146
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Vitamin derivatives as potential drugs for Influenza Hemagglutinin

, , , , &
Pages 11781-11795 | Received 30 Oct 2021, Accepted 23 Dec 2022, Published online: 11 Jan 2023

References

  • Agatonovic-Kustrin, S., Morton, D. W., & Yusof, P. A. (2014). The assessment and characterisation of drug plasma protein binding in the body using QSAR. Mini Reviews in Medicinal Chemistry, 14(6), 484–493. https://doi.org/10.2174/1389557514666140529223057
  • Bai, Y., Jones, J. C., Wong, S.-S., & Zanin, M. (2021). Antivirals targeting the surface glycoproteins of influenza virus: Mechanisms of action and resistance. Viruses, 13(4), 624. https://doi.org/10.3390/v13040624
  • Banerjee, P., Eckert, A. O., Schrey, A. K., & Preissner, R. (2018). ProTox-II: A webserver for the prediction of toxicity of chemicals. Nucleic Acids Research, 46(W1), W257–W263.https://doi.org/10.1093/nar/gky318
  • Bangaru, S., Zhang, H., Gilchuk, I. M., Voss, T. G., Irving, R. P., Gilchuk, P., Matta, P., Zhu, X., Lang, S., Nieusma, T., Richt, J. A., Albrecht, R. A., Vanderven, H. A., Bombardi, R., Kent, S. J., Ward, A. B., Wilson, I. A., & Crowe, J. E. (2018). A multifunctional human monoclonal neutralizing antibody that targets a unique conserved epitope on influenza HA. Nature Communications, 9(1), 2669. https://doi.org/10.1038/s41467-018-04704-9
  • Banks, W. A. (2009). Blood-brain barrier as a regulatory interface. In Frontiers in eating and weight regulation (pp. 102–110). KARGER. https://doi.org/10.1159/000264398
  • Bouvier, N. M., & Palese, P. (2008). The biology of influenza viruses. Vaccine, 26(3), D49–D53. https://doi.org/10.1016/j.vaccine.2008.07.039
  • Caceres, C. J., Seibert, B., Cargnin Faccin, F., Cardenas-Garcia, S., Rajao, D. S., & Perez, D. R. (2022). Influenza antivirals and animal models. FEBS Open Bio. 12(6), 1142–1165.https://doi.org/10.1002/2211-5463.13416
  • Caffrey, M., & Lavie, A. (2021). pH-dependent mechanisms of influenza infection mediated by hemagglutinin. Frontiers in Molecular Biosciences, 8, 777095.https://doi.org/10.3389/fmolb.2021.777095
  • CDC. (2019, Nov. 18). Types of influenza viruses. Centers for Disease Control and Prevention. Retrieved Sep. 06, 2021, from https://www.cdc.gov/flu/about/viruses/types.htm.
  • Dadashi, M., Khaleghnejad, S., Abedi Elkhichi, P., Goudarzi, M., Goudarzi, H., Taghavi, A., Vaezjalali, M., & Hajikhani, B. (2021). COVID-19 and influenza co-infection: A systematic review and meta-analysis. Frontiers in Medicine, 8, 681469.https://doi.org/10.3389/fmed.2021.681469
  • Daina, A.,Michielin, O., &Zoete, V. (2017). SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Scientific Reports, 7, 42717 10.1038/srep42717PMC: 28256516
  • Danielle, B. P., et al. (2013). Riboflavin analogs as antiinfectives: Occurrence, mode of action, metabolism and resistance. Current Pharmaceutical Design, 19(14), 2552–2560.
  • Du, Z., Nugent, C., Galvani, A. P., Krug, R. M., & Meyers, L. A. (2020). Modeling mitigation of influenza epidemics by baloxavir. Nature Communications, 11(1), 2750.https://doi.org/10.1038/s41467-020-16585-y
  • ECDU. (2022). Factsheet about seasonal influenza. European Centre for Disease Prevention and Control. Retrieved Oct. 28, 2022, from https://www.ecdc.europa.eu/en/seasonal-influenza/facts/factsheet
  • Farah, N., Chin, V. K., Chong, P. P., Lim, W. F., Lim, C. W., Basir, R., Chang, S. K., & Lee, T. Y. (2022). Riboflavin as a promising antimicrobial agent? A multi-perspective review. Current Research in Microbial Sciences, 3, 100111.https://doi.org/10.1016/j.crmicr.2022.100111
  • Friesner, R. A.,Murphy, R. B.,Repasky, M. P.,Frye, L. L.,Greenwood, J. R.,Halgren, T. A.,Sanschagrin, P. C., &Mainz, D. T. (2006). Extra precision glide: docking and scoring incorporating a model of hydrophobic enclosure for protein-ligand complexes. Journal of Medicinal Chemistry, 49(21), 6177–6196. 10.1021/jm051256o 17034125
  • Gatherer, D. (2009). The 2009 H1N1 influenza outbreak in its historical context. Journal of Clinical Virology, 45(3), 174–178.https://doi.org/10.1016/j.jcv.2009.06.004
  • Genheden, S., & Ryde, U. (2015). The MM/PBSA and MM/GBSA methods to estimate ligand-binding affinities. Expert Opinion on Drug Discovery, 10(5), 449–461.https://doi.org/10.1517/17460441.2015.1032936
  • Kerrigan, J. E. (2013). Molecular dynamics simulations in drug design. Methods in Molecular Biology (Clifton, N.J.), 993, 95–113.https://doi.org/10.1007/978-1-62703-342-8_7
  • Koszalka, P., Subbarao, K., & Baz, M. (May 2022). Preclinical and clinical developments for combination treatment of influenza. PLoS Pathogens, 18(5), e1010481.https://doi.org/10.1371/journal.ppat.1010481
  • Krammer, F., Smith, G. J. D., Fouchier, R. A. M., Peiris, M., Kedzierska, K., Doherty, P. C., Palese, P., Shaw, M. L., Treanor, J., Webster, R. G., & García-Sastre, A. (2018). Influenza. Nature Reviews. Disease Primers, 4(1), 3.https://doi.org/10.1038/s41572-018-0002-y
  • Kundu, B., Sarkar, D., Ray, N., & Talukdar, A. (2019). Understanding the riboflavin biosynthesis pathway for the development of antimicrobial agents. Medicinal Research Reviews, 39(4), 1338–1371.https://doi.org/10.1002/med.21576
  • Langer, S., Hashimoto, M., Hobl, B., Mathes, T., & Mack, M. (2013). Flavoproteins are potential targets for the antibiotic roseoflavin in Escherichia coli. Journal of Bacteriology, 195(18), 4037–4045.https://doi.org/10.1128/JB.00646-13
  • Laskowski, R. A., & Swindells, M. B. (2011). LigPlot+: Multiple ligand-protein interaction diagrams for drug discovery. Journal of Chemical Information and Modeling, 51(10), 2778–2786.https://doi.org/10.1021/ci200227u
  • Leneva, I. A., Russell, R. J., Boriskin, Y. S., & Hay, A. J. (2009). Characteristics of arbidol-resistant mutants of influenza virus: Implications for the mechanism of anti-influenza action of arbidol. Antiviral Research, 81(2), 132–140.https://doi.org/10.1016/j.antiviral.2008.10.009
  • Lipinski, C. A. (2004). Lead- and drug-like compounds: The rule-of-five revolution. Drug Discovery Today. Technologies, 1(4), 337–341.https://doi.org/10.1016/j.ddtec.2004.11.007
  • Liu, J., Stevens, D. J., Haire, L. F., Walker, P. A., Coombs, P. J., Russell, R. J., Gamblin, S. J., & Skehel, J. J. (2009). Structures of receptor complexes formed by hemagglutinins from the Asian Influenza pandemic of 1957. Proceedings of the National Academy of Sciences of the United States of America, 106(40), 17175–17180.https://doi.org/10.1073/pnas.0906849106
  • Mack, M., & Grill, S. (2006). Riboflavin analogs and inhibitors of riboflavin biosynthesis. Applied Microbiology and Biotechnology, 71(3), 265–275.https://doi.org/10.1007/s00253-006-0421-7
  • Moses, I. C. (2009). Swine-origin influenza A (H1N1) virus: An update.
  • Parmar, S., Shah, N., Kasarwala, M., Virpura, M., & Prajapati, D. D. 2011 . A review on swine flu. .JPSBR: 1(1), 11–17.
  • Reid, A. H., Fanning, T. G., Hultin, J. V., & Taubenberger, J. K. (1999). Origin and evolution of the 1918 ‘Spanish’ influenza virus hemagglutinin gene. Proceedings of the National Academy of Sciences of the United States of America, 96(4), 1651–1656.https://doi.org/10.1073/pnas.96.4.1651
  • Rossman, J. S., & Lamb, R. A. (2011). Influenza virus assembly and budding. Virology, 411(2), 229–236.https://doi.org/10.1016/j.virol.2010.12.003
  • Sastry, G. M., Adzhigirey, M., Day, T., Annabhimoju, R., & Sherman, W. (2013). Protein and ligand preparation: Parameters, protocols, and influence on virtual screening enrichments. Journal of Computer-Aided Molecular Design, 27(3), 221–234.https://doi.org/10.1007/s10822-013-9644-8
  • Shin, W.-J., & Seong, B. L. (2019). Novel antiviral drug discovery strategies to tackle drug-resistant mutants of influenza virus strains. Expert Opinion on Drug Discovery, 14(2), 153–168.https://doi.org/10.1080/17460441.2019.1560261
  • Song, H., Qi, J., Xiao, H., Bi, Y., Zhang, W., Xu, Y., Wang, F., Shi, Y., & Gao, G. F. (2017). Avian-to-human receptor-binding adaptation by influenza A virus hemagglutinin H4. Cell Reports, 20(5), 1201–1214.https://doi.org/10.1016/j.celrep.2017.07.028
  • Swets, M. C.,Russell, C. D.,Harrison, E. M.,Docherty, A. B.,Lone, N.,Girvan, M.,Hardwick, H. E.,Visser, L. G.,Openshaw, P. J. M.,Groeneveld, G. H.,Semple, M. G., &Baillie, J. K. (2022). SARS-CoV-2 co-infection with influenza viruses, respiratory syncytial virus, or adenoviruses. The Lancet, 399(10334), 1463–1464. 10.1016/S0140-6736(22)00383-X
  • Świerczyńska, M., Mirowska-Guzel, D. M., & Pindelska, E. (2022). Antiviral drugs in influenza. International Journal of Environmental Research and Public Health, 19(5), 3018. https://doi.org/10.3390/ijerph19053018
  • Tzarum, N.,McBride, R.,Nycholat, C. M.,Peng, W.,Paulson, J. C., &Wilson, I. A. (2017). Unique Structural Features of Influenza Virus H15 Hemagglutinin. Journal of Virology, 91(12)10.1128/JVI.00046-17
  • Tzarum, N., McBride, R., Nycholat, C. M., Peng, W., Paulson, J. C., & Wilson, I. A. (2017). Unique structural features of influenza virus H15 hemagglutinin. Journal of Virology, 91(12), e00046. https://doi.org/10.1128/JVI.00046-17
  • Wang, H., Mann, P. A., Xiao, L., Gill, C., Galgoci, A. M., Howe, J. A., Villafania, A., Barbieri, C. M., Malinverni, J. C., Sher, X., Mayhood, T., McCurry, M. D., Murgolo, N., Flattery, A., Mack, M., & Roemer, T. (May 2017). Dual-targeting small-molecule inhibitors of the staphylococcus aureus fmn riboswitch disrupt riboflavin homeostasis in an infectious setting. Cell Chemical Biology, 24(5), 576–588.e6.https://doi.org/10.1016/j.chembiol.2017.03.014
  • Wang, Q., Cheng, F., Lu, M., Tian, X., & Ma, J. (2008). Crystal structure of unliganded influenza B virus hemagglutinin. Journal of Virology, 82(6), 3011–3020.https://doi.org/10.1128/JVI.02477-07
  • Wang, R., Lai, L., & Wang, S. (2002). Further development and validation of empirical scoring functions for structure-based binding affinity prediction. Journal of Computer-Aided Molecular Design, 16(1), 11–26. doi: 10.1023/A:1016357811882.
  • WHO. (2021). Review of global influenza circulation, late 2019 to 2020, and the impact of the COVID-19 pandemic on influenza circulation. Retrieved Aug. 19, 2021, from https://www.who.int/publications-detail-redirect/who-wer-9625-241-264
  • Wiwanitkit, V. (2009). Finding a new drug and vaccine for emerging swine flu: What is the concept? Biologics: Targets & Therapy, 3, 377–383. https://doi.org/10.2147/BTT.S5619
  • Wu, N. C., & Wilson, I. A. (2020). Influenza hemagglutinin structures and antibody recognition. Cold Spring Harbor Perspectives in Medicine, 10(8), a038778. https://doi.org/10.1101/cshperspect.a038778
  • Xu, R., Ekiert, D. C., Krause, J. C., Hai, R., Crowe, J. E., & Wilson, I. A. (2010). Structural basis of pre-existing immunity to the 2009 H1N1 pandemic influenza virus. Science (New York, N.Y.), 328(5976), 357–360.https://doi.org/10.1126/science.1186430
  • Yang, H., Chen, L.-M., Carney, P. J., Donis, R. O., & Stevens, J. (2010). Structures of receptor complexes of a North American H7N2 influenza hemagglutinin with a loop deletion in the receptor binding site. PLoS Pathogens, 6(9), e1001081.https://doi.org/10.1371/journal.ppat.1001081
  • Zhang, Q., Liang, T., Nandakumar, K. S., & Liu, S. (2021). Emerging and state of the art hemagglutinin-targeted influenza virus inhibitors. Expert Opinion on Pharmacotherapy, 22(6), 715–728.https://doi.org/10.1080/14656566.2020.1856814

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.