254
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Signaling landscape of mitochondrial non-coding RNAs

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 12016-12025 | Received 07 Oct 2022, Accepted 27 Dec 2022, Published online: 09 Jan 2023

References

  • Abate, M., Festa, A., Falco, M., Lombardi, A., Luce, A., Grimaldi, A., Zappavigna, S., Sperlongano, P., Irace, C., Caraglia, M., & Misso, G. (2020). Mitochondria as playmakers of apoptosis, autophagy and senescence. Seminars in Cell & Developmental Biology, 98, 139–153. https://doi.org/10.1016/j.semcdb.2019.05.022
  • Altschul, S. F., Gish, W., Miller, W., Myers, E. W., & Lipman, D. J. (1990). Basic local alignment search tool. Journal of Molecular Biology, 215(3), 403–410. https://doi.org/10.1016/S0022-2836(05)80360-2
  • Anderson, S., Bankier, A. T., Barrell, B. G., de Bruijn, M. H., Coulson, A. R., Drouin, J., Eperon, I. C., Nierlich, D. P., Roe, B. A., Sanger, F., Schreier, P. H., Smith, A. J., Staden, R., & Young, I. G. (1981). Sequence and organization of the human mitochondrial genome. Nature, 290(5806), 457–465. https://doi.org/10.1038/290457a0
  • Arghiani, N., & Shah, K. (2022). Modulating microRNAs in cancer: Next-generation therapies. Cancer Biology & Medicine, 19(3), 289–304. https://doi.org/10.20892/j.issn.2095-3941.2021.0294
  • Berman, H. M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T. N., Weissig, H., Shindyalov, I. N., & Bourne, P. E. (2000). The Protein Data Bank. Nucleic Acids Research, 28(1), 235–242. https://doi.org/10.1093/nar/28.1.235
  • Bharathkumar, N., Sunil, A., Meera, P., Aksah, S., Kannan, M., Saravanan, K. M., & Anand, T. (2022). CRISPR/Cas-based modifications for therapeutic applications: A review. Molecular Biotechnology, 64(4), 355–372. https://doi.org/10.1007/s12033-021-00422-8
  • Brand, M. D., Orr, A. L., Perevoshchikova, I. V., & Quinlan, C. L. (2013). The role of mitochondrial function and cellular bioenergetics in ageing and disease. British Journal of Dermatology, 169(SUPPL.2), 1–8. https://doi.org/10.1111/bjd.12208
  • Brown, T. A. (2002). The human genome. Genomes (2nd ed.). Wiley-Liss.
  • Bruford, E. A., Antonescu, C. R., Carroll, A. J., Chinnaiyan, A., Cree, I. A., Cross, N. C. P., Dalgleish, R., Gale, R. P., Harrison, C. J., Hastings, R. J., Huret, J.-L., Johansson, B., Le Beau, M., Mecucci, C., Mertens, F., Verhaak, R., & Mitelman, F. (2021). HUGO Gene Nomenclature Committee (HGNC) recommendations for the designation of gene fusions. Leukemia, 35(11), 3040–3043. https://doi.org/10.1038/s41375-021-01436-6
  • Cech, T. R., & Steitz, J. A. (2014). The non-coding RNA revolution—Trashing old rules to forge new ones. Cell, 157(1), 77–94. https://doi.org/10.1016/j.cell.2014.03.008
  • Chen, X., Yan, C. C., Zhang, X., & You, Z.-H. (2017). Long non-coding RNAs and complex diseases: From experimental results to computational models. Briefings in Bioinformatics, 18(4), 558–576. https://doi.org/10.1093/bib/bbw060
  • Eddy, S. R. (2001). Non-coding RNA genes and the modern RNA world. Nature Reviews. Genetics, 2(12), 919–929. https://doi.org/10.1038/35103511
  • Gibb, E. a., Brown, C. J., & Lam, W. L. (2011). The functional role of long non-coding RNA in human carcinomas. Molecular Cancer, 10(1), 38. 38. https://doi.org/10.1186/1476-4598-10-38
  • Gruber, A. R., Lorenz, R., Bernhart, S. H., Neuböck, R., & Hofacker, I. L. (2008). The Vienna RNA websuite. Nucleic Acids Research, 36(Web Server issue), W70–W74. https://doi.org/10.1093/nar/gkn188
  • Guo, J. K., & Guttman, M. (2022). Regulatory non-coding RNAs: Everything is possible, but what is important? Nature Methods, 19(10), 1156–1159. https://doi.org/10.1038/s41592-022-01629-6
  • Hess, B., Kutzner, C., van der Spoel, D., Lindahl, E. (2008). GROMACS 4: Algorithms for Highly Efficient, Load-balanced, and Scalable Molecular Simulation. J. Chem. Theory Comput., 4, 435–447. https://doi.org/10.1021/ct700301q
  • Heuer, B. (2021). Mitochondrial DNA: Unraveling the “other” genome. Journal of the American Association of Nurse Practitioners, 33(9), 673–675. https://journals.lww.com/jaanp/Fulltext/2021/09000/Mitochondrial_DNA__Unraveling_the__other__genome.3.aspx https://doi.org/10.1097/JXX.0000000000000646
  • Hofacker, I. L. (2003). Vienna RNA secondary structure server. Nucleic Acids Research, 31(13), 3429–3431. https://doi.org/10.1093/nar/gkg599
  • Kaminski, G., & Jorgensen, W. L. (1996). Performance of the AMBER94, MMFF94, and OPLS-AA force fields for modeling organic liquids. The Journal of Physical Chemistry, 100(46), 18010–18013. https://doi.org/10.1021/jp9624257
  • Kandhavelu, J., Palanivel, S., & Kandhavelu, M. (2017). Aberrantly binding microRNAs and their interactions with nuclear hormone receptors. MicroRNA (Shariqah, United Arab Emirates), 6(3), 200–207. https://doi.org/10.2174/2211536606666170724155252
  • Lin, Y.-H., Lim, S.-N., Chen, C.-Y., Chi, H.-C., Yeh, C.-T., & Lin, W.-R. (2022). Functional role of mitochondrial DNA in cancer progression. International Journal of Molecular Sciences, 23(3), 1659. https://doi.org/10.3390/ijms23031659
  • Liu, S., Li, B., Liang, Q., Liu, A., Qu, L., & Yang, J. (2020). Classification and function of RNA–protein interactions. Wiley Interdisciplinary Reviews. RNA, 11(6), e1601. https://doi.org/10.1002/wrna.1601
  • Maere, S., Heymans, K., & Kuiper, M. (2005). BiNGO: A Cytoscape plugin to assess overrepresentation of Gene Ontology categories in Biological Networks. Bioinformatics (Oxford, England), 21(16), 3448–3449. https://doi.org/10.1093/bioinformatics/bti551
  • Mark, P., & Nilsson, L. (2001). Structure and dynamics of the TIP3P, SPC, and SPC/E water models at 298 K. The Journal of Physical Chemistry A, 105(43), 9954–9960. https://doi.org/10.1021/jp003020w
  • Mattick, J. S., & Makunin, I. V. (2006). Non-coding RNA. Human Molecular Genetics, 15Spec(suppl_1), R17–R29. https://doi.org/10.1093/hmg/ddl046
  • McCaskill, J. S. (1990). The equilibrium partition function and base pair binding probabilities for RNA secondary structure. Biopolymers, 29(6-7), 1105–1119. https://doi.org/10.1002/bip.360290621
  • Mount, D. W. (2007). Using the Basic Local Alignment Search Tool (BLAST). CSH Protocols, 2007, pdb top17. https://doi.org/10.1101/pdb.top17
  • Pettersen, E. F., Goddard, T. D., Huang, C. C., Couch, G. S., Greenblatt, D. M., Meng, E. C., & Ferrin, T. E. (2004). UCSF Chimera—A visualization system for exploratory research and analysis. Journal of Computational Chemistry, 25(13), 1605–1612. https://doi.org/10.1002/jcc.20084
  • Picard, M., & Sandi, C. (2021). The social nature of mitochondria: Implications for human health. Neuroscience and Biobehavioral Reviews, 120, 595–610. https://doi.org/10.1016/j.neubiorev.2020.04.017
  • Ponting, C. P., & Haerty, W. (2022). Genome-wide analysis of human long noncoding RNAs: A provocative review. Annual Review of Genomics and Human Genetics, 23(1), 153–172. https://doi.org/10.1146/annurev-genom-112921-123710
  • Ponting, C. P., Oliver, P. L., & Reik, W. (2009). Evolution and functions of long noncoding RNAs. Cell, 136(4), 629–641. https://doi.org/10.1016/j.cell.2009.02.006
  • Ro, S., Ma, H.-Y., Park, C., Ortogero, N., Song, R., Hennig, G. W., Zheng, H., Lin, Y.-M., Moro, L., Hsieh, J.-T., & Yan, W. (2013). The mitochondrial genome encodes abundant small non-coding RNAs. Cell Research, 23(6), 759–774. https://doi.org/10.1038/cr.2013.37
  • Sarkies, P. (2020). Molecular mechanisms of epigenetic inheritance: Possible evolutionary implications. Seminars in Cell & Developmental Biology, 97, 106–115. https://doi.org/10.1016/j.semcdb.2019.06.005
  • Sebastian-delaCruz, M., Gonzalez-Moro, I., Olazagoitia-Garmendia, A., Castellanos-Rubio, A., & Santin, I. (2021). The role of lncRNAs in gene expression regulation through mRNA stabilization. Non-Coding RNA, 7(1), 3. https://doi.org/10.3390/ncrna7010003
  • Shannon, P., Markiel, A., Ozier, O., Baliga, N. S., Wang, J. T., Ramage, D., Amin, N., Schwikowski, B., & Ideker, T. (2003). Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Research, 13(11), 2498–2504. https://doi.org/10.1101/gr.1239303
  • Stewart, J. B., & Chinnery, P. F. (2021). Extreme heterogeneity of human mitochondrial DNA from organelles to populations. Nature Reviews. Genetics, 22(2), 106–118. https://doi.org/10.1038/s41576-020-00284-x
  • Stolarski, R. (2003). Thermodynamics of specific protein-RNA interactions. Acta Biochimica Polonica, 50(2), 297–318.
  • The UniProt Consortium. (2021). UniProt: The universal protein knowledgebase in 2021. Nucleic Acids Research, 49(D1), D480–D489. https://doi.org/10.1093/nar/gkaa1100
  • Tordonato, C., Di Fiore, P. P., & Nicassio, F. (2015). The role of non-coding RNAs in the regulation of stem cells and progenitors in the normal mammary gland and in breast tumors. Frontiers in Genetics, 6(February), 72–16. https://doi.org/10.3389/fgene.2015.00072
  • van Wolfswinkel, J. C., & Ketting, R. F. (2010). The role of small non-coding RNAs in genome stability and chromatin organization. Journal of Cell Science, 123(Pt 11), 1825–1839. https://doi.org/10.1242/jcs.061713
  • Venter, J. C., Adams, M. D., Myers, E. W., Li, P. W., Mural, R. J., Sutton, G. G., Smith, H. O., Yandell, M., Evans, C. A., Holt, R. A., Gocayne, J. D., Amanatides, P., Ballew, R. M., Huson, D. H., Wortman, J. R., Zhang, Q., Kodira, C. D., Zheng, X. H., Chen, L., … Zhu, X. (2001). The sequence of the human genome. Science (New York, N.Y.), 291(5507), 1304–1351. https://doi.org/10.1126/science.1058040
  • Wang, Y., Zhao, G., Fang, Z., Pan, H., Zhao, Y., Wang, Y., Zhou, X., Wang, X., Luo, T., Zhang, Y., Wang, Z., Chen, Q., Dong, L., Huang, Y., Zhou, Q., Xia, L., Li, B., Guo, J., Xia, K., Tang, B., & Li, J. (2022). Genetic landscape of human mitochondrial genome using whole-genome sequencing. Human Molecular Genetics, 31(11), 1747–1761. https://doi.org/10.1093/hmg/ddab358
  • Warde-Farley, D., Donaldson, S. L., Comes, O., Zuberi, K., Badrawi, R., Chao, P., Franz, M., Grouios, C., Kazi, F., Lopes, C. T., Maitland, A., Mostafavi, S., Montojo, J., Shao, Q., Wright, G., Bader, G. D., & Morris, Q. (2010). The GeneMANIA prediction server: Biological network integration for gene prioritization and predicting gene function. Nucleic Acids Research, 38(Web Server issue), W214–W220. https://doi.org/10.1093/nar/gkq537
  • Wolfsheimer, S., & Hartmann, A. K. (2008). Minimum-free-energy distribution of RNA secondary structures: Entropic and thermodynamic properties of rare events. Physical Review. E, Statistical, Nonlinear, and Soft Matter Physics, 82(2 Pt 1):021902.
  • Wu, G., Dawson, E., Duong, A., Haw, R., & Stein, L. (2014). ReactomeFIViz: A Cytoscape app for pathway and network-based data analysis. F1000Research, 3, 146. https://doi.org/10.12688/f1000research.4431.2
  • Wuchty, S., Fontana, W., Hofacker, I. L., & Schuster, P. (1999). Complete suboptimal folding of RNA and the stability of secondary structures. Biopolymers, 49(2), 145–165. https://doi.org/10.1002/(SICI)1097-0282(199902)49:2 < 145::AID-BIP4 > 3.0.CO;2-G
  • Zuker, M., & Stiegler, P. (1981). Optimal computer folding of large RNA sequences using thermodynamics and auxiliary information. Nucleic Acids Research, 9(1), 133–148. https://doi.org/10.1093/nar/9.1.133

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.