278
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Interactions between β-cyclodextrin as a carrier for anti-cancer drug delivery: a molecular dynamics simulation study

& ORCID Icon
Pages 11551-11563 | Received 28 Sep 2022, Accepted 24 Dec 2022, Published online: 04 Jan 2023

References

  • Abraham, M. J., Murtola, T., Schulz, R., Páll, S., Smith, J. C., Hess, B., & Lindahl, E. (2015). GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX, 1–2, 19–25. https://doi.org/10.1016/j.softx.2015.06.001
  • Aghazadeh, H., Ganjali Koli, M., Ranjbar, R., & Pooshang Bagheri, K. (2020). Interactions of GF-17 derived from LL-37 antimicrobial peptide with bacterial membranes: A molecular dynamics simulation study. Journal of Computer-Aided Molecular Design, 34(12), 1261–1273. https://doi.org/10.1007/s10822-020-00348-4
  • Bazzazzadeh, A., Dizaji, B. F., Kianinejad, N., Nouri, A., & Irani, M. (2020). Fabrication of poly (acrylic acid) grafted-chitosan/polyurethane/magnetic MIL-53 metal organic framework composite core-shell nanofibers for co-delivery of temozolomide and paclitaxel against glioblastoma cancer cells. International Journal of Pharmaceutics, 587, 119674. https://doi.org/10.1016/j.ijpharm.2020.119674
  • Berendsen, H. J. C., Grigera, J. R., & Straatsma, T. P. (1987). The missing term in effective pair potentials. The Journal of Physical Chemistry, 91(24), 6269–6271. https://doi.org/10.1021/j100308a038
  • Biernacka, J., Betlejewska-Kielak, K., Witowska-Jarosz, J., Kłosińska-Szmurło, E., & Mazurek, A. P. (2014). Mass spectrometry and molecular modeling studies on the inclusion complexes between alendronate and β-cyclodextrin. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 78(1), 437–443. https://doi.org/10.1007/s10847-013-0315-0
  • Bilensoy, E., Cırpanlı, Y., Şen, M., Doğan, A. L., & Çalış, S. (2007). Thermosensitive mucoadhesive gel formulation loaded with 5-Fu: Cyclodextrin complex for HPV-induced cervical cancer. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 57(1–4), 363–370. https://doi.org/10.1007/s10847-006-9259-y
  • Boonyarattanakalin, K., Wolschann, P., Toochinda, P., & Lawtrakul, L. (2012). Molecular dynamics simulations of UC781-cyclodextrins inclusion complexes in aqueous solution. European Journal of Pharmaceutical Sciences, 47(4), 752–758. https://doi.org/10.1016/j.ejps.2012.08.004
  • Boroushaki, T., Dekamin, M. G., Hashemianzadeh, S. M., Naimi-Jamal, M. R., & Koli, M. G. (2022). A molecular dynamic simulation study of anticancer agents and UiO-66 as a carrier in drug delivery systems. Journal of Molecular Graphics & Modelling, 113, 108147. https://doi.org/10.1016/j.jmgm.2022.108147
  • Budhwar, V. (2018). Cyclodextrin complexes: An approach to improve the physicochemical properties of drugs and applications of cyclodextrin complexes. Asian Journal of Pharmaceutics (AJP), 12(02), 394–409.
  • Canbolat, M. F., Celebioglu, A., & Uyar, T. (2014). Drug delivery system based on cyclodextrin-naproxen inclusion complex incorporated in electrospun polycaprolactone nanofibers. Colloids and Surfaces. B, Biointerfaces, 115, 15–21. https://doi.org/10.1016/j.colsurfb.2013.11.021
  • Cho, K., Wang, X., Nie, S., Chen, Z. G., & Shin, D. M. (2008). Therapeutic nanoparticles for drug delivery in cancer. Clinical Cancer Research, 14(5), 1310–1316. https://doi.org/10.1158/1078-0432.CCR-07-1441
  • Crini, G., Fourmentin, S., Fenyvesi, É., Torri, G., Fourmentin, M., & Morin-Crini, N. (2018). Fundamentals and applications of cyclodextrins. In Cyclodextrin fundamentals, reactivity and analysis (pp. 1–55). Springer.
  • Darden, T., York, D., & Pedersen, L. (1993). Particle mesh Ewald: An N⋅ log (N) method for Ewald sums in large systems. The Journal of Chemical Physics, 98(12), 10089–10092. https://doi.org/10.1063/1.464397
  • Dos Passos Menezes, P., Dos Santos, P. B. P., Dória, G. A. A., de Sousa, B. M. H., Serafini, M. R., Nunes, P. S., Quintans-Júnior, L. J., de Matos, I. L., Alves, P. B., Bezerra, D. P., Mendonça Júnior, F. J. B., da Silva, G. F., de Aquino, T. M., de Souza Bento, E., Scotti, M. T., Scotti, L., & de Souza Araujo, A. A. (2017). Molecular modeling and physicochemical properties of supramolecular complexes of limonene with α-and β-cyclodextrins. AAPS PharmSciTech, 18(1), 49–57. https://doi.org/10.1208/s12249-016-0516-0
  • Ehdaie, B. (2007). Application of nanotechnology in cancer research: Review of progress in the National Cancer Institute’s alliance for nanotechnology. International Journal of Biological Sciences, 3(2), 108–110. https://doi.org/10.7150/ijbs.3.108
  • Evans, D. J., & Holian, B. L. (1985). The nose–hoover thermostat. The Journal of Chemical Physics, 83(8), 4069–4074. https://doi.org/10.1063/1.449071
  • Ferrari, M. (2005). Cancer nanotechnology: Opportunities and challenges. Nature Reviews. Cancer, 5(3), 161–171. https://doi.org/10.1038/nrc1566
  • Ganjali Koli, M., & Azizi, K. (2016). The partition and transport behavior of cytotoxic ionic liquids (ILs) through the DPPC bilayer: Insights from molecular dynamics simulation. Molecular Membrane Biology, 33(3–5), 64–75. https://doi.org/10.1080/09687688.2017.1384859
  • Ganji, M. D., Nashtahosseini, M., Yeganegi, S., & Rezvani, M. (2013). First-principles vdW-DF investigation on the interaction between the oxazepam molecule and C60 fullerene. Journal of Molecular Modeling, 19(4), 1929–1936. https://doi.org/10.1007/s00894-013-1758-3
  • Gebhardt, J., Kleist, C., Jakobtorweihen, S., & Hansen, N. (2018). Validation and comparison of force fields for native cyclodextrins in aqueous solution. The Journal of Physical Chemistry. B, 122(5), 1608–1626. https://doi.org/10.1021/acs.jpcb.7b11808
  • Gidwani, B., & Vyas, A. (2015). A comprehensive review on cyclodextrin-based carriers for delivery of chemotherapeutic cytotoxic anticancer drugs. BioMed Research International, 2015, 198268. https://doi.org/10.1155/2015/198268
  • Gu, K., & Meng, F. (2021). Former research and recent advances of metal-organic frameworks (MOF) for anti-cancer drug delivery. In Journal of Physics: Conference Series, 2021(1), 012021. https://doi.org/10.1088/1742-6596/2021/1/012021
  • He, S., Wu, L., Li, X., Sun, H., Xiong, T., Liu, J., Huang, C., Xu, H., Sun, H., Chen, W., Gref, R., & Zhang, J. (2021). Metal-organic frameworks for advanced drug delivery. Acta Pharmaceutica Sinica, B, 11(8), 2362–2395. https://doi.org/10.1016/j.apsb.2021.03.019
  • Hess, B., Bekker, H., Berendsen, H. J., & Fraaije, J. G. (1997). LINCS: A linear constraint solver for molecular simulations. Journal of Computational Chemistry, 18(12), 1463–1472. https://doi.org/10.1002/(SICI)1096-987X(199709)18:12<1463::AID-JCC4>3.0.CO;2-H
  • Hockney, R. W., Goel, S. P., & Eastwood, J. W. (1974). Quiet high-resolution computer models of a plasma. Journal of Computational Physics, 14(2), 148–158. https://doi.org/10.1016/0021-9991(74)90010-2
  • Khuntawee, W., Wolschann, P., Rungrotmongkol, T., Wong-Ekkabut, J., & Hannongbua, S. (2015). Molecular dynamics simulations of the interaction of beta cyclodextrin with a lipid bilayer. Journal of Chemical Information and Modeling, 55(9), 1894–1902. https://doi.org/10.1021/acs.jcim.5b00152
  • Koli, M. G., & Azizi, K. (2019). Investigation of benzodiazepines (BZDs) in a DPPC lipid bilayer: Insights from molecular dynamics simulation and DFT calculations. Journal of Molecular Graphics & Modelling, 90, 171–179. https://doi.org/10.1016/j.jmgm.2019.04.012
  • Krzak, A., & Bilewicz, R. (2020). Voltammetric/UV–Vis study of temozolomide inclusion complexes with cyclodextrin derivatives. Bioelectrochemistry (Amsterdam, Netherlands), 136, 107587. https://doi.org/10.1016/j.bioelechem.2020.107587
  • Lavan, D. A., McGuire, T., & Langer, R. (2003). Small-scale systems for in vivo drug delivery. Nature Biotechnology, 21(10), 1184–1191. https://doi.org/10.1038/nbt876
  • Lázaro, I. A., & Forgan, R. S. (2019). Application of zirconium MOFs in drug delivery and biomedicine. Coordination Chemistry Reviews, 380, 230–259. https://doi.org/10.1016/j.ccr.2018.09.009
  • Lima, P. S., Lucchese, A. M., Araujo-Filho, H. G., Menezes, P. P., Araujo, A. A., Quintans-Junior, L. J., & Quintans, J. S. (2016). Inclusion of terpenes in cyclodextrins: Preparation, characterization and pharmacological approaches. Carbohydrate Polymers, 151, 965–987. https://doi.org/10.1016/j.carbpol.2016.06.040
  • Luk, B. T., & Zhang, L. (2015). Cell membrane-camouflaged nanoparticles for drug delivery. Journal of Controlled Release, 220(Pt B), 600–607. https://doi.org/10.1016/j.jconrel.2015.07.019
  • Malde, A. K., Zuo, L., Breeze, M., Stroet, M., Poger, D., Nair, P. C., Oostenbrink, C., & Mark, A. E. (2011). An automated force field topology builder (ATB) and repository: Version 1.0. Journal of Chemical Theory and Computation, 7(12), 4026–4037. https://doi.org/10.1021/ct200196m
  • Martín del Valle, E. M., Galán, M. A., & Carbonell, R. G. (2009). Drug delivery technologies: The way forward in the new decade. Industrial & Engineering Chemistry Research, 48(5), 2475–2486. https://doi.org/10.1021/ie800886m
  • Martínez, L. (2015). Automatic identification of mobile and rigid substructures in molecular dynamics simulations and fractional structural fluctuation analysis. PLoS One, 10(3), e0119264. https://doi.org/10.1371/journal.pone.0119264
  • Menezes, P. D. P., Andrade, T. d A., Frank, L. A., de Souza, E. P. B. S. S., Trindade, G. d. G. G., Trindade, I. A. S., Serafini, M. R., Guterres, S. S., & Araújo, A. A. d. S. (2019). Advances of nanosystems containing cyclodextrins and their applications in pharmaceuticals. International Journal of Pharmaceutics, 559, 312–328. https://doi.org/10.1016/j.ijpharm.2019.01.041
  • Mixcoha, E., Campos-Terán, J., & Piñeiro, Á. (2014). Surface adsorption and bulk aggregation of cyclodextrins by computational molecular dynamics simulations as a function of temperature: α-CD vs β-CD. The Journal of Physical Chemistry, B, 118(25), 6999–7011. https://doi.org/10.1021/jp412533b
  • Mojdehi, M. F. P., Koli, M. G., Bolagh, M. D. O., Gardeh, M. G., & Hashemianzadeh, S. M. (2021). A detailed computational study on binding of kinase inhibitors into β-cyclodextrin: Inclusion complex formation. Molecular Systems Design & Engineering, 6(1), 80–92. https://doi.org/10.1039/D0ME00140F
  • Niknam, P., Jamehbozorgi, S., Rezvani, M., & Izadkhah, V. (2022). Understanding delivery and adsorption of Flutamide drug with ZnONS based on: Dispersion-corrected DFT calculations and MD simulations. Physica E: Low-Dimensional Systems and Nanostructures, 135, 114937. https://doi.org/10.1016/j.physe.2021.114937
  • Nutho, B., Khuntawee, W., Rungnim, C., Pongsawasdi, P., Wolschann, P., Karpfen, A., Kungwan, N., & Rungrotmongkol, T. (2014). Binding mode and free energy prediction of fisetin/β-cyclodextrin inclusion complexes. Beilstein Journal of Organic Chemistry, 10(1), 2789–2799. https://doi.org/10.3762/bjoc.10.296
  • Park, K. (2013). Facing the truth about nanotechnology in drug delivery. ACS Nano, 7(9), 7442–7447. https://doi.org/10.1021/nn404501g
  • Parrinello, M., & Rahman, A. (1980). Crystal structure and pair potentials: A molecular-dynamics study. Physical Review Letters, 45(14), 1196–1199. https://doi.org/10.1103/PhysRevLett.45.1196
  • Pereva, S., Sarafska, T., Bogdanova, S., & Spassov, Т. (2016). Efficiency of “cyclodextrin-ibuprofen” inclusion complex formation. Journal of Drug Delivery Science and Technology, 35, 34–39. https://doi.org/10.1016/j.jddst.2016.04.006
  • Poulson, B. G., Alsulami, Q. A., Sharfalddin, A., El Agammy, E. F., Mouffouk, F., Emwas, A. H., Jaremko, L., & Jaremko, M. (2021). Cyclodextrins: Structural, chemical, and physical properties, and applications. Polysaccharides, 3(1), 1–31. https://doi.org/10.3390/polysaccharides3010001
  • Rasoolidanesh, M., Astaraki, M., Mostafavi, M., Rezvani, M., & Ganji, M. D. (2021). Toward efficient enantioseparation of ibuprofen isomers using chiral BNNTs: Dispersion corrected DFT calculations and DFTB molecular dynamic simulations. Diamond and Related Materials, 119, 108561. https://doi.org/10.1016/j.diamond.2021.108561
  • Rezvani, M., Ganji, M. D., & Faghihnasiri, M. (2013). Encapsulation of lamivudine into single walled carbon nanotubes: A vdW-DF study. Physica E: Low-Dimensional Systems and Nanostructures, 52, 27–33. https://doi.org/10.1016/j.physe.2013.03.024
  • Roosta, S., Hashemianzadeh, S. M., & Ganjali Koli, M. (2021). Investigation of glutathione as a natural antioxidant and multitarget inhibitor for Alzheimer’s disease: Insights from molecular simulations. Journal of Molecular Liquids, 344, 117960. https://doi.org/10.1016/j.molliq.2021.117960
  • Sabet, M., Tanreh, S., Khosravi, A., Astaraki, M., Rezvani, M., & Ganji, M. D. (2022). Theoretical assessment of the solvent effect on the functionalization of Au32 and C60 nanocages with fluorouracil drug. Diamond and Related Materials, 126, 109142. https://doi.org/10.1016/j.diamond.2022.109142
  • Sancho, M. I., Andujar, S., Porasso, R. D., & Enriz, R. D. (2016). Theoretical and experimental study of inclusion complexes of β-cyclodextrins with chalcone and 2′, 4′-dihydroxychalcone. The Journal of Physical Chemistry, B, 120(12), 3000–3011. https://doi.org/10.1021/acs.jpcb.5b11317
  • Shelley, H., & Babu, R. J. (2018). Role of cyclodextrins in nanoparticle-based drug delivery systems. Journal of Pharmaceutical Sciences, 107(7), 1741–1753. https://doi.org/10.1016/j.xphs.2018.03.021
  • Sodeifian, G., & Razmimanesh, F. (2019). Diffusional interaction behavior of NSAIDs in lipid bilayer membrane using molecular dynamics (MD) simulation: Aspirin and Ibuprofen. Journal of Biomolecular Structure & Dynamics, 37(7), 1666–1684. https://doi.org/10.1080/07391102.2018.1464956
  • Stroet, M., Caron, B., Visscher, K. M., Geerke, D. P., Malde, A. K., & Mark, A. E. (2018). Automated topology builder version 3.0: Prediction of solvation free enthalpies in water and hexane. Journal of Chemical Theory and Computation, 14(11), 5834–5845. https://doi.org/10.1021/acs.jctc.8b00768
  • Vyas, A., Saraf, S., & Saraf, S. (2008). Cyclodextrin based novel drug delivery systems. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 62(1–2), 23–42. https://doi.org/10.1007/s10847-008-9456-y
  • Wang, Y., Yan, J., Wen, N., Xiong, H., Cai, S., He, Q., Hu, Y., Peng, D., Liu, Z., & Liu, Y. (2020). Metal-organic frameworks for stimuli-responsive drug delivery. Biomaterials, 230, 119619. https://doi.org/10.1016/j.biomaterials.2019.119619
  • Zhu, X., Gu, J., Wang, Y., Li, B., Li, Y., Zhao, W., & Shi, J. (2014). Inherent anchorages in UiO-66 nanoparticles for efficient capture of alendronate and its mediated release. Chemical Communications (Cambridge, England), 50(63), 8779–8782. https://doi.org/10.1039/c4cc02570a
  • Žilinskas, A. (2006). Practical mathematical optimization: An introduction to basic optimization theory and classical and new gradient-based algorithms.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.