298
Views
3
CrossRef citations to date
0
Altmetric
Research Articles

Potential of plant extracts in targeting SARS-CoV-2 main protease: an in vitro and in silico study

, , , ORCID Icon, , , , , ORCID Icon, , ORCID Icon & ORCID Icon show all
Pages 12204-12213 | Received 29 Aug 2022, Accepted 01 Jan 2023, Published online: 18 Jan 2023

References

  • Ajala, O. S., Jukov, A., & Ma, C.-M. (2014). Hepatitis C virus inhibitory hydrolysable tannins from the fruits of Terminalia chebula. Fitoterapia, 99, 117–123. https://doi.org/10.1016/j.fitote.2014.09.014
  • Al-Ishaq, R. K., Overy, A. J., & Büsselberg, D. (2020). Phytochemicals and gastrointestinal cancer: Cellular mechanisms and effects to change cancer progression. Biomolecules, 10(1), 105. https://doi.org/10.3390/biom10010105
  • Anand, K., Palm, G. J., Mesters, J. R., Siddell, S. G., Ziebuhr, J., & Hilgenfeld, R. (2002). Structure of coronavirus main proteinase reveals combination of a chymotrypsin fold with an extra alpha-helical domain. The EMBO Journal, 21(13), 3213–3224. https://doi.org/10.1093/emboj/cdf327
  • Bitencourt-Ferreira, G., & de Azevedo, W. F. (2019). Molegro virtual docker for docking. Methods in Molecular Biology (Clifton, N.J.), 2053, 149–167. https://doi.org/10.1007/978-1-4939-9752-7_10
  • Chen, Y., Liu, Q., & Guo, D. (2020). Emerging coronaviruses: Genome structure, replication, and pathogenesis. Journal of Medical Virology, 92(4), 418–423. https://doi.org/10.1002/jmv.25681
  • Chung, K.-T., Wong, T. Y., Wei, C.-I., Huang, Y.-W., & Lin, Y. (1998). Tannins and human health: A review. Critical Reviews in Food Science and Nutrition, 38(6), 421–464. https://doi.org/10.1080/10408699891274273
  • da Silva, T. B. V., Castilho, P. A., Sá-Nakanishi, A. B. d., Seixas, F. A. V., Dias, M. I., Barros, L., Ferreira, I. C. F. R., Bracht, A., & Peralta, R. M. (2021). The inhibitory action of purple tea on in vivo starch digestion compared to other Camellia sinensis teas. Food Research International (Ottawa, Ont.), 150, 110781. https://doi.org/10.1016/j.foodres.2021.110781
  • Dai, W., Zhang, B., Jiang, X.-M., Su, H., Li, J., Zhao, Y., Xie, X., Jin, Z., Peng, J., Liu, F., Li, C., Li, Y., Bai, F., Wang, H., Cheng, X., Cen, X., Hu, S., Yang, X., Wang, J., … Liu, H. (2020). Structure-based design of antiviral drug candidates targeting the SARS-CoV-2 main protease. Science (New York, N.Y.), 368(6497), 1331–1335. https://doi.org/10.1126/science.abb4489
  • de Vega, C., Arista, M., Ortiz, P. L., Herrera, C. M., & Talavera, S. (2009). The ant-pollination system of Cytinus hypocistis (Cytinaceae), a Mediterranean root holoparasite. Annals of Botany, 103(7), 1065–1075. https://doi.org/10.1093/aob/mcp049
  • Dong, H., Chen, S.-X., Kini, R. M., & Xu, H.-X. (1998). Effects of tannins from Geum japonicum on the catalytic activity of thrombin and factor Xa of blood coagulation cascade. Journal of Natural Products, 61(11), 1356–1360. https://doi.org/10.1021/np9801458
  • Freire, M. C. L. C., Noske, G. D., Bitencourt, N. V., Sanches, P. R. S., Santos-Filho, N. A., Gawriljuk, V. O., de Souza, E. P., Nogueira, V. H., de Godoy, M. O., Nakamura, A. M., & Fernandes, R. S. (2021). Non-toxic dimeric peptides derived from the bothropstoxin-I are potent SARS-CoV-2 and papain-like protease inhibitors. Molecules, 26(16), 4896. https://doi.org/10.3390/molecules26164896
  • Fukuchi, K., Sakagami, H., Okuda, T., Hatano, T., Tanuma, S., Kitajima, K., Inoue, Y., Inoue, S., Ichikawa, S., & Nonoyama, M. (1989). Inhibition of herpes simplex virus infection by tannins and related compounds. Antiviral Research, 11(5–6), 285–297. https://doi.org/10.1016/0166-3542(89)90038-7
  • Gaston, T. E., Mendrick, D. L., Paine, M. F., Roe, A. L., & Yeung, C. K. (2020). “Natural” is not synonymous with “Safe”: Toxicity of natural products alone and in combination with pharmaceutical agents. Regulatory Toxicology and Pharmacology, 113, 104642. https://doi.org/10.1016/j.yrtph.2020.104642
  • Goli, M. (2020). Review of novel human β‐coronavirus (2019‐nCoV or SARS‐CoV‐2) from the food industry perspective—Appropriate approaches to food production technology. Food Science & Nutrition, 8(10), 5228–5237. https://doi.org/10.1002/fsn3.1892
  • Haars, A., Chet, I., & Hüttermann, A. (1981). Effect of phenolic compounds and tannin on growth and laccase activity of Fomes annosus. Forest Pathology, 11(1–2), 67–76. https://doi.org/10.1111/j.1439-0329.1981.tb00072.x
  • Hagerman, A. E., & Klucher, K. M. (1986). Tannin-protein interactions. Progress in Clinical and Biological Research, 213, 67–76. http://www.ncbi.nlm.nih.gov/pubmed/3520596
  • Hatano, T., Kusuda, M., Inada, K., Ogawa, T., Shiota, S., Tsuchiya, T., & Yoshida, T. (2005). Effects of tannins and related polyphenols on methicillin-resistant Staphylococcus aureus. Phytochemistry, 66(17), 2047–2055. https://doi.org/10.1016/j.phytochem.2005.01.013
  • Hoste, H., Jackson, F., Athanasiadou, S., Thamsborg, S. M., & Hoskin, S. O. (2006). The effects of tannin-rich plants on parasitic nematodes in ruminants. Trends in Parasitology, 22(6), 253–261. https://doi.org/10.1016/j.pt.2006.04.004
  • Huang, C., Wang, Y., Li, X., Ren, L., Zhao, J., Hu, Y., Zhang, L., Fan, G., Xu, J., Gu, X., & Cheng, Z. (2020). Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. The Lancet, 395(10223), 497–506. https://doi.org/10.1016/S0140-6736(20)30183-5
  • Indrayanto, G., Putra, G. S., & Suhud, F. (2021). Validation of in-vitro bioassay methods: Application in herbal drug research. Profiles of Drug Substances, Excipients and Related Methodology, 46(2021), 273–307. https://doi.org/10.1016/bs.podrm.2020.07.005
  • Kato-Schwartz, C. G., Bracht, F., de Almeida Gonçalves, G., Soares, A. A., Vieira, T. F., Brugnari, T., Bracht, A., & Peralta, R. M. (2018). Inhibition of α-amylases by pentagalloyl glucose: Kinetics, molecular dynamics and consequences for starch absorption. Journal of Functional Foods, 44, 265–273.
  • Kawabata, K., Yoshioka, Y., & Terao, J. (2019). Role of intestinal microbiota in the bioavailability and physiological functions of dietary polyphenols. Molecules, 24(2), 370. https://doi.org/10.3390/molecules24020370
  • Khailany, R. A., Safdar, M., & Ozaslan, M. (2020). Genomic characterization of a novel SARS-CoV-2. Gene Reports, 19, 100682. https://doi.org/10.1016/j.genrep.2020.100682
  • Kneller, D. W., Phillips, G., O'Neill, H. M., Jedrzejczak, R., Stols, L., Langan, P., Joachimiak, A., Coates, L., & Kovalevsky, A. (2020). Structural plasticity of SARS-CoV-2 3CL Mpro active site cavity revealed by room temperature X-ray crystallography. Nature Communications, 11(1), 3202. https://doi.org/10.1038/s41467-020-16954-7
  • Koleckar, V., Kubikova, K., Rehakova, Z., Kuca, K., Jun, D., Jahodar, L., & Opletal, L. (2008). Condensed and hydrolysable tannins as antioxidants influencing the health. Mini Reviews in Medicinal Chemistry, 8(5), 436–447. https://doi.org/10.2174/138955708784223486
  • Kumar, A., & Darreh-Shori, T. (2017). DMSO: A mixed-competitive inhibitor of human acetylcholinesterase. ACS Chemical Neuroscience, 8(12), 2618–2625. https://doi.org/10.1021/acschemneuro.7b00344
  • Kumari, R., Kumar, R., Lynn, A., & Consort, O. (2014). g_mmpbsa-A GROMACS tool for high-throughput MM-PBSA calculations. Journal of Chemical Information and Modeling, 54(7), 1951–1962. https://doi.org/10.1021/Ci500020m
  • Mackerell, A. D., Feig, M., & Brooks, C. L. (2004). Extending the treatment of backbone energetics in protein force fields: Limitations of gas-phase quantum mechanics in reproducing protein conformational distributions in molecular dynamics simulations. Journal of Computational Chemistry, 25(11), 1400–1415. https://doi.org/10.1002/jcc.20065
  • Marcovicz, C., Ferreira, R. C., Santos, A. B. S., Reyna, A. S., de Araújo, C. B., Malvestiti, I., & Falcão, E. H. L. (2018). Nonlinear optical behavior of two tetrathiafulvalene derivatives in the picosecond regime. Chemical Physics Letters, 702, 16–20. https://doi.org/10.1016/J.CPLETT.2018.04.053
  • Modrzyński, J. J., Christensen, J. H., & Brandt, K. K. (2019). Evaluation of dimethyl sulfoxide (DMSO) as a co-solvent for toxicity testing of hydrophobic organic compounds. Ecotoxicology (London, England), 28(9), 1136–1141. https://doi.org/10.1007/s10646-019-02107-0
  • Nonaka, G., Nishioka, I., Nishizawa, M., Yamagishi, T., Kashiwada, Y., Dutschman, G. E., Bodner, A. J., Kilkuskie, R. E., Cheng, Y. C., & Lee, K. H. (1990). Anti-aids agents, 2: Inhibitory effect of tannins on HIV reverse transcriptase and HIV replication in H9 lymphocyte cells. Journal of Natural Products, 53(3), 587–595. https://doi.org/10.1021/np50069a008
  • O’Boyle, N. M., Banck, M., James, C. A., Morley, C., Vandermeersch, T., & Hutchison, G. R. (2011). Open Babel: An open chemical toolbox. Journal of Cheminformatics, 13(1), 1–14. https://doi.org/10.1186/1758-2946-3-33
  • Pattaro-Júnior, J. R., Araújo, I. G., Moraes, C. B., Barbosa, C. G., Philippsen, G. S., Freitas-Junior, L. H., Guidi, A. C., de Mello, J. C. P., Peralta, R. M., Fernandez, M. A., & Teixeira, R. R. (2022). Antiviral activity of Cenostigma pluviosum var. peltophoroides extract and fractions against SARS-CoV-2. Journal of Biomolecular Structure & Dynamics. https://doi.org/10.1080/07391102.2022.2120078.
  • Pellenz, N. L., Barbisan, F., Azzolin, V. F., Santos Marques, L. P., Mastella, M. H., Teixeira, C. F., Ribeiro, E. E., & da Cruz, I B. M. (2019). Healing activity of Stryphnodendron adstringens (Mart.), a Brazilian tannin-rich species: A review of the literature and a case series. Wound Medicine, 26(1), 100163. https://doi.org/10.1016/j.wndm.2019.100163
  • Pettersen, E. F., Goddard, T. D., Huang, C. C., Couch, G. S., Greenblatt, D. M., Meng, E. C., & Ferrin, T. E. (2004). UCSF Chimera?A visualization system for exploratory research and analysis. Journal of Computational Chemistry, 25(13), 1605–1612. https://doi.org/10.1002/jcc.20084
  • Rao, T., Tan, Z., Peng, J., Guo, Y., Chen, Y., Zhou, H., & Ouyang, D. (2019). The pharmacogenetics of natural products: A pharmacokinetic and pharmacodynamic perspective. Pharmacological Research, 146, 104283. https://doi.org/10.1016/j.phrs.2019.104283
  • Rappe, A. K., Casewit, C. J., Colwell, K. S., Goddard, W. A., & Skiff, W. M. (2002). UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations. Journal of the American Chemical Society, 114(25), 10024–10035. https://doi.org/10.1021/JA00051A040
  • Roe, M. K., Junod, N. A., Young, A. R., Beachboard, D. C., & Stobart, C. C. (2021). Targeting novel structural and functional features of coronavirus protease nsp5 (3CLpro, Mpro) in the age of COVID-19. Journal of General Virology, 102(3), 001558. https://doi.org/10.1099/jgv.0.001558
  • Sanders, J. M., Monogue, M. L., Jodlowski, T. Z., & Cutrell, J. B. (2020). Pharmacologic treatments for coronavirus disease 2019 (COVID-19). JAMA, 323(18), 1824-1836. https://doi.org/10.1001/jama.2020.6019
  • Scalbert, A. (1991). Antimicrobial properties of tannins. Phytochemistry, 30(12), 3875–3883. https://doi.org/10.1016/0031-9422(91)83426-L
  • Serafin, M. B., Bottega, A., Foletto, V. S., da Rosa, T. F., Hörner, A., & Hörner, R. (2020). Drug repositioning is an alternative for the treatment of coronavirus COVID-19. International Journal of Antimicrobial Agents, 55(6), 105969. https://doi.org/10.1016/j.ijantimicag.2020.105969
  • Shamsi, A., Mohammad, T., Anwar, S., AlAjmi, M. F., Hussain, A., Rehman, M. T., Islam, A., & Hassan, M. I. (2020). Glecaprevir and Maraviroc are high-affinity inhibitors of SARS-CoV-2 main protease: Possible implication in COVID-19 therapy. Bioscience Reports, 40(6), BSR20201256. https://doi.org/10.1042/BSR20201256
  • Sholzberg, M., Tang, G. H., Rahhal, H., AlHamzah, M., Kreuziger, L. B., Áinle, F. N., Alomran, F., Alayed, K., Alsheef, M., AlSumait, F., & Pompilio, C. E. (2021). Effectiveness of therapeutic heparin versus prophylactic heparin on death, mechanical ventilation, or intensive care unit admission in moderately ill patients with covid-19 admitted to hospital: RAPID randomised clinical trial. BMJ, 375(n2400). https://doi.org/10.1136/bmj.n2400
  • Silva, A. R., Pinela, J., Dias, M. I., Calhelha, R. C., Alves, M. J., Mocan, A., García, P. A., Barros, L., & Ferreira, I. C. F. R. (2020). Exploring the phytochemical profile of Cytinus hypocistis (L.) L. as a source of health-promoting biomolecules behind its in vitro bioactive and enzyme inhibitory properties. Food and Chemical Toxicology, 136, 111071. https://doi.org/10.1016/j.fct.2019.111071
  • Silva, A. R., Pinela, J., García, P. A., Ferreira, I. C. F. R., & Barros, L. (2021). Cytinus hypocistis (L.) L.: Optimised heat/ultrasound-assisted extraction of tannins by response surface methodology. Separation and Purification Technology, 276, 119358. https://doi.org/10.1016/j.seppur.2021.119358
  • Stierand, K., Maass, P. C., & Rarey, M. (2006). Molecular complexes at a glance: Automated generation of two-dimensional complex diagrams. Bioinformatics, 22(14), 1710–1716. https://doi.org/10.1093/bioinformatics/btl150
  • Szabó, K., Hámori, C., & Gyémánt, G. (2021). Gallotannins are non-specific inhibitors of α-amylase: Aggregates are the active species taking part in inhibition. Chemical Biology & Drug Design, 97(2), 349–357. https://doi.org/10.1111/cbdd.13787
  • Tanaka, J. C. A., Silva, C. C. D., Dias Filho, B. P., Nakamura, C. V., Carvalho, J. E. D., & Foglio, M. A. (2005). Constituintes químicos de Luehea divaricata Mart. (Tiliaceae). Química Nova, 28(5), 834–837. https://doi.org/10.1590/S0100-40422005000500020
  • Trott, O., & Olson, A. J. (2010). AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal of Computational Chemistry, 31(2), 455–461. https://doi.org/10.1002/jcc.21334
  • Van Der Spoel, D., Lindahl, E., Hess, B., Groenhof, G., Mark, A. E., & Berendsen, H. J. C. (2005). GROMACS: Fast, flexible, and free. Journal of Computational Chemistry, 26(16), 1701–1718. https://doi.org/10.1002/jcc.20291
  • Wang, S., Meng, X., Zhou, H., Liu, Y., Secundo, F., & Liu, Y. (2016). Enzyme stability and activity in non-aqueous reaction systems. A Mini Review. Catalysts, 6(2), 32. https://doi.org/10.3390/catal6020032
  • Woo, P. C. Y., Lau, S. K. P., Huang, Y., & Yuen, K.-Y. (2009). Coronavirus diversity, phylogeny and interspecies jumping. Experimental Biology and Medicine (Maywood, N.J.), 234(10), 1117–1127. https://doi.org/10.3181/0903-MR-94
  • Zoete, V., Daina, A., Bovigny, C., & Michielin, O. (2016). SwissSimilarity: A web tool for low to ultra high throughput ligand-based virtual screening. Journal of Chemical Information and Modeling, 56(8), 1399–1404. https://doi.org/10.1021/acs.jcim.6b00174
  • Zucca, P., Pintus, M., Manzo, G., Nieddu, M., Steri, D., & Rinaldi, A. C. (2015). Antimicrobial, antioxidant and anti-tyrosinase properties of extracts of the Mediterranean parasitic plant Cytinus hypocistis. BMC Research Notes, 8(1), 562. https://doi.org/10.1186/s13104-015-1546-5

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.