatics, 11(1), 1-10. https://doi.org/10.1186/1471-2105-11-548
  • Wada, Y., Kikuchi, A., Arai-Ichinoi, N., Sakamoto, O., Takezawa, Y., Iwasawa, S., Niihori, T., Nyuzuki, H., Nakajima, Y., Ogawa, E., Ishige, M., Hirai, H., Sasai, H., Fujiki, R., Shirota, M., Funayama, R., Yamamoto, M., Ito, T., Ohara, O., … Kure, S. (2019). Biallelic GALM pathogenicvariants cause a novel type of galactosemia. Genetics in Medicine, 21(6), 1286–1294. https://doi.org/10.1038/s41436-018-0340-x
  • Wang, Y.-C., Peterson, S. E., & Loring, J. F. (2014). Protein post-translational modifications and regulation of pluripotency in human stem cells. Cell Research, 24(2), 143–160. https://doi.org/10.1038/cr.2013.151
  • Wang, C., Xu, H., Lin, S., Deng, W., Zhou, J., Zhang, Y., Shi, Y., Peng, D., & Xue, Y. (2020). GPS 5.0: An update on the prediction of kinase-specific phosphorylation sites in proteins. Genomics, Proteomics & Bioinformatics, 18(1), 72–80. https://doi.org/10.1016/j.gpb.2020.01.001
  • Yates, C. M., Filippis, I., Kelley, L. A., & Sternberg, M. J. E. (2014). SuSPect: Enhanced prediction of single amino acid variant (SAV) phenotype using network features. Journal of Molecular Biology, 426(14), 2692–2701. https://doi.org/10.1016/j.jmb.2014.04.026

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.