102
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Fabrication, characterization and biological properties evaluation of bioactive scaffold based on mineralized carbon nanofibers

, , , , , & ORCID Icon show all
Pages 12120-12127 | Received 01 Aug 2022, Accepted 01 Jan 2023, Published online: 16 Jan 2023

References

  • Alimohammadi, E., Nikzad, A., Khedri, M., Rezaian, M., Jahromi, A. M., Rezaei, N., & Maleki, R. (2020). Potential treatment of Parkinson's disease using new-generation carbon nanotubes: a biomolecular in silico study. Nanomedicine, 16, 189.
  • Betz, R. R. (2002). Limitations of autograft and allograft: new synthetic solutions. Orthopedics, 25(5 Suppl), S561–s570. https://doi.org/10.3928/0147-7447-20020502-04
  • Bianco, A., Kostarelos, K., & Prato, M. (2005). Applications of carbon nanotubes in drug delivery. Current Opinion in Chemical Biology, 9(6), 674–679. https://doi.org/10.1016/j.cbpa.2005.10.005
  • Christy, P. N., Basha, S. K., Kumari, V. S., Bashir, A., Maaza, M., Kaviyarasu, K., Arasu, M. V., Al-Dhabi, N. A., & Ignacimuthu, S. (2020). Biopolymeric nanocomposite scaffolds for bone tissue engineering applications – A review. Journal of Drug Delivery Science and Technology, 55, 101452.
  • Ciombor, D. M., & Aaron, R. K. (2005). The role of electrical stimulation in bone repair. Foot and Ankle Clinics, 10(4), 579–593, vii. https://doi.org/10.1016/j.fcl.2005.06.006
  • Derakhshankhah, H., Mohammad-Rezaei, R., Massoumi, B., Abbasian, M., Rezaei, A., Samadian, H., & Jaymand, M. (2020). Conducting polymer-based electrically conductive adhesive materials: design, fabrication, properties, and applications. Journal of Materials Science: Materials in Electronics, 31, 10947.
  • Gautam, S., Sharma, C., Purohit, S. D., Singh, H., Dinda, A. K., Potdar, P. D., Chou, C.-F., & Mishra, N. C. (2021). Gelatin-polycaprolactone-nanohydroxyapatite electrospun nanocomposite scaffold for bone tissue engineering. Materials Science & Engineering. C, Materials for Biological Applications, 119, 111588. https://doi.org/10.1016/j.msec.2020.111588
  • Haleem, A., Javaid, M., Khan, R. H., & Suman, R. (2020). 3D printing applications in bone tissue engineering. Journal of Clinical Orthopaedics and Trauma, 11(Suppl 1), S118–S124. https://doi.org/10.1016/j.jcot.2019.12.002
  • Hernández-González, A. C., Téllez-Jurado, L., & Rodríguez-Lorenzo, L. M. (2020). Alginate hydrogels for bone tissue engineering, from injectables to bioprinting: A review. Carbohydrate Polymers, 229, 115514. https://doi.org/10.1016/j.carbpol.2019.115514
  • Jensen, S. S., Broggini, N., Weibrich, G., Hjôrting-Hansen, E., Schenk, R., & Buser, D. (2005). Bone Regeneration in Standardized Bone Defects with Autografts or Bone Substitutes in Combination with Platelet Concentrate: A Histologic and Histomorphometric Study in the Mandibles of Minipigs. International Journal of Oral & Maxillofacial Implants, 20, 703–712.
  • Jin, J., Yu, B-j., Shi, Z-q., Wang, C-y., & Chong, C-b (2014). Lignin-based electrospun carbon nanofibrous webs as free-standing and binder-free electrodes for sodium ion batteries. Journal of Power Sources, 272, 800.
  • Khalifeh, J. M., Zohny, Z., MacEwan, M., Stephen, M., Johnston, W., Gamble, P., Zeng, Y., Yan, Y., & Ray, W. Z. (2018). Electrical stimulation and bone healing: A review of current technology and clinical applications. IEEE Reviews in Biomedical Engineering, 11, 217–232. https://doi.org/10.1109/RBME.2018.2799189
  • Khoshoei, A., Ghasemy, E., Poustchi, F., Shahbazi, M.-A., & Maleki, R. (2020). Engineering the pH-Sensitivity of the Graphene and Carbon Nanotube Based Nanomedicines in Smart Cancer Therapy by Grafting Trimetyl Chitosan. Pharmaceutical Research, 37, 1.
  • Koons, G. L., Diba, M., & Mikos, A. G. (2020). Materials design for bone-tissue engineering. Nature Reviews Materials, 5(8), 584–603. https://doi.org/10.1038/s41578-020-0204-2
  • Leppik, L., Oliveira, K. M. C., Bhavsar, M. B., & Barker, J. H. (2020). Electrical stimulation in bone tissue engineering treatments. European Journal of Trauma and Emergency Surgery, 46(2), 231–244. https://doi.org/10.1007/s00068-020-01324-1
  • Li, Z., Du, T., Ruan, C., & Niu, X. (2021). Bioinspired mineralized collagen scaffolds for bone tissue engineering. Bioactive Materials, 6(5), 1491–1511. https://doi.org/10.1016/j.bioactmat.2020.11.004
  • Liu, H., Cai, Q., Lian, P., Fang, Z., Duan, S., Yang, X., Deng, X., & Ryu, S. (2010). β-tricalcium phosphate nanoparticles adhered carbon nanofibrous membrane for human osteoblasts cell culture. Materials Letters, 64, 725.
  • Liu, H., Lin, M., Liu, X., Zhang, Y., Luo, Y., Pang, Y., Chen, H., Zhu, D., Zhong, X., Ma, S., Zhao, Y., Yang, Q., & Zhang, X. (2020). Doping bioactive elements into a collagen Scaffold based on synchronous self-assembly/mineralization for bone tissue engineering. Bioactive Materials, 5(4), 844–858. https://doi.org/10.1016/j.bioactmat.2020.06.005
  • Maiti, D., Tong, X., Mou, X., & Yang, K. (2018). Carbon-based nanomaterials for biomedical applications: A recent study. Frontiers in Pharmacology, 9, 1401. https://doi.org/10.3389/fphar.2018.01401
  • Mirzaei, E., Ai, J., Ebrahimi-Barough, S., Verdi, J., Ghanbari, H., & Faridi-Majidi, R. (2016). The differentiation of human endometrial stem cells into neuron-like cells on electrospun PAN-derived carbon nanofibers with random and aligned topographies. Molecular Neurobiology, 53(7), 4798–4808. https://doi.org/10.1007/s12035-015-9410-0
  • Nair, A. K., Gautieri, A., Chang, S.-W., & Buehler, M. J. (2013). Molecular mechanics of mineralized collagen fibrils in bone. Nature Communications, 4, 1.
  • Nazarnezhada, S., Abbaszadeh-Goudarzi, G., Samadian, H., Khaksari, M., Ghatar, J. M., Khastar, H., Rezaei, N., Mousavi, S. R., Shirian, S., & Salehi, M. (2020). Alginate hydrogel containing hydrogen sulfide as the functional wound dressing material: In vitro and in vivo study. International Journal of Biological Macromolecules, 164, 3323–3331. https://doi.org/10.1016/j.ijbiomac.2020.08.233
  • Nekounam, H., Gholizadeh, S., Allahyari, Z., Samadian, H., Nazeri, N., Shokrgozar, M. A., & Faridi-Majidi, R. (2021). Electroconductive scaffolds for tissue regeneration: Current opportunities, pitfalls, and potential solutions. Materials Research Bulletin, 134, 111083.
  • Nekounam, H., Kandi, M. R., Shaterabadi, D., Samadian, H., Mahmoodi, N., Hasanzadeh, E., & Faridi-Majidi, R. (2021). Silica nanoparticles-incorporated carbon nanofibers as bioactive biomaterial for bone tissue engineering. Diamond and Related Materials, 115, 108320.
  • Olivier, F., Bonnamy, S., Rochet, N., & Drouet, C. (2021). Activated Carbon Fiber Cloth/Biomimetic Apatite: A Dual Drug Delivery System. International Journal of Molecular Sciences, 22, 12247.
  • Peng, Z., Zhao, T., Zhou, Y., Li, S., Li, J., & Leblanc, R. M. (2020). Bone Tissue Engineering via Carbon-Based Nanomaterials. Advanced Healthcare Materials, 9, 1901495.
  • Samadian, H., Khastar, H., Ehterami, A., & Salehi, M. (2021). Bioengineered 3D nanocomposite based on gold nanoparticles and gelatin nanofibers for bone regeneration: In vitro and in vivo study. Scientific Reports, 11(1), 1. https://doi.org/10.1038/s41598-021-93367-6
  • Samadian, H., Mobasheri, H., Hasanpour, S., & Faridi-Majid, R. (2017). Journal of Nano Research, 78–89.
  • Sikorski, P. (2020). Electroconductive scaffolds for tissue engineering applications. Biomaterials Science, 8(20), 5583–5588. https://doi.org/10.1039/d0bm01176b
  • Singh, Y. P., Dasgupta, S., Nayar, S., & Bhaskar, R. (2020). Optimization of electrospinning process & parameter of producing defect-free chitosan/polyethylene oxide nanofibers for bone tissue engineering. Journal of Biomaterials Science. Polymer Edition, 31(6), 781–803. https://doi.org/10.1080/09205063.2020.1718824
  • Turk, M., & Deliormanlı, A. M. (2017). Electrically conductive borate-based bioactive glass scaffolds for bone tissue engineering applications. Journal of Biomaterials Applications, 32(1), 28–39. https://doi.org/10.1177/0885328217709608
  • Udomluck, N., Lee, H., Hong, S., Lee, S.-H., & Park, H. (2020). Surface functionalization of dual growth factor on hydroxyapatite-coated nanofibers for bone tissue engineering. Applied Surface Science, 520, 146311.
  • Wan, Z., Zhang, P., Liu, Y., Lv, L., & Zhou, Y. (2020). Four-dimensional bioprinting: Current developments and applications in bone tissue engineering. Acta Biomaterialia, 101, 26–42. https://doi.org/10.1016/j.actbio.2019.10.038
  • Wang, R., Cui, F., Lu, H., Wen, H., Ma, C., & Li, H. (1995). Synthesis of nanophase hydroxyapatite/collagen composite. Journal of Materials Science Letters, 14(7), 490–492. https://doi.org/10.1007/BF00665911
  • Wu, M., Wang, Q., Liu, X., & Liu, H. (2013). Biomimetic synthesis and characterization of carbon nanofiber/hydroxyapatite composite scaffolds. Carbon, 51, 335.
  • Yang, Q., Sui, G., Shi, Y., Duan, S., Bao, J., Cai, Q., & Yang, X. (2013). Osteocompatibility characterization of polyacrylonitrile carbon nanofibers containing bioactive glass nanoparticles. Carbon, 56, 288.
  • Zhang, Q., Ji, Y., Zheng, W., Yan, M., Wang, D., Li, M., Chen, J., Yan, X., Zhang, Q., & Yuan, X. (2020). Electrospun Nanofibers Containing Strontium for Bone Tissue Engineering. Journal of Nanomaterials, 2020.
  • Zhang, B., Kang, F., Tarascon, J.-M., & Kim, J.-K. (2016). Recent advances in electrospun carbon nanofibers and their application in electrochemical energy storage. Progress in Materials Science, 76, 319.
  • Zhou, Z., Lai, C., Zhang, L., Qian, Y., Hou, H., Reneker, D. H., & Fong, H. (2009). Development of carbon nanofibers from aligned electrospun polyacrylonitrile nanofiber bundles and characterization of their microstructural, electrical, and mechanical properties. Polymer, 50, 2999.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.