204
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Molecular cloning, expression, mRNA secondary structure and immunological characterization of mussel foot proteins (Mfps) (Mollusca: Bivalvia)

ORCID Icon & ORCID Icon
Pages 12242-12266 | Received 12 Sep 2022, Accepted 01 Jan 2023, Published online: 23 Jan 2023

References

  • Ali, M., Pandey, R. K., Khatoon, N., Narula, A., Mishra, A., & Prajapati, V. K. (2017). Exploring dengue genome to construct a multi-epitope based subunit vaccine by utilizing immunoinformatics approach to battle against dengue infection. Scientific Reports, 7(1), 9232. https://doi.org/10.1038/s41598-017-09199-w
  • Anand, P. P., & Shibu Vardhanan, Y. (2020). Computational modelling of wet adhesive mussel foot proteins (Bivalvia): Insights into the evolutionary convolution in diverse perspectives. Scientific Reports, 10(1), 2612. https://doi.org/10.1038/s41598-020-59169-y
  • Anand, P. P., & Shibu Vardhanan, Y. (2021). Dye and metal ion adsorption ability of Asian green mussel byssus thread complex; their microscopic and thermal property characterization. Environmental Technology, 1–17. https://doi.org/10.1080/09593330.2021.1971776
  • Bhagat, V., & Becker, M. L. (2017). Degradable adhesive for surgery and tissue engineering. Biomacromolecules, 18(10), 3009–3039. https://doi.org/10.1021/acs.biomac.7b00969
  • Burzio, L. O., Burzio, V. A., Silva, T., Burzio, L. A., & Pardo, J. (1997). Environmental bioadhesion: Themes and applications. Current Opinion in Biotechnology, 8(3), 309–312. https://doi.org/10.1016/S0958-1669(97)80008-0
  • Cha, H. U., Hwang, D. S., & Lim, S. (2008). Development of bio-adhesives from marine mussels. Biotechnology Journal, 3(5), 631–638. https://doi.org/10.1002/biot.200700258
  • Cha, H. J., Hwang, D. S., Lim, S., White, J. D., Matos-Perez, C. R., & Wilker, J. J. (2009). Bulk adhesive strength of recombinant hybrid mussel adhesive protein. Biofouling, 25(2), 99–107. https://doi.org/10.1080/08927010802563108
  • Chen, X., Shi, S.-P., Xu, H.-D., Suo, S.-B., & Qiu, J.-D. (2016). A homology-based pipeline for global prediction of post-translational modification sites. Scientific Reports, 6, 25801. https://doi.org/10.1038/srep25801
  • Choi, B.-H., Cheong, H., Jo, Y. K., Bahn, S. Y., Seo, J. H., & Cha, H. J. (2014). Highly purified mussel adhesive protein to secure biosafety for in vivo applications. Microbial Cell Factories, 13(1), 52. https://doi.org/10.1186/1475-2859-13-52
  • Choi, Y. S., Yang, Y. J., Yang, B., & Cha, H. C. (2012). In vivo modification of tyrosine residues in recombinant mussel adhesive protein by tyrosinase co-expression in Escherichia coli. Microbial Cell Factories, 11, 139.
  • Chopra, R. K., & Ananthanarayanan, V. S. (1982). Conformational implications of enzymatic proline hydroxylation in collagen. Proceedings of the National Academy of Sciences of the United States of America, 79(23), 7180–7184. https://doi.org/10.1073/pnas.79.23.7180
  • Chuh, K. N., & Pratt, M. R. (2015). Chemical methods for the proteome-wide identification of posttranslationally modified proteins. Current Opinion in Chemical Biology, 24, 27–37. https://doi.org/10.1016/j.cbpa.2014.10.020
  • Dana, H., Mahmoodi Chalbatani, G., Gharagouzloo, E., Miri, S. R., Memari, F., Rasoolzadeh, R., Zinatizadeh, M. R., Kheirandish Zarandi, P., & Marmari, V. (2020). In silico analysis, molecular docking, molecular dynamic, cloning, expression and purification of chimeric protein in colorectal cancer treatment. Drug Design, Development and Therapy, 14, 309–329. https://doi.org/10.2147/DDDT.S231958
  • DeMartini, D. G., Errico, J. M., Sjoestroem, S., Fenster, A., & Waite, J. H. (2017). A cohort of new adhesive proteins identified from transcriptomic analysis of mussel foot glands. Journal of the Royal Society Interface, 14(131), 20170151. https://doi.org/10.1098/rsif.2017.0151
  • Dey, J., Mahapatra, S. R., Lata, S., Patro, S., Misra, N., & Suar, M. (2022a). Exploring Klebsiella pneumoniae capsule polysaccharide proteins to design multiepitope subunit vaccine to fight against pneumonia. Expert Review of Vaccines, 21(4), 569–587. https://doi.org/10.1080/14760584.2022.2021882
  • Dey, J., Mahapatra, S. R., Patnaik, S., Lata, S., Kushwaha, G. S., Panda, R. K., Misra, N., & Suar, M. (2022b). Molecular characterization and designing of a novel multiepitope vaccine construct against Pseudomonas aeruginosa. International Journal of Peptide Research and Therapeutics, 28(2), 49. https://doi.org/10.1007/s10989-021-10356-z
  • Dey, J., Mahapatra, S. R., Raj, T. K., Kaur, T., Jain, P., Tiwari, A., Patro, S., Misra, N., & Suar, M. (2022c). Designing a novel multi-epitope vaccine to evoke a robust immune response against pathogenic multidrug-resistant Enterococcus faecium bacterium. Gut Pathogens, 14(1), 21. https://doi.org/10.1186/s13099-022-00495-z
  • Dimitrov, I., Flower, D. R., & Doytchinova, I. (2013). AllerTOP – A server for in silico prediction allergens. BMC Bioinformatics, 14(S6), S4. https://doi.org/10.1186/1471-2105-14-S6-S4
  • Dimitrov, I., Naneva, L., Doytchinova, I., & Bangov, I. (2014). AllergenFP: Allergencity prediction by descriptor fingerprints. Bioinformatics (Oxford, England), 30(6), 846–851. https://doi.org/10.1093/bioinformatics/btt619
  • Dove, J., & Sheridan, O. (1986). Adhesive protein from mussels: Possibilities for dentistry, medicine, and industry. The Journal of the American Dental Association, 112, 879.
  • Doytchinova, I. A., & Flower, D. R. (2007a). VaxiJen: A server for prediction of protective antigens, tumor antigens and subunit vaccines. BMC Bioinformatics, 8(1), 4. https://doi.org/10.1186/1471-2105-8-4
  • Doytchinova, I. A., & Flower, D. R. (2007b). Identifying candidate subunit vaccines using an alignment-independent method based on principal amino acid properties. Vaccine, 25(5), 856–866. https://doi.org/10.1016/j.vaccine.2006.09.032
  • Doytchinova, I. A., & Flower, D. R. (2008). Bioinformatics approach for identifying parasite and fungal candidate subunit vaccines. The Open Vaccine Journal, 1(1), 22–26. https://doi.org/10.2174/1875035400801010022
  • Dubendorf, J. W., & Studier, F. (1991). Controlling basal expression in an inducible T7 expression system by blocking the target T7 promoter with lac repressor. Journal of Molecular Biology, 219(1), 45–59. https://doi.org/10.1016/0022-2836(91)90856-2
  • Farley, A. R., & Link, A. J. (2009). Identification and quantification of protein posttranslational modifications. Methods in Enzymology, 463, 725–763.
  • Filpula, D. R., Lee, S. M., Link, R. P., Strausberg, S. L., & Strausberg, R. L. (1990). Structural and functional repetition in a marine mussel adhesive protein. Biotechnology Progress, 6(3), 171–177. https://doi.org/10.1021/bp00003a001
  • Flammang, P., Lambert, A., Bailly, P., & Hennebert, E. (2009). Polyphosphoprotein-containing marine adhesives. The Journal of Adhesion, 85(8), 447–464. https://doi.org/10.1080/00218460902996358
  • Forooshani, P. K., & Lee, B. P. (2017). Recent approaches in designing bioadhesive materials inspired by mussel adhesive protein. Journal of Polymer Science. Part A, Polymer Chemistry, 55(1), 9–33. https://doi.org/10.1002/pola.28368
  • Gim, Y., Hwang, D. S., Lim, S., Song, Y. H., & Cha, H. J. (2008). Production of fusion mussel adhesive fp-353 in Escherichia coli. Biotechnology Progress, 24(6), 1272–1277. https://doi.org/10.1021/bp.65
  • Grande, D. A., & Pitman, M. I. (1988). The use pf adhesives in chondrocyte transplantation surgery: Preliminary studies. Bulletin of the Hospital for Joint Diseases Orthopaedic Institute, 48, 140–148.
  • Grote, A., Hiller, K., & Scheer, M. (2005). JCat: A novel tool to adapt codon usage of a target gene to its potential expression host. Nucleic Acids Research. 1, 33, W526–31.
  • Guerette, P. A., Hoon, S., Seow, Y., et al. (2013). Accelerating the design of biomimetic materials by integrating RNA-seq with proteomics and material science. Nature Biotechnology, 31(10), 908–915. https://doi.org/10.1038/nbt.2671
  • Hammer, D. A., & Tirrell, M. (1996). Biological adhesion at interfaces. Annual Review of Materials Science, 26(1), 651–691. https://doi.org/10.1146/annurev.ms.26.080196.003251
  • Hansen, D. C., Luther, G. W., & Waite, J. H. (1994). The adsorption of the adhesive protein of the blue mussel Mytilus edulis 1 onto type 304l stainless steel. Journal of Colloid and Interface Science. 168(1), 206–216. https://doi.org/10.1006/jcis.1994.1410
  • Hennebert, E., Maldonado, B., Ladurner, P., Flammang, P., & Santos, R. (2015). Experimental strategies for the identification and characterization of adhesive proteins in animals: A review. Interface Focus, 5(1), 20140064. https://doi.org/10.1098/rsfs.201.0064
  • Holten-Anderson, N., & Wiate, J. H. (2008). Mussel-designed protective coatings for compliant substrates. Journal of Dental Research. 87(8), 701–709.
  • Hong, J. M., Kim, B. J., Shim, J.-H., Kang, K. S., Kim, K.-J., Rhie, J. W., Cha, H. J., & Cho, D.-W. (2012). Enhancement of bone regeneration through facile surface functionalization of solid freeform fabrication-based three-dimensional scaffolds using mussel adhesive proteins. Acta Biomaterialia, 8(7), 2578–2586.
  • Hwang, D. S., Gim, Y., & Cha, H. U. (2005). Expression of functional recombinant mussel adhesive protein type 3A in Escherichia coli. Biotechnology Progress, 21(3), 965–970. https://doi.org/10.1021/bp050014e
  • Hwang, D. S., Gim, Y., Yoo, H. J., & Cha, H. J. (2007). Practical recombinant hybrid mussel bioadhesive fp-151. Biomaterials, 28(24), 3560–3568. https://doi.org/10.1016/j.biomaterials.2007.04.039
  • Hwang, D. S., Yoo, H. J., Jun, J. H., Moon, W. K., & Cha, H. J. (2004). Expression of functional recombinant mussel adhesive protein Mgfp-5 in Escherichia coli. Applied and Environmental Microbiology, 70(6), 3352–3359.
  • Inoue, K., Takeuchi, Y., Miki, D., Odo, S., Harayama, S., & Waite, J. H. (1996). Cloning, sequencing and sites of expression of genes for the hydroxyarginine-containing adhesive-plaque protein of the mussel Mytilus galloprovincialis. European Journal of Biochemistry, 239(1), 172–176.
  • Jia, M., Lin, K. W., & Souchelnytskyi, S. (2012). Phosphoproteomics: Detection, identification, and importance of protein phosphorylation. In H. C. E. Leung, T. K. Man, & R. J. Flores (Eds.), Integrative proteomics. InTech. https://doi.org/10.5772/31305
  • Jiang, Z., Du, L., & Ding, X. (2012). A novel recombinant bioadhesive designed from the non-repeating region of Perna viridis foot protein-1. Materials Science & Engineering C, 32, 1280–1287. https://doi.org/10.1016/j.msec.2012.04.007
  • Kaelin, W. G. (2005). Proline hydroxylation and gene expression. Annual Review of Biochemistry, 74, 115–128. https://doi.org/10.1146/annurev.biochem.74.082803.133142
  • Kalita, J., Padhi, A. K., & Tripathi, T. (2020). Designing a vaccine for fascioliasis using immunogenic 24 kDa mu-class glutathione s-transferase. Infection, Genetics and Evolution, 83, 104352. https://doi.org/10.1016/j.meegid.2020.104352
  • Kathwate, G. H. (2020). In silico design and characterization of multiepitopes vaccine for SARS-CoV2 from its spike proteins. International Journal of Peptide Research and Therapeutics, 28(1), 37. https://doi.org/10.1101/2020.06.03.131755
  • Kitamura, M., Kawakami, K., Nakamura, N., Tsumoto, K., Uchiyama, H., Ueda, Y., Kumagai, I., & Nakaya, T. (1999). Expression of model peptide of a marine mussel adhesive protein Escherichia coli and characterization of its structural and functional properties. Journal of Polymer Science Part A: Polymer Chemistry, 37(6), 729–736. https://doi.org/10.1002/(SICI)1099-0518(19990315)37:6<729::AID-POLA8>3.0.CO;2-3
  • Lee, S. J., Han, Y. H., Nam, B. H., Kim, Y. O., & Reeves, P. (2008). A novel expression system for recombinant marine mussel adhesive protein Mefp1 using a truncated OmpA signal peptide. Molecules and Cells, 26(1), 34–40.
  • Lee, B. P., Messersmith, P. B., Israelachvili, J. N., & Waite, J. H. (2011). Mussel-inspired adhesives and coatings. Annual Review of Materials Research, 41(1), 99–132. https://doi.org/10.1146/annurevmatsci-062910-100429
  • Levine, Z. A., Rapp, M. V., Wei, W., Mullen, R. G., Wu, C., Zerze, G. H., Mittal, J., Waite, J. H., Israelachvili, J. N., & Shea, J.-E. (2016). Surface force measurements and simulations of mussel-derived peptide adhesives on wet organic surfaces. Proceedings of the National Academy of Sciences, 113(16), 4332–4337. https://doi.org/10.1073/pnas.1603065113
  • Lim, S., Kim, K. R., & Choi, Y. S. (2011). In vivo post-translational modifications of recombinant mussel adhesive protein in insect cells. Biotechnology Progress, 27(5), 1390–1396. https://doi.org/10.1002/btpr.662
  • Lu, Q., Oh, D. X., Lee, Y., Jho, Y., Hwang, D. S., & Zeng, H. (2013). Nanomechanics of cation- π interactions in aqueous solution. Angewandte Chemie International Edition, 52(14), 3944–3948. https://doi.org/10.1002/anie.20120365
  • Magnan, C. N., Zeller, M., Kayala, M. A., Vigil, A., Randall, A., Felgner, P. L., & Baldi, P. (2010). High-throughput prediction of protein antigenicity using protein microarray data. Bioinformatics (Oxford, England), 26(23), 2936–2943. https://doi.org/10.1093/bioinformatics/btq551
  • Mahapatra, S. R., Dey, J., Jaiswal, A., Roy, R., Misra, N., & Suar, M. (2022b). Immunoinformatics-guided designing of epitope-based subunit vaccine from Pilus assembly protein of Acinetobacter baumannii bacteria. Journal of Immunological Methods, 508, 113325. https://doi.org/10.1016/j.jim.2022.113325
  • Mahapatra, S. R., Dey, J., Raj, T. K., Kumar, V., Ghosh, M., Verma, K. K., Kaur, T., Kesawat, M. S., Misra, N., & Suar, M. (2022a). The potential of plant-derived secondary metabolites as novel drug candidates against Klebsiella pneumoniae: Molecular docking and simulation investigation. South African Journal of Botany, 149, 789–797. https://doi.org/10.1016/j.sajb.2022.04.043
  • Maier, G. P., Rapp, M. V., Waite, J. H., Israelachvili, J. N., & Butler, A. (2015). Adaptive synergy between catechol and lysine promotes wet adhesion by surface salt displacement. Science, 349(6248), 628–632. https://doi.org/10.1126/science.aab0556
  • Margreitter, C., Petrov, D., & Zagrovic, B. (2013). Vienna-PTM webserver: A toolkit for MD simulations of protein post-translational modifications. Nucleic Acids Research. 41, 422–426.
  • Margreitter, C., Reif, M., & Oostenbrink, C. (2017). Update on phosphate and charged post-translationally modified amino acid parameters in the GROMOS force field. Journal of Computational Chemistry, 38(10), 714–720. https://doi.org/10.1002/jcc.24733
  • Maurer-Stroh, S., Krutz, N. L., Kern, P. S., Gunalan, V., Nguyen, M. N., Limviphuvadh, V., Eisenhaber, F., & Gerberick, G. F. (2019). AllerCatPro-prediction of protein allergenicity potential from the protein sequence. Bioinformatics (Oxford, England), 35(17), 3020–3027. https://doi.org/10.1093/bioinformatics/btz029
  • Mehdizadeh, M., Weng, H., Gyawali, D., Tang, I., & Yang, J. (2012). Injectable citrate-based mussel-inspired tissue bioadhesive with high wet strength for sutureless wound closure. Biomaterials, 33(32), 7972–7983.
  • Morgan, D. (1990). Two firms race to derive profits from mussels’ glue. Scientist, 41, 1–6.
  • Morla, S., Makhija, A., & Kumar, S. (2016). Synonymous codon usage patterns in glycoprotein gene of rabies virus. Gene, 584(1), 1–6. https://doi.org/10.1016/j.gene.2016.02.047
  • Narang, P. K., Dey, J., Mahapatra, S. R., Ghosh, M., Misra, N., Suar, M., Kumar, V., & Raina, V. (2021). Functional annotation and sequence-structure characterization of a hypothetical protein putatively involved in carotenoid biosynthesis in microalgae. South African Journal of Botany, 141, 219–226. https://doi.org/10.1016/j.sajb.2021.04.014
  • Narang, P. K., Dey, J., Mahapatra, S. R., Roy, R., Kushwaha, G. S., Misra, N., Suar, M., & Raina, V. (2022). Genome-based identification and comparative analysis of enzymes for carotenoid biosynthesis in microalgae. World Journal of Microbiology and Biotechnology, 38(1), 8. https://doi.org/10.1007/s11274-021-03188-y
  • Ninan, L., Monahan, J., Stroshine, R. L., Wilker, J. J., & Shi, R. (2003). Adhesive strength of marine mussel extracts on porcine skin. Biomaterials, 24(22), 4091–4099. https://doi.org/10.1016/s0142-9612(03)00257-6
  • Ninan, L., Stroshine, R. L., Wilker, J. J., & Shi, R. (2007). Adhesive strength and curing rate of marine mussel protein extracts on porcine small intestinal submucosa. Acta Biomaterialia, 3(5), 687–694. https://doi.org/10.1016/j.actbio.2007.02.004
  • Ohkawa, K., Nishida, A., Yamamoto, H., & Waite, J. H. (2004). A glycosylated byssal precursor protein from the green mussel Perna viridis with modified dopa side chains. Biofouling, 20(2), 101–115. https://doi.org/10.1080/08927010410001681246
  • Olivieri, M. P., Baier, R. E., & Loomis, R. E. (1992). Surface properties of mussel adhesive protein component films. Biomaterials, 13(14), 1000–1008.
  • Pandey, N., Soto-Garcia, L. F., Liao, J., Zimmern, P., Nguyen, K. T., & Hong, Y. (2020). Mussel-inspired bioadhesive in healthcare: Design parameters, current trends, and future perspectives. RSC. https://doi.org/10.1039/c9bm01848d
  • Papov, V. V., Diamond, T. V., Biemann, K., & Waite, J. H. (1995). Hydroxyarginine containing polyphenolic proteins in the adhesive plaques of the marine mussel Mytilus edulis. The Journal of Biological Chemistry, 270(34), 20183–20192. https://doi.org/10.1074/jbc.270.34.20183
  • Pejaver, V., Hsu, W. L., Xin, F., Dunker, A. K., Uversky, V. N., & Radivojac, P. (2014). The structural and functional signatures of proteins that undergo multiple events of post translational modification. Protein Science, 23(8), 1077–1093. https://doi.org/10.1002/pro.2494
  • Petrone, L., Kumar, A., Sutanto, C. N., Patil, N. J., Kannan, S., Palaniappan, A., Amini, S., Zappone, B., Verma, C., & Miserez, A. (2015). Mussel adhesion is dictated by time- regulated secretion and molecular conformation of mussel adhesive proteins. Nature Communications, 6, 8737. https://doi.org/10.1038/ncomms9737
  • Petrov, D., Margreitter, C., Grandits, M., Oostenbrink, C., & Zagrovic, B. (2013). Developmental and verification of force-filed parameters for molecular dynamic simulations of protein post-translational modifications. PLoS Computational Biology, 9(7), e1003154. https://doi.org/10.1371/journal.pcbi.1003154
  • Rapin, N., Lund, O., Bernaschi, M., & Castiglione, F. (2010). Computational immunology meets bioinformatics: The use of prediction tools for molecular binding in the simulation of the immune system. PloS One, 5(4), e9862. https://doi.org/10.1371/journal.pone.0009862
  • Rathi, S., Saka, R., Domb, A. J., & Khan, W. (2018). Protein-based bioadhesives and bioglues. Polymers for Advanced Technologies, 30(2), 217–234. https://doi.org/10.1002/pat.4465
  • Rees, D. J., Hanifi, A., Obille, A., Alexander, R., & Sone, E. D. (2019). Fingerprinting of proteins that mediate Quagga mussel adhesion using a De Novo assembled foot transcriptome. Scientific Reports, 9(1), 6305. https://doi.org/10.1038/s41598-019-41976-7
  • Reinders, J., & Sickmann, A. (2005). State-of-the art in phosphoproteomics. Proteomics, 5(16), 4052–4061. https://doi.org/10.1002/pmic.200401289
  • Roth, Z., Yehezkel, G., & Khalalia, I. (2012). Identification and quantification of protein glycosylation. International Journal of Carbohydrate Chemistry, 640923. https://doi.org/10.1155/2012/640923
  • Rzepecki, L. M., & Waite, J. H. (1993). The byssus of the zebra mussel, Dreissena polymorpha. II. Structure and polymorphism of byssal phenolic protein families. Molecular Marine Biology and Biotechnology, 2, 267–279.
  • Saez, C., Pardo, J., Gutierrez, E., Brito, M., & Burzio, L. O. (1991). Immunological studies of the polyphenolic proteins of mussels. Comparative Biochemistry and Physiology Part B: Comparative Biochemistry, 98(4), 569–572. https://doi.org/10.1016/0305-0491(91)90255-C
  • Sagert, J., Sun, C., & Waite, H. (2006). Chemical subtleties of mussel and polycheate holdfasts. In A. M. Smith & J. A. Callow (Eds.), Biological adhesives (pp. 125–143). Springer.
  • Saha, S., & Raghava, G. P. S. (2006). AlgPred: Prediction of allergenic proteins and mapping of IgE epitopes. Nucleic Acids Research, 34(Web Server issue), W202–W209. https://doi.org/10.1093/nar/gk1343
  • Salerno, A. J., & Goldberg, I. (1993). Cloning, expression, and characterization of a synthetic analog to the bioadhesive precursor protein of the sea mussel Mytilus edulis. Applied Microbiology and Biotechnology, 39(2), 221–226. https://doi.org/10.1007/BF0028610
  • Santonocito, R., Venturella, F., Dal Piaz, F., Morando, M. A., Provenzano, A., Rao, E., Costa, M. A., Bulone, D., San Biagio, P. L., Giacomazza, D., Sicorello, A., Alfano, C., Passantino, R., & Pastore, A. (2019). Recombinant mussel protein Pvfp-5β: A potential tissue adhesive. The Journal of Biological Chemistry, 294(34), 12826–12835. https://doi.org/10.1074/jbc.RA119.009531
  • Schnurrer, J., & Lehr, C. M. (1996). Mucoadhesive properties of the mussel adhesive protein. International Journal of Pharmaceutics. 141(1-2), 251–256. https://doi.org/10.1016/0378-5173(96)04625-X
  • Shahryarimorad, K., Alipour, A., Honar, Y. S., Abtahi, B., Shokrgozar, M. A., & Shahsavarani, H. (2022). In silico prediction and in vitro validation of the effect of pH on adhesive behaviour of the fused CsgA-MFP3 protein. AMB Express, 12(1), 94. https://doi.org/10.1186/s13568-022-01435-5
  • Sharp, P. M., & Li, W. H. (1987). The codon adaptation index – Measure of directional synonymous codon usage bias, and its potential applications. Nucleic Acids Research. 11, 15(3), 1281–1295.
  • Shey, R. A., Ghogomu, S. M., Esoh, K. K., Nebangwa, N. D., Shintouo, C. M., Nongley, N. F., Asa, B. F., Ngale, F. N., Vanhamme, L., & Souopgui, J. (2019). In silico design of a multi-epitope vaccine candidate against onchocerciasis and related filarial diseases. Scientific Reports, 9(1), 4409. https://doi.org/10.1038/s41598-019-40833-x
  • Shilling, P. J., Mirzadeh, K., & Cumming, A. J. (2020). Improved designs for pET expression plasmids increase protein production yield in Escherichia coli. Communications Biology, 3, 214. https://doi.org/10.1038/s42003-020-0939-8
  • Silverman, H. G., & Roberto, F. F. (2007). Understanding marine mussel adhesion. Marine Biotechnology (New York, N.Y.), 9(6), 661–681. https://doi.org/10.1007/s10126-007-9053-x
  • Song, W.-K., Kang, J.-H., Cha, J.-K., Lee, J.-S., Paik, J.-W., Jung, U.-W., Kim, B.-H., & Choi, S.-H. (2018). Biomimetic characteristics of mussel adhesive protein-loaded collagen membrane in guided bone regeneration of rabbit calvarial defects. Journal of Periodontal & Implant Science, 48(5), 305–316. https://doi.org/10.5051/jpis.2018.48.5.305
  • Stewart, R. J. (2011). Protein-based underwater adhesives and the prospects for their biotechnological production. Applied Microbiology and Biotechnology, 89(1), 27–33. https://doi.org/10.1007/s00253-010-2913-8
  • Sudeshna Panda, S., Dey, J., Mahapatra, S. R., Kushwaha, G. S., Misra, N., Suar, M., & Ghosh, M. (2022). Investigation on structural prediction of pectate lyase enzymes from different microbes and comparative docking studies with Pectin: The economical waste from food industry. Geomicrobiology Journal. 39(3–5), 294–305. https://doi.org/10.1080/01490451.2021.1992042
  • Tanimoto, T. T. (1958). An elementary mathematical theory of classification and prediction. IBM Research Yorktown Heights.
  • Taylor, S. W., & Waite, J. H. (1994). trnas-2,3-cis-3,4-Dihydroxyproline, a new naturally occurring amino acid, is the sixth residue in the tandemly repeated consensus decapeptide of an adhesive protein from Mytilus edulis. Journal of the American Chemical Society, 116(10), 803–804. https://doi.org/10.1021/ja00102a063
  • Venkatarajan, M. S., & Braun, W. (2001). New quantitative descriptors of amino acids based on multidimensional scaling of a large numbers of physical-chemical properties. Journal of Molecular Modeling. 7, 445–453.
  • Waite, J. H. (1983). Adhesion in byssally attached bivalve. Biological Reviews. 58(2), 209–231. https://doi.org/10.1111/j.1469-185-X.1983.tb00387.x
  • Waite, J. H. (1987). Nature’s underwater adhesive specialist. International Journal of Adhesion and Adhesives, 7(1), 9–14. https://doi.org/10.1016/0143-7496(87)90048-0
  • Waite, J. H. (1991). Mussel beards: a coming of age. Chemistry and Industry, 2, 607–611.
  • Wang, J., & Scheibel, T. (2018). Recombinant production of mussel byssus inspired proteins. Biotechnology Journal, 13(12), 1800146. https://doi.org/10.1002/biot.201800146
  • Wei, W., Yu, J., Gebbie, M. A., Tan, Y., Martinez Rodriguez, N. R., Israelachvili, J. N., & Waite, J. H. (2015). Bridging adhesion of mussel-inspired peptides: Role of charge, chain length, and surface type. Langmuir, 31(3), 1105–1112.
  • Wilker, J. J. (2011). Redox and adhesion on the rocks. Nature Chemical Biology, 7(9), 579–580. https://doi.org/10.1038/nchembio.639
  • Wold, S., Jonsson, J., Sjörström, M., Sandberg, M., & Rännar, S. (1993). DNA and peptide sequences and chemical processes multivariately modelled by principal component analysis and partial least-squares projection to latent structures. Analytica Chimica Acta, 277(2), 239–253. https://doi.org/10.1016/0003-2670(93)80437-P
  • Yu, J., Wei, W., Danner, E., Ashley, R. K., Israelachvili, J. N., & Waite, J. H. (2011). Mussel protein adhesion depends on interprotein thiol-mediated redox modulation. Nature Chemical Biology, 7(9), 588–590. https://doi.org/10.1038/NCHEMBIO.630
  • Zhang, M., Huang, C., Wang, Z., Lv, H., & Li, X. (2020). In silico analysis of non-synonymous single nucleotide polymorphisms (nsSNPs) in the human GJA3 gene associated with congenital cataract. BMC Molecular and Cell Biology, 21, 12. https://doi.org/10.1186/s12860-020-00252-7
  • Zhao, M., Bai, L., & Jang, J. (2020). Underwater adhesion of mussel foot protein on a graphite surface. Applied Surface Science, 511, 145589. https://doi.org/10.1016/j.apsusc.2020.145589
  • Zhao, H., Sagert, J., Hwang, D. S., & Waite, J. H. (2009). Glycosylated hydroxytryptophan in a mussel adhesive protein from Perna viridis. The Journal of Biological Chemistry, 284(35), 23344–23352. https://doi.org/10.1074/jbc.M109.022517
  • Zhao, H., & Waite, J. H. (2006). Linking adhesive and structural proteins in the attachment plaque of Mytilus californianus. The Journal of Biological Chemistry, 281(36), 26150–26158. https://doi.org/10.1074/jbc.M604357200
  • Zuker, M. (2003). Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Research, 31(13), 3406–3415. https://doi.org/10.1093/nar/gkg595

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.