128
Views
0
CrossRef citations to date
0
Altmetric
Research Article

SARS-CoV-2 variants infectivity prediction and therapeutic peptide design using computational approaches

, , , , , , , & show all
Pages 11166-11177 | Received 15 Oct 2022, Accepted 14 Dec 2022, Published online: 26 Dec 2022

References

  • Abhinand, C. S., Nair, A. S., Krishnamurthy, A., Oommen, O. V., & Sudhakaran, P. R. (2022). Potential protease inhibitors and their combinations to block SARS-CoV-2. Journal of Biomolecular Structure & Dynamics, 40(2), 903–917. https://doi.org/10.1080/07391102.2020.1819881
  • Andersen, K. G., Rambaut, A., Lipkin, W. I., Holmes, E. C., & Garry, R. F. (2020). The proximal origin of SARS-CoV-2. Nature Medicine, 26(4), 450–452. https://doi.org/10.1038/s41591-020-0820-9
  • Barton, M. I., MacGowan, S. A., Kutuzov, M. A., Dushek, O., Barton, G. J., & van der Merwe, P. A. (2021). Effects of common mutations in the SARS-CoV-2 spike RBD and its ligand, the human ACE2 receptor on binding affinity and kinetics. eLife, 10, e70658. https://doi.org/10.7554/eLife.70658
  • Bian, J., & Li, Z. (2021). Angiotensin-converting enzyme 2 (ACE2): SARS-CoV-2 receptor and RAS modulator. Acta Pharmaceutica Sinica. B, 11(1), 1–12. https://doi.org/10.1016/j.apsb.2020.10.006
  • Can, H., Köseoğlu, A. E., Erkunt Alak, S., Güvendi, M., Döşkaya, M., Karakavuk, M., Gürüz, A. Y., & Ün, C. (2020). In silico discovery of antigenic proteins and epitopes of SARS-CoV-2 for the development of a vaccine or a diagnostic approach for COVID-19. Scientific Reports, 10(1), 22387. https://doi.org/10.1038/s41598-020-79645-9
  • Cannalire, R., Stefanelli, I., Cerchia, C., Beccari, A. R., Pelliccia, S., & Summa, V. (2020). SARS-CoV-2 entry inhibitors: Small molecules and peptides targeting virus or host cells. International Journal of Molecular Sciences, 21(16), 5707. https://doi.org/10.3390/ijms21165707
  • Chen, B., Tian, E. K., He, B., Tian, L., Han, R., Wang, S., Xiang, Q., Zhang, S. E., Arnaout, T., & Cheng, W. (2020). Overview of lethal human coronaviruses. Signal Transduction and Targeted Therapy, 5(1), 89. https://doi.org/10.1038/s41392-020-0190-2
  • Chen, R., & Weng, Z. (2003). A novel shape complementarity scoring function for protein-protein docking. Proteins, 51(3), 397–408. https://doi.org/10.1002/prot.10334
  • Chen, R., Li, L., & Weng, Z. (2003). ZDOCK: An initial-stage protein-docking algorithm. Proteins, 52(1), 80–87. https://doi.org/10.1002/prot.10389
  • Cui, J., Li, F., & Shi, Z. L. (2019). Origin and evolution of pathogenic coronaviruses. Nature Reviews. Microbiology, 17(3), 181–192. https://doi.org/10.1038/s41579-018-0118-9
  • Dhama, K., Khan, S., Tiwari, R., Sircar, S., Bhat, S., Malik, Y. S., Singh, K. P., Chaicumpa, W., Bonilla-Aldana, D. K., & Rodriguez-Morales, A. J. (2020). Coronavirus disease 2019-COVID-19. Clinical Microbiology Reviews, 33(4), e00028–20. https://doi.org/10.1128/CMR.00028-20
  • Gheblawi, M., Wang, K., Viveiros, A., Nguyen, Q., Zhong, J. C., Turner, A. J., Raizada, M. K., Grant, M. B., & Oudit, G. Y. (2020). Angiotensin-converting enzyme 2: SARS-CoV-2 receptor and regulator of the renin-angiotensin system: Celebrating the 20th Anniversary of the Discovery of ACE2. Circulation Research, 126(10), 1456–1474. https://doi.org/10.1161/CIRCRESAHA.120.317015
  • Gupta, S., Kapoor, P., Chaudhary, K., Gautam, A., Kumar, R., & Raghava, G. P. (2013). In silico approach for predicting toxicity of peptides and proteins. PLoS One. 8(9), e73957. https://doi.org/10.1371/journal.pone.0073957
  • Han, Y., & Král, P. (2020). Computational design of ACE2-based peptide inhibitors of SARS-CoV-2. ACS Nano, 14(4), 5143–5147. https://doi.org/10.1021/acsnano.0c02857
  • Han, Y., Du, J., Su, H., Zhang, J., Zhu, G., Zhang, S., Wu, Z., & Jin, Q. (2019). Identification of diverse bat alphacoronaviruses and betacoronaviruses in China provides new insights into the evolution and origin of coronavirus-related diseases. Frontiers in Microbiology, 10, 1900. https://doi.org/10.3389/fmicb.2019.01900
  • Hasan, A., Paray, B. A., Hussain, A., Qadir, F. A., Attar, F., Aziz, F. M., Sharifi, M., Derakhshankhah, H., Rasti, B., Mehrabi, M., Shahpasand, K., Saboury, A. A., & Falahati, M. (2021). A review on the cleavage priming of the spike protein on coronavirus by angiotensin-converting enzyme-2 and furin. Journal of Biomolecular Structure & Dynamics, 39(8), 3025–3033. https://doi.org/10.1080/07391102.2020.1754293
  • Hoffmann, M., Kleine-Weber, H., Schroeder, S., Krüger, N., Herrler, T., Erichsen, S., Schiergens, T. S., Herrler, G., Wu, N. H., Nitsche, A., Müller, M. A., Drosten, C., & Pöhlmann, S. (2020). SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell, 181(2), 271–280.e8. https://doi.org/10.1016/j.cell.2020.02.052
  • Hui, D. S., I Azhar, E., Madani, T. A., Ntoumi, F., Kock, R., Dar, O., Ippolito, G., Mchugh, T. D., Memish, Z. A., Drosten, C., Zumla, A., & Petersen, E. (2020). The continuing 2019-nCoV epidemic threat of novel coronaviruses to global health—The latest 2019 novel coronavirus outbreak in Wuhan, China. International Journal of Infectious Diseases: Official Publication of the International Society for Infectious Diseases, 91, 264–266. https://doi.org/10.1016/j.ijid.2020.01.009
  • Jaiswal, G., & Kumar, V. (2020). In-silico design of a potential inhibitor of SARS-CoV-2 S protein. PloS One, 15(10), e0240004. https://doi.org/10.1371/journal.pone.0240004
  • Lim, Y. X., Ng, Y. L., Tam, J. P., & Liu, D. X. (2016). Human coronaviruses: A review of virus-host interactions. Diseases, 4(4), 26. https://doi.org/10.3390/diseases4030026
  • Lobo-Galo, N., Terrazas-López, M., Martínez-Martínez, A., & Díaz-Sánchez, Á. G. (2021). FDA-approved thiol-reacting drugs that potentially bind into the SARS-CoV-2 main protease, essential for viral replication. Journal of Biomolecular Structure & Dynamics, 39(9), 3419–3427. https://doi.org/10.1080/07391102.2020.1764393
  • Mandour, Y. M., Zlotos, D. P., & Alaraby Salem, M. (2022). A multi-stage virtual screening of FDA-approved drugs reveals potential inhibitors of SARS-CoV-2 main protease. Journal of Biomolecular Structure & Dynamics, 40(5), 2327–2338. https://doi.org/10.1080/07391102.2020.1837680
  • Mautner, L., Hoyos, M., Dangel, A., Berger, C., Ehrhardt, A., & Baiker, A. (2022). Replication kinetics and infectivity of SARS-CoV-2 variants of concern in common cell culture models. Virology Journal, 19(1), 76. https://doi.org/10.1186/s12985-022-01802-5
  • Michel, C. J., Mayer, C., Poch, O., & Thompson, J. D. (2020). Characterization of accessory genes in coronavirus genomes. Virology Journal, 17(1), 131. https://doi.org/10.1186/s12985-020-01402-1
  • Ouassou, H., Kharchoufa, L., Bouhrim, M., Daoudi, N. E., Imtara, H., Bencheikh, N., ELbouzidi, A., & Bnouham, M. (2020). The pathogenesis of coronavirus disease 2019 (COVID-19): Evaluation and prevention. Journal of Immunology Research, 2020, 1357983. https://doi.org/10.1155/2020/1357983
  • Petersen, E., Koopmans, M., Go, U., Hamer, D. H., Petrosillo, N., Castelli, F., Storgaard, M., Al Khalili, S., & Simonsen, L. (2020). Comparing SARS-CoV-2 with SARS-CoV and influenza pandemics. The Lancet. Infectious Diseases, 20(9), e238–e244. https://doi.org/10.1016/S1473-3099(20)30484-9
  • Petrosillo, N., Viceconte, G., Ergonul, O., Ippolito, G., & Petersen, E. (2020). COVID-19, SARS and MERS: Are they closely related? Clinical Microbiology and Infection: The Official Publication of the European Society of Clinical Microbiology and Infectious Diseases, 26(6), 729–734. https://doi.org/10.1016/j.cmi.2020.03.026
  • Pierce, B., & Weng, Z. (2007). ZRANK: Reranking protein docking predictions with an optimized energy function. Proteins, 67(4), 1078–1086. https://doi.org/10.1002/prot.21373
  • Rawat, P., Sharma, D., Pandey, M., Prabakaran, R., & Gromiha, M. M. (2022). Understanding the mutational frequency in SARS-CoV-2 proteome using structural features. Computers in Biology and Medicine, 147, 105708. https://doi.org/10.1016/j.compbiomed.2022.105708
  • Romano, M., Ruggiero, A., Squeglia, F., Maga, G., & Berisio, R. (2020). A structural view of SARS-CoV-2 RNA replication machinery: RNA synthesis, proofreading and final capping. Cells, 9(5), 1267. https://doi.org/10.3390/cells9051267
  • Sasaki, M., Uemura, K., Sato, A., Toba, S., Sanaki, T., Maenaka, K., Hall, W. W., Orba, Y., & Sawa, H. (2021). SARS-CoV-2 variants with mutations at the S1/S2 cleavage site are generated in vitro during propagation in TMPRSS2-deficient cells. PLoS Pathogens, 17(1), e1009233. https://doi.org/10.1371/journal.ppat.1009233
  • Schütz, D., Ruiz-Blanco, Y. B., Münch, J., Kirchhoff, F., Sanchez-Garcia, E., & Müller, J. A. (2020). Peptide and peptide-based inhibitors of SARS-CoV-2 entry. Advanced Drug Delivery Reviews, 167, 47–65. https://doi.org/10.1016/j.addr.2020.11.007
  • Shah, S., & Farrow, A. (2020). A commentary on "World Health Organization declares global emergency": A review of the 2019 novel Coronavirus (COVID-19). International Journal of Surgery (London, England), 76, 128–129. https://doi.org/10.1016/j.ijsu.2020.03.001
  • Sharma, D., Rawat, P., Janakiraman, V., & Gromiha, M. M. (2022). Elucidating important structural features for the binding affinity of spike—SARS-CoV-2 neutralizing antibody complexes. Proteins, 90(3), 824–834. https://doi.org/10.1002/prot.26277
  • Singhal, T. (2022). The emergence of omicron: Challenging times are here again! Indian Journal of Pediatrics, 89(5), 490–496. https://doi.org/10.1007/s12098-022-04077-4
  • Takaoka, Y., Sugano, A., Morinaga, Y., Ohta, M., Miura, K., Kataguchi, H., Kumaoka, M., Kimura, S., & Maniwa, Y. (2022). Prediction of infectivity of SARS-CoV2: Mathematical model with analysis of docking simulation for spike proteins and angiotensin-converting enzyme 2. Microbial Risk Analysis, 22, 100227. https://doi.org/10.1016/j.mran.2022.100227
  • Udugama, B., Kadhiresan, P., Kozlowski, H. N., Malekjahani, A., Osborne, M., Li, V., Chen, H., Mubareka, S., Gubbay, J. B., & Chan, W. (2020). Diagnosing COVID-19: The disease and tools for detection. ACS Nano, 14(4), 3822–3835. https://doi.org/10.1097/CM9.0000000000000722
  • Van den Brand, J. M., Smits, S. L., & Haagmans, B. L. (2015). Pathogenesis of middle east respiratory syndrome coronavirus. The Journal of Pathology, 235(2), 175–184. https://doi.org/10.1002/path.4458
  • Vilar, S., & Isom, D. G. (2021). One year of SARS-CoV-2: How much has the virus changed? Biology, 10(2), 91. https://doi.org/10.3390/biology10020091
  • V'kovski, P., Kratzel, A., Steiner, S., Stalder, H., & Thiel, V. (2021). Coronavirus biology and replication: Implications for SARS-CoV-2. Nature Reviews. Microbiology, 19(3), 155–170. https://doi.org/10.1038/s41579-020-00468-6
  • Wan, Y., Shang, J., Graham, R., Baric, R. S., & Li, F. (2020). Receptor recognition by the novel coronavirus from Wuhan: An analysis based on decade-long structural studies of SARS coronavirus. Journal of Virology, 94(7), e00127–20. https://doi.org/10.1128/JVI.00127-20
  • Wu, A., Peng, Y., Huang, B., Ding, X., Wang, X., Niu, P., Meng, J., Zhu, Z., Zhang, Z., Wang, J., Sheng, J., Quan, L., Xia, Z., Tan, W., Cheng, G., & Jiang, T. (2020). Genome composition and divergence of the novel coronavirus (2019-nCoV) originating in China. Cell Host & Microbe, 27(3), 325–328. https://doi.org/10.1016/j.chom.2020.02.001
  • Xia, W., Shao, J., Guo, Y., Peng, X., Li, Z., & Hu, D. (2020). Clinical and CT features in pediatric patients with COVID-19 infection: Different points from adults. Pediatric Pulmonology, 55(5), 1169–1174. https://doi.org/10.1002/ppul.24718
  • Yan, R., Zhang, Y., Li, Y., Xia, L., Guo, Y., & Zhou, Q. (2020). Structural basis for the recognition of SARS-CoV-2 by full-length human ACE2. Science (New York, N.Y.), 367(6485), 1444–1448. https://doi.org/10.1126/science.abb2762
  • Zhang, H., Penninger, J. M., Li, Y., Zhong, N., & Slutsky, A. S. (2020). Angiotensin-converting enzyme 2 (ACE2) as a SARS-CoV-2 receptor: Molecular mechanisms and potential therapeutic target. Intensive Care Medicine, 46(4), 586–590. https://doi.org/10.1007/s00134-020-05985-9
  • Zhu, N., Zhang, D., Wang, W., Li, X., Yang, B., Song, J., Zhao, X., Huang, B., Shi, W., Lu, R., Niu, P., Zhan, F., Ma, X., Wang, D., Xu, W., Wu, G., Gao, G. F., & Tan, W. (2020). A novel coronavirus from patients with pneumonia in China, 2019. The New England Journal of Medicine, 382(8), 727–733. https://doi.org/10.1056/NEJMoa2001017
  • Zhu, Z., Lian, X., Su, X., Wu, W., Marraro, G. A., & Zeng, Y. (2020). From SARS and MERS to COVID-19: A brief summary and comparison of severe acute respiratory infections caused by three highly pathogenic human coronaviruses. Respiratory Research, 21(1), 224. https://doi.org/10.1186/s12931-020-01479-w

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.