313
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Virtual screening of truncated single stranded DNA aptamers for Staphylococcal enterotoxin type A

, ORCID Icon, ORCID Icon &
Pages 11862-11871 | Received 29 Aug 2022, Accepted 24 Dec 2022, Published online: 04 Jan 2023

References

  • Alam, K. K., Chang, J. L., & Burke, D. H. (2015). FASTAptamer: A bioinformatic toolkit for high-throughput sequence analysis of combinatorial selections. Molecular Therapy. Nucleic Acids, 4(3), e230. https://doi.org/10.1038/mtna.2015.4
  • Alhadrami, H., Chinnappan, R., Eissa, S., Rahamn, A. A., & Zourob, M. (2017). High affinity truncated DNA aptamers for the development of fluorescence based progesterone biosensor. Analytical Biochemistry, 525, 78–84. https://doi.org/10.1016/j.ab.2017.02.014
  • Balaban, N., & Rasooly, A. (2000). Staphylococcal enterotoxins. International Journal of Food Microbiology, 61(1), 1–10. https://doi.org/10.1016/s0168-1605(00)00377-9
  • Biesiada, M., Purzycka, K. J., Szachniuk, M., Blazewicz, J., & Adamiak, R. W. (2016). Automated RNA 3D structure prediction with RNAComposer. Methods in Molecular Biology (Clifton, N.J.), 1490, 199–215. https://doi.org/10.1007/978-1-4939-6433-8_13
  • Cowperthwaite, M., & Ellington, A. (2008). Bioinformatic analysis of the contribution of primer sequences to aptamer structures. Journal of Molecular Evolution, 67(1), 95–102. https://doi.org/10.1007/s00239-008-9130-4
  • Dassault Systèmes. (2020). BIOVIA Discovery Studio Modeling Environment. Dassault Systèmes.
  • DeGrasse, J. A. (2012). A single-stranded DNA aptamer that selectively binds to Staphylococcus aureus enterotoxin B. PLoS One, 7(3), e33410. https://doi.org/10.1371/journal.pone.0033410
  • Dhiman, A., Anand, A., Malhotra, A., Khan, E., Santra, V., Kumar, A., & Sharma, T. K. (2018). Rational truncation of aptamer for cross-species application to detect krait envenomation. Scientific Reports, 8(1), 17795. https://doi.org/10.1038/s41598-018-35985-1
  • Dina, S.-D., Inbar, Y., Nussinov, R., & Wolfson, H. J. (2005). PatchDock and SymmDock: Servers for rigid and symmetric docking. Nucleic Acids Research, 33(Web Server issue), W363–W367. https://doi.org/10.1093/nar/gki481
  • Duhovny, D., Nussinov, R., & Wolfson, H. J. (2002). Efficient unbound docking of rigid molecules. In R. Guigo, & D. Gusfield (Eds.), Proceedings of the Fourth International Workshop on Algorithms in Bioinformatics (Vol. 2452, pp. 185–200). Springer-Verlag.
  • Ellington, A. D., & Szostak, J. W. (1990). In vitro selection of RNA molecules that bind specific ligands. Nature, 346(6287), 818–822. https://doi.org/10.1038/346818a0
  • Hamada, M. (2018). In silico approaches to RNA aptamer design. Biochimie, 145, 8–14. https://doi.org/10.1016/j.biochi.2017.10.005
  • Hedayati Ch, M., Amani, J., Sedighian, H., Amin, M., Salimian, J., Halabian, R., & Imani Fooladi, A. A. (2016). Isolation of a new ssDNA aptamer against staphylococcal enterotoxin B based on CNBr activated sepharose-4B affinity chromatography. Journal of Molecular Recognition, 29(9), 436–445. https://doi.org/10.1002/jmr.2542
  • Huang, Y., Chen, X., Duan, N., Wu, S., Wang, Z., Wei, X., & Wang, Y. (2015). Selection and characterization of DNA aptamers against Staphylococcus aureus enterotoxin C1. Food Chemistry, 166, 623–629. https://doi.org/10.1016/j.foodchem.2014.06.039
  • Huang, Y., Chen, X., Xia, Y., Wu, S., Duan, N., Ma, X., & Wang, Z. (2014). Selection, identification and application of a DNA aptamer against Staphylococcus aureus enterotoxin A. Analytical Methods, 6(3), 690–697. https://doi.org/10.1039/C3AY41576G
  • Kinghorn, A., Fraser, L., Liang, S., Shiu, S., & Tanner, J. (2017). Aptamer bioinformatics. International Journal of Molecular Sciences, 18(12), 2516. https://doi.org/10.3390/ijms18122516
  • Kou, Q., Wu, P., Sun, Q., Li, C., Zhang, L., Shi, H., Wu, J., Wang, Y., Yan, X., & Le, T. (2021). Selection and truncation of aptamers for ultrasensitive detection of sulfamethazine using a fluorescent biosensor based on graphene oxide. Analytical and Bioanalytical Chemistry, 413(3), 901–909. https://doi.org/10.1007/s00216-020-03044-2
  • Lakhin, A., Tarantul, V., & Gening, L. (2013). Aptamers: Problems, solutions and prospects. Acta Naturae, 5(4), 34–43. https://doi.org/10.32607/20758251-2013-5-4-34-43
  • Lauridsen, L. H., Shamaileh, H. A., Edwards, S. L., Taran, E., & Veedu, R. N. (2012). Rapid onestep selection method for generating nucleic acid aptamers: Development of a DNA aptamer against α-bungarotoxin. PLoS One, 7(7), e41702. https://doi.org/10.1371/journal.pone.0041702
  • Lee, E.-H., Lim, H. J., Lee, S.-D., & Son, A. (2017). Highly sensitive detection of bisphenol A by NanoAptamer assay with truncated aptamer. ACS Applied Materials & Interfaces, 9(17), 14889–14898. https://doi.org/10.1021/acsami.7b02377
  • Lovell, S. C., Ian W Davis, I. W., Arendall, W. B., de Bakke, P. I., Wr., Word, J. M., Prisant, M. G., Richardson, J. S., & Richardson, D. C. (2003). Structure validation by Cα geometry: ϕ, ψ and Cβ deviation. Proteins, 50(3), 437–450. https://doi.org/10.1002/prot.10286
  • Luo, X., McKeague, M., Pitre, S., Dumontier, M., Green, J., Golshani, A., Derosa, M. C., & Dehne, F. (2010). Computational approaches toward the design of pools for the in vitro selection of complex aptamers. RNA (New York, N.Y.), 16(11), 2252–2262. https://doi.org/10.1261/rna.2102210
  • MGLTools. (2012). 1.5.6 (ADT)/MGL tools 1.5. 6. The Scripps Research Institute.
  • Mondal, B., Ramlal, S., Lavu, P. S., Bhavanashri, B., & Kingston, J. (2018). Highly sensitive colorimetric biosensor for Staphylococcal enterotoxin B by a label-free aptamer and gold nanoparticles. Frontiers in Microbiology, 9, 179. https://doi.org/10.3389/fmicb.2018.00179
  • Mondal, B., Ramlal, S., Lavu, P., Murali, H. S., & Batra, H. V. A. (2015). Combinatorial systematic evolution of ligands by exponential enrichment method for selection of aptamer against protein targets. Applied Microbiology and Biotechnology, 99(22), 9791–9803. https://doi.org/10.1007/s00253-015-6858-9
  • Morris, G. M., Huey, R., Lindstrom, W., Sanner, M. F., Belew, R. K., Goodsell, D. S., & Olson, A. J. (2009). AutoDock4 and Auto Dock Tools4: Automated docking with selective receptor flexibility. Journal of Computational Chemistry, 30(16), 2785–2791. https://doi.org/10.1002/jcc.21256
  • Purschke, W. G., Radtke, F., Kleinjung, F., & Klussmann, S. (2003). A DNA spiegelmer to staphylococcal enterotoxin B. Nucleic Acids Research, 31(12), 3027–3032. https://doi.org/10.1093/nar/gkg413
  • Qiao, L., Yu, W., & Wang, H. (2020). Highly sensitive fluorescent detection of 25-Hydroxyvitamin D3 using truncated affinity-improved DNA aptamers. Authorea. https://doi.org/10.22541/au.158679975.52979153
  • Schrödinger Release. (2019). a. Desmond molecular dynamics system. Maestro-Desmond interoperability tools. D. E. Shaw Research. https://www.schrodinger.com/products/desmond
  • Sedighian, H., Halabian, R., Amani, J., Heiat, M., Amin, M., & Fooladi, A. A. I. (2018). Staggered Target SELEX, a novel approach to isolate non-cross-reactive aptamer for detection of SEA by apta-qPCR. Journal of Biotechnology, 286, 45–55. https://doi.org/10.1016/j.jbiotec.2018.09.006
  • Silverman, S. (2009). Artificial functional nucleic acids: Aptamers, ribozymes, and deoxyribozymes identified by in vitro selection. In L. Yingfu and L. Yi (Eds.), Functional nucleic acids for analytical applications (pp. 47–108). Springer. https://doi.org/10.1007/978-0-387-73711-9
  • Sussman, D., Nix, J. C., & Wilson, C. (2000). The structural basis for molecular recognition by the vitamin B-12 RNA aptamer. Nature Structural Biology, 7(1), 53–57. https://www.nature.com/articles/nsb0100_53 https://doi.org/10.1038/71253
  • Wang, K., Wu, D., Chen, Z., Zhang, X., Yang, X., Yang, C. J., & Lan, X. (2016). Inhibition of the superantigenic activities of Staphylococcal enterotoxin A by an aptamer antagonist. Toxicon, 119, 21e27–21e27. https://doi.org/10.1016/j.toxicon.2016.05.006
  • Wang, X., Gao, X., He, J., Hu, X., Li, Y., Li, X., Fan, L., & Yu, H. Z. (2019). Systematic truncating aptamers to create high performance graphene oxide (GO)-based aptasensors for multiplex detection of mycotoxins. The Analyst, 144(12), 3826–3835. https://doi.org/10.1039/C9AN00624A
  • Wondergem, J. A. J., Schiessel, H., & Tompitak, M. (2017). Performing SELEX experiments in silico. The Journal of Chemical Physics, 147(17), 174101. https://doi.org/10.1063/1.5001394
  • Xiong, X., Luo, Y., Lu, Y., Xiong, X., Li, Y., Liu, Y., & Lu, L. (2019). Ultrasensitive detection of Staphylococcal enterotoxin B in milk based on target-triggered assembly of the flower like nucleic acid nanostructure. RSC Advances, 9(72), 42423–42429. https://doi.org/10.1039/C9RA08869E
  • Yan, Y., Zhang, D., Zhou, P., Li, B., & Huang, S.-Y. (2017). DOC: A web server for protein-protein and protein–DNA/RNA docking based on a hybrid strategy. Nucleic Acids Research, 45(W1), W365–W373. https://doi.org/10.1093/nar/gkx407
  • Yang, H.-W., Ju, S.-P., & Tseng, T.-F. (2021). Design the RNA aptamer of PCA3 long non-coding ribonucleic acid by the coarse-grained molecular mechanics. Journal of Biomolecular Structure and Dynamics, 40(24), 13833–13846. https://doi.org/10.1080/07391102.2021.1994881
  • Zhang, C., Vasmatzis, G., Cornette, J. L., & DeLisi, C. (1997). Determination of atomic desolvation energies from the structures of crystallized proteins. Journal of Molecular Biology, 267(3), 707–726. https://doi.org/10.1006/jmbi.1996.0859
  • Zuker, M. (2000). Calculating Nucleic Acid Secondary Structure. Current Opinion in Structural Biology, 10(3), 303–310. https://doi.org/10.1016/S0959-440X(00)00088-9

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.