211
Views
2
CrossRef citations to date
0
Altmetric
Research Articles

Structure-based virtual screening of novel natural products as chalcone derivatives against SARS-CoV-2 Mpro

, , , &
Pages 13235-13249 | Received 04 Jul 2022, Accepted 19 Jan 2023, Published online: 08 Feb 2023

References

  • Abegaz, B. M., Ngadjui, B. T., Dongo, E., Ngameni, B., Nindi, M. N., & Bezabih, M. (2002). Chalcones and other constituents of Dorstenia prorepens and Dorstenia zenkeri. Phytochemistry, 59(8), 877–883. https://doi.org/10.1016/S0031-9422(01)00483-6
  • Abraham, M. J., Murtola, T., Schulz, R., Páll, S., Smith, J. C., Hess, B., & Lindah, E. (2015). Gromacs: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX, 1-2, 19–25. https://doi.org/10.1016/j.softx.2015.06.001
  • Adityachaudhury, N., Das, A. K., Choudhury, A., & Daskanungo, P. L. (1976). Aurentiacin, a new chalcone from Didymocarpus aurentica [1976]. Phytochemistry, 15(1), 229–230. https://doi.org/10.1016/S0031-9422(00)89099-8
  • Agüero, M. B., Gonzalez, M., Lima, B., Svetaz, L., Sánchez, M., Zacchino, S., Feresin, G. E., Schmeda-Hirschmann, G., Palermo, J., Daniel Wunderlin, A. N. D., & Tapia, A. (2010). Argentinean propolis from Zuccagnia punctata cav. (Caesalpinieae) exudates: Phytochemical characterization and antifungal activity. Journal of Agricultural and Food Chemistry, 58(1), 194–201. https://doi.org/10.1021/jf902991t
  • Ahsan, M., Armstrong, J. A., & Waterman, P. G. (1994). Dihydrochalcones from the aerial parts of Boronia inconspicua. Phytochemistry, 36(3), 799–801. https://doi.org/10.1016/S0031-9422(00)89821-0
  • Aida, K., Tawata, M., Shindo, H., Onaya, T., Sasaki, H., Yamaguchi, T., Chin, M., & Mitsuhashi, H. (1990). Isoliquiritigenin: A new aldose reductase inhibitor from glycyrrhizae radix. Planta Medica, 56(3), 254–258. https://doi.org/10.1055/s-2006-960950
  • Akihisa, T., Tokuda, H., Ukiya, M., Iizuka, M., Schneider, S., Ogasawara, K., Mukainaka, T., Iwatsuki, K., Suzuki, T., & Nishino, H. (2003). Chalcones, coumarins, and flavanones from the exudate of Angelica keiskei and their chemopreventive effects. Cancer Letters, 201(2), 133–137. https://doi.org/10.1016/S0304-3835(03)00466-X
  • Alaaeldin, R., Mustafa, M., Abuo-Rahma, G. E. D. A., & Fathy, M. (2022). In vitro inhibition and molecular docking of a new ciprofloxacin-chalcone against SARS-CoV-2 main protease. Fundamental & Clinical Pharmacology, 36(1), 160–170. https://doi.org/10.1111/fcp.12708
  • Anand, K., Ziebuhr, J., Wadhwani, P., Mesters, J. R., & Hilgenfeld, R. (2003). Coronavirus main proteinase (3CLpro) Structure: Basis for design of anti-SARS drugs. Science (New York, NY), 300(5626), 1763–1767. https://doi.org/10.1126/science.1085658
  • Baba, K., Nakata, K., Taniguchi, M., Kido, T., & Kozawa, M. (1990). Chalcones from Angelica keiskei. Phytochemistry, 29(12), 3907–3910. https://doi.org/10.1016/0031-9422(90)85357-L
  • Best, R. B., Zhu, X., Shim, J., Lopes, P. E. M., Mittal, J., Feig, M., & Mackerell, A. D. (2012). Optimization of the Additive CHARMM all-atom protein force field targeting improved sampling of the backbone ϕ, ψ and side-chain χ 1 and χ 2 dihedral angles. Journal of Chemical Theory and Computation, 8(9), 3257–3273. https://doi.org/10.1021/ct300400x
  • Bhatt, P., & Dayal, R. (1992). Stipulin, a prenylated chalcone from Dalbergia stipulacea. Phytochemistry, 31(2), 719–721. https://doi.org/10.1016/0031-9422(92)90074-Z
  • Boeck, P., Leal, P. C., Yunes, R. A., Cechinel Filho, V., López, S., Sortino, M., Escalante, A., Furlán, R. L. E., & Zacchino, S. (2005). Antifungal activity and studies on mode of action of novel xanthoxyline-derived chalcones. Archiv der Pharmazie, 338(2-3), 87–95. https://doi.org/10.1002/ardp.200400929
  • Boopathi, S., Poma, A. B., & Kolandaivel, P. (2020). Novel 2019 coronavirus structure, mechanism of action, antiviral drug promises and rule out against its treatment. Journal of Biomolecular Structure and Dynamics, 39(9), 1–10. https://doi.org/10.1080/07391102.2020.1758788
  • Borges-Argáez, R., Vela-Catzín, T., Yam-Puc, A., Chan-Bacab, M. J., Moo-Puc, R. E., & Cáceres-Farfán, M. (2009). Antiprotozoal and cytotoxic studies on some isocordoin derivatives. Planta Medica, 75(12), 1336–1338. https://doi.org/10.1055/s-0029-1185670
  • Cabrera, M., Simoens, M., Falchi, G., Lavaggi, M. L., Piro, O. E., Castellano, E. E., Vidal, A., Azqueta, A., Monge, A., de Ceráin, A. L., Sagrera, G., Seoane, G., Cerecetto, H., & González, M. (2007). Synthetic chalcones, flavanones, and flavones as antitumoral agents: Biological evaluation and structure-activity relationships. Bioorganic & Medicinal Chemistry, 15(10), 3356–3367. https://doi.org/10.1016/j.bmc.2007.03.031
  • Chantrapromma, K., Rat-A-Pa, Y., Karalai, C., Lojanapiwatana, V., & Seechamnanturakit, V. (2000). A chalcone and a dihydrochalcone from Uvaria dulcis. Phytochemistry, 53(4), 511–513. https://doi.org/10.1016/S0031-9422(99)00477-X
  • Chen, R. M., Hu, L. H., An, T. Y., Li, J., & Shen, Q. (2002). Natural PTP1B inhibitors from Broussonetia papyrifera. Bioorganic & Medicinal Chemistry Letters, 12(23), 3387–3390. https://doi.org/10.1016/S0960-894X(02)00757-6
  • Christensen, L. P., Lam, J., & Thomasen, T. (1990). A chalcone and other constituents of bidens tripartitus. Phytochemistry, 29(10), 3155–3156. https://doi.org/10.1016/0031-9422(90)80177-I
  • Conaway, R. C., Brower, C. S., Conaway, J. W., & Ulrich, H. D. (1999). Aging and Sirtuins. Trends Cell Biol Science Eukaryot. Cell Annual Review of Cell and Developmental Biology, 9(6), 107–112. https://doi.org/10.1038/nature01965.1.
  • Cuca Suárez, L. E., & Bañol Vargas, Ó. E. (2005). Nuevas chalconas de Beilschmiedia tovarensis. Revista Colombiana de Química, 34(1), 35–41.
  • Daikonya, A., Katsuki, S., & Kitanaka, S. (2004). Antiallergic agents from natural sources 9. Inhibition of nitric oxide production by novel chalcone derivatives from Mallotus philippinensis (Euphorbiaceae). Chemical & Pharmaceutical Bulletin, 52(11), 1326–1329. https://doi.org/10.1248/cpb.52.1326
  • Dao, T. T., Nguyen, P. H., Lee, H. S., Kim, E., Park, J., Lim, S., Il, & Oh, W. K. (2011). Chalcones as novel influenza A (H1N1) neuraminidase inhibitors from Glycyrrhiza inflata. Bioorganic & Medicinal Chemistry Letters, 21(1), 294–298. https://doi.org/10.1016/j.bmcl.2010.11.016
  • De Andrade Cunha, G. M., Fontenele, J. B., Nobre Júnior, H. V., De Sousa, F. C. M., Silveira, E. R., Nogueira, N. A. P., De Moraes, M. O., Viana, G. S. B., & Costa-Lotufo, L. V. (2003). Cytotoxic activity of chalcones isolated from lonchocarpus sericeus (Pocr.) Kunth. Phytotherapy Research: PTR, 17(2), 155–159. https://doi.org/10.1002/ptr.1096
  • De Castro, C. C. B., Costa, P. S., Laktin, G. T., De Carvalho, P. H. D., Geraldo, R. B., De Moraes, J., Pinto, P. L. S., Couri, M. R. C., Pinto, P. D. F., & Da Silva Filho, A. A. (2015). Cardamonin, a schistosomicidal chalcone from Piper aduncum L. (Piperaceae) that inhibits Schistosoma mansoni ATP diphosphohydrolase. Phytomedicine: International Journal of Phytotherapy and Phytopharmacology, 22(10), 921–928. https://doi.org/10.1016/j.phymed.2015.06.009
  • Delage, B., & Dashwood, R. H. (2008). Dietary manipulation of histone structure and function. Annual Review of Nutrition, 28, 347–366. https://doi.org/10.1146/annurev.nutr.28.061807.155354
  • Duran, N., Polat, M. F., Aktas, D. A., Alagoz, M. A., Ay, E., Cimen, F., Tek, E., Anil, B., Burmaoglu, S., & Algul, O. (2021). New chalcone derivatives as effective against SARS-CoV-2 agent. International Journal of Clinical Practice, 75(12), 1–23. https://doi.org/10.1111/ijcp.14846
  • El Aissouq, A. E., Bouachrine, M., Ouammou, A., & Khalil, F. (2022). Computational investigation of unsaturated ketone derivatives as MAO-B inhibitors by using QSAR, ADME/Tox, molecular docking, and molecular dynamics simulations. Turkish Journal of Chemistry, 46(3), 687–703. https://doi.org/10.55730/1300-0527.3360
  • El Aissouq, A., Bouachrine, M., Ouammou, A., & Khalil, F. (2022). Neuroscience Letters Homology modeling, virtual screening, molecular docking, molecular dynamic (MD) simulation, and ADMET approaches for identification of natural anti-Parkinson agents targeting MAO-B protein. Neuroscience Letters, 786(July), 136803. https://doi.org/10.1016/j.neulet.2022.136803
  • El Aissouq, A., Chedadi, O., Bouachrine, M., & Ouammou, A. (2021). Identification of novel SARS-CoV-2 inhibitors: A structure-based virtual screening approach. Journal of Chemistry, 2021, 1–7. https://doi.org/10.1155/2021/1901484
  • El Aissouq, A., Chedadi, O., Bouachrine, M., Ouammou, A., & Khalil, F. (2022). Development of novel monoamine oxidase B (MAO-B) inhibitors by combined application of docking-based alignment, 3D-QSAR, ADMET prediction, molecular dynamics simulation, and MM _ GBSA binding free energy. Journal of Biomolecular Structure and Dynamics, 1–14. https://doi.org/10.1080/07391102.2022.2071341
  • El Aissouq, A., Chedadi, O., Kasmi, R., Elmchichi, L., En-Nahli, F., Goudzal, A., Bouachrine, M., Ouammou, A., & Khalil, F. (2021). Molecular modeling studies of C-glycosylfavone derivatives as GSK-3β inhibitors based on QSAR and docking analysis. Journal of Solution Chemistry, 50(5), 808–822. https://doi.org/10.1007/s10953-021-01083-6
  • ElSohly, H. N., Joshi, A. S., Nimrod, A. C., Walker, L. A., & Clark, A. M. (2001). Maclura. Planta Medica, 67(1), 87–89. https://doi.org/10.1055/s-2001-10621
  • Ersam, T., Achmad, S. A., Ghisalberti, E. L., Hakim, E. H., Makmur, L., & Syah, Y. M. (2002). A new isoprenylated chalcone, artoindonesianin J, from the root and tree bark of Artocarpus bracteata. Journal of Chemical Research - Research, 2002(4), 186–187. https://doi.org/10.3184/030823402103171618
  • Escobar-Ramos, A., Lobato-García, C. E., Zamilpa, A., Gómez-Rivera, A., Tortoriello, J., & González-Cortazar, M. (2017). Homoisoflavonoids and chalcones isolated from haematoxylum campechianum L., with spasmolytic activity. Molecules, 22(9), 1405–1410. https://doi.org/10.3390/molecules22091405
  • Funakoshi-Tago, M., Okamoto, K., Izumi, R., Tago, K., Yanagisawa, K., Narukawa, Y., Kiuchi, F., Kasahara, T., & Tamura, H. (2015). Anti-inflammatory activity of flavonoids in Nepalese propolis is attributed to inhibition of the IL-33 signaling pathway. International Immunopharmacology, 25(1), 189–198. https://doi.org/10.1016/j.intimp.2015.01.012
  • Gurney, A., & Sheppard, N. (1993). Anacine, a new benzodiazepine metabolite of penicillium aurantiogriseum produced with other alkaloids in submerged fermentation. Journal of Natural Products, 1(10), 1707. https://doi.org/10.1021/np50100a009
  • Hailemariam, A., Feyera, M., Deyou, T., & Abdissa, N. (2018). Antimicrobial chalcones from the seeds of Persicaria lapathifolia. Biochemistry & Pharmacology: Open Access, 7(1), 1–4. https://doi.org/10.4172/2167-0501.1000237
  • Headquarters, A. C. (2008). Discovery studio life science modeling and simulations. Researchgate.Net‏, 1–8.
  • Hoang, D. M., Ngoc, T. M., Dat, N. T., Ha, D. T., Kim, Y. H., Luong, H. V., Ahn, J. S., & Bae, K. H. (2009). Protein tyrosine phosphatase 1B inhibitors isolated from Morus bombycis. Bioorganic & Medicinal Chemistry Letters, 19(23), 6759–6761. https://doi.org/10.1016/j.bmcl.2009.09.102
  • Jamil, S., Sirat, H. M., Jantan, I., Aimi, N., & Kitajima, M. (2008). A new prenylated dihydrochalcone from the leaves of Artocarpus lowii. Journal of Natural Medicines, 62(3), 321–324. https://doi.org/10.1007/s11418-008-0226-3
  • Jin, Z., Du, X., Xu, Y., Deng, Y., Liu, M., Zhao, Y., Zhang, B., Li, X., Zhang, L., Peng, C., Duan, Y., Yu, J., Wang, L., Yang, K., Liu, F., Jiang, R., Yang, X., You, T., Liu, X., … Yang, H. (2020). Structure of Mpro from SARS-CoV-2 and discovery of its inhibitors. Nature, 582(7811), 289–293. https://doi.org/10.1038/s41586-020-2223-y
  • Koyama, K., & Takahashi, K. (1992). New triterpenes from Trichocereus bridgesii. Journal of Natural Products, 5(7), 953–955.
  • López, J. A., Barillas, W., Gomez-Laurito, J., Martin, G. E., Lin, F. T., Al-Rehaily, A. J., Zemaitis, M. A., & Schiff, P. L. (1998). Galiposin: A new β-hydroxychalcone from Galipea granulosa. Planta Medica, 64(1), 76–77. https://doi.org/10.1055/s-2006-957373
  • López, S. N., Castelli, M. V., Zacchino, S. A., Domínguez, J. N., Lobo, G., Charris-Charris, J., Cortés, J. C. G., Ribas, J. C., Devia, C., Rodríguez, A. M., & Enriz, R. D. (2001). In vitro antifungal evaluation and structure-activity relationships of a new series of chalcone derivatives and synthetic analogues, with inhibitory properties against polymers of the fungal cell wall. Bioorganic & Medicinal Chemistry, 9(8), 1999–2013. https://doi.org/10.1016/S0968-0896(01)00116-X
  • Lu, R., Zhao, X., Li, J., Niu, P., Yang, B., Wu, H., Wang, W., Song, H., Huang, B., Zhu, N., Bi, Y., Ma, X., Zhan, F., Wang, L., Hu, T., Zhou, H., Hu, Z., Zhou, W., Zhao, L., … Tan, W. (2020). Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. The Lancet, 395(10224), 565–574. https://doi.org/10.1016/S0140-6736(20)30251-8
  • Masesane, I. B., Yeboah, S. O., Liebscher, J., Mügge, C., & Abegaz, B. M. (2000). A bichalcone from the twigs of Rhus pyroides. Phytochemistry, 53(8), 1005–1008. https://doi.org/10.1016/S0031-9422(99)00553-1
  • Mathpal, S., Joshi, T., Sharma, P., Pande, V., & Chandra, S. (2022). Assessment of activity of chalcone compounds as inhibitors of 3-chymotrypsin like protease (3CLPro) of SARS-CoV-2: in silico study. Structural Chemistry, 33(5), 1815–1831. https://doi.org/10.1007/s11224-022-01887-2
  • Mayer, R. (1993). A β-hydroxychalcone from Leptospermum scoparium. Planta Medica, 59(3), 269–271. https://doi.org/10.1055/s-2006-959667
  • Modzelewska, A., Pettit, C., Achanta, G., Davidson, N. E., Huang, P., & Khan, S. R. (2006). Anticancer activities of novel chalcone and bis-chalcone derivatives. Bioorganic & Medicinal Chemistry, 14(10), 3491–3495. https://doi.org/10.1016/j.bmc.2006.01.003
  • Morris, G. M., Huey, R., Lindstrom, W., Sanner, M. F., Belew, R. K., Goodsell, D. S., & Olson, A. J. (2009). Software news and updates AutoDock4 and AutoDockTools4 : Automated docking with selective receptor flexibility. Journal of Computational Chemistry, 30(16), 2785–2791. https://doi.org/10.1002/jcc
  • Mustafa, K., Kjaergaard, H. G., Perry, N. B., & Weavers, R. T. (2003). Hydrogen-bonded rotamers of 2′,4′,6′-trihydroxy-3′-formyldihydrochalcone, an intermediate in the synthesis of a dihydrochalcone from Leptospermum recurvum. Tetrahedron, 59(32), 6113–6120. https://doi.org/10.1016/S0040-4020(03)00940-2
  • Nakai, H., Okuyama, M., Kim, Y. M., Saburi, W., Wongchawalit, J., Mori, H., Chiba, S., & Kimura, A. (2005). Molecular analysis of α-glucosidase belonging to GH-family 31. Biologia - Section Cellular and Molecular Biology, 60(SUPPL. 16), 131–135.
  • Nakamura, C., Kawasaki, N., Miyataka, H., Jayachandran, E., Kim, I. H., Kirk, K. L., Taguchi, T., Takeuchi, Y., Hori, H., & Satoh, T. (2002). Synthesis and biological activities of fluorinated chalcone derivatives. Bioorganic & Medicinal Chemistry, 10(3), 699–706. https://doi.org/10.1016/S0968-0896(01)00319-4
  • Narender, T., Tanvir, K., Rao, M. S., Srivastava, K., Puri, S. K. & Shweta. (2005). Prenylated chalcones isolated from Crotalaria genus inhibits in vitro growth of the human malaria parasite Plasmodium falciparum. Bioorganic & Medicinal Chemistry Letters, 15(10), 2453–2455. https://doi.org/10.1016/j.bmcl.2005.03.081
  • Nowakowska, Z. (2007). A review of anti-infective and anti-inflammatory chalcones. European Journal of Medicinal Chemistry, 42(2), 125–137. https://doi.org/10.1016/j.ejmech.2006.09.019
  • Oh, K. Y., Lee, J. H., Curtis-Long, M. J., Cho, J. K., Kim, J. Y., Lee, W. S., & Park, K. H. (2010). Glycosidase inhibitory phenolic compounds from the seed of Psoralea corylifolia. Food Chemistry, 121(4), 940–945. https://doi.org/10.1016/j.foodchem.2010.01.022
  • Oussama, C. (2022). In silico prediction of novel SARS-CoV 3CL pro inhibitors: a combination of 3D-QSAR, molecular docking, ADMET prediction, and molecular dynamics simulation. Biointerface Research in Applied Chemistry, 12(4), 5100–5115.
  • Oussama, C., Abbdellah, E. A., Youssef, E. O., Bouacharrine, M., & Ouammou, A. (2022). Chemistry in silico prediction of novel (TRIM24) bromodomain inhibitors: A combination of 3D-QSAR, molecular docking, ADMET prediction, and molecular dynamics. Physical Chemistry Research, 24, 519–535. https://doi.org/10.22036/PCR.2022.331866.2040
  • Padhye, S., Ahmad, A., Oswal, N., & Sarkar, F. H. (2009). Emerging role of Garcinol, the antioxidant chalcone from Garcinia indica Choisy and its synthetic analogs. Journal of Hematology & Oncology, 2, 38. https://doi.org/10.1186/1756-8722-2-38
  • Park, J. Y., Kim, J. H., Kim, Y. M., Jeong, H. J., Kim, D. W., Park, K. H., Kwon, H. J., Park, S. J., Lee, W. S., & Ryu, Y. B. (2012). Tanshinones as selective and slow-binding inhibitors for SARS-CoV cysteine proteases. Bioorganic & Medicinal Chemistry, 20(19), 5928–5935. https://doi.org/10.1016/j.bmc.2012.07.038
  • Park, J. Y., Ko, J. A., Kim, D. W., Kim, Y. M., Kwon, H. J., Jeong, H. J., Kim, C. Y., Park, K. H., Lee, W. S., & Ryu, Y. B. (2016). Chalcones isolated from Angelica keiskei inhibit cysteine proteases of SARS-CoV. Journal of Enzyme Inhibition and Medicinal Chemistry, 31(1), 23–30. https://doi.org/10.3109/14756366.2014.1003215
  • Pillaiyar, T., Manickam, M., Namasivayam, V., Hayashi, Y., & Jung, S. H. (2016). An overview of severe acute respiratory syndrome-coronavirus (SARS-CoV) 3CL protease inhibitors: Peptidomimetics and small molecule chemotherapy. Journal of Medicinal Chemistry, 59(14), 6595–6628. https://doi.org/10.1021/acs.jmedchem.5b01461
  • Porcu, M., & Chiarugi, A. (2005). The emerging therapeutic potential of sirtuin-interacting drugs: From cell death to lifespan extension. Trends in Pharmacological Sciences, 26(2), 94–103. https://doi.org/10.1016/j.tips.2004.12.009
  • Ramli, F., Rahmani, M., Kassim, N. K., Hashim, N. M., Sukari, M. A., Akim, A. M., & Go, R. (2013). New diprenylated dihyrochalcones from leaves of Artocarpus elasticus. Phytochemistry Letters, 6(4), 582–585. https://doi.org/10.1016/j.phytol.2013.07.009
  • Rubal, J. J., Guerra, F. M., Moreno-Dorado, F. J., Jorge, Z. D., Massanet, G. M., Søhoel, H., Smitt, U. W., Frydenvang, K., Christensen, S. B., Nielsen, C., & Eriksson, M. (2006). Sesquiterpenes from Thapsia nitida var. meridionalis and Thapsia nitida var. nitida. Journal of Natural Products, 69(11), 1566–1571. https://doi.org/10.1021/np0603065
  • Šali, A., & Blundell, T. L. (1993). Comparative protein modelling by satisfaction of spatial restraints. Journal of Molecular Biology, 234(3), 779–815. https://doi.org/10.1006/jmbi.1993.1626
  • Shang, Y. F., Oidovsambuu, S., Jeon, J. S., Nho, C. W., & Um, B. H. (2013). Chalcones from the flowers of coreopsis lanceolata and their in vitro antioxidative activity. Planta Medica, 79(3–4), 295–300. https://doi.org/10.1055/s-0032-1328188
  • Shen, L., Niu, J., Wang, C., Huang, B., Wang, W., Zhu, N., Deng, Y., Wang, H., Ye, F., Cen, S., & Tan, W. (2019). High-throughput screening and identification of potent broad-spectrum inhibitors of coronaviruses. Journal of Virology, 93(12). https://doi.org/10.1128/JVI.00023-19
  • Shin, J., Seo, Y., & Cho, K. W. (1998). Five new polyacetylenes from a sponge of the genus Petrosia. Journal of Natural Products, 61(10), 1268–1273. https://doi.org/10.1021/np9802015
  • Smet, M., Liao, L. X., Dehaen, W., & McGrath, D. V. (2000). Photolabile dendrimers using o-nitrobenzyl ether linkages. Organic Letters, 2(4), 511–513. https://doi.org/10.1021/ol991373b
  • Srivastava, R., Shaw, A. K., & Kulshreshtha, D. K. (1995). Triterpenoids and chalcone from Syzygium samarangense. Phytochemistry, 38(3), 687–689. https://doi.org/10.1016/0031-9422(94)00739-G
  • Star, A. E., Mabry, T. J., & Smith, D. M. (1978). Triangularin, a new chalcone from Pityrogramma triangularis. Phytochemistry, 17(3), 586–587. https://doi.org/10.1016/S0031-9422(00)89386-3
  • Stevens, J. F., & Page, J. E. (2004). Xanthohumol and related prenylflavonoids from hops and beer: To your good health!. Phytochemistry, 65(10), 1317–1330. https://doi.org/10.1016/j.phytochem.2004.04.025
  • Su, X. H., Li, C. Y., Zhong, Y. J., Yuan, Z. P., Li, Y. F., & Liang, B. (2012). A new prenylated chalcone from the seeds of Millettia pachycarpa. Chinese Journal of Natural Medicines, 10(3), 222–225. https://doi.org/10.3724/SP.J.1009.2012.00222
  • Suresh, A., Sheela, X., Kanmani, R., Mani, C., Easwaran, L., A, S., & V, R. (2010). Isolation and identification of a chalcone from Baccopa monnieri. Asian Journal of Chemistry, 22(2), 965–970.
  • Tahir Ul Qamar, M., Alqahtani, S. M., Alamri, M. A., & Chen, L. L. (2020). Structural basis of SARS-CoV-2 3CLpro and anti-COVID-19 drug discovery from medicinal plants. Journal of Pharmaceutical Analysis, 10(4), 313–319. https://doi.org/10.1016/j.jpha.2020.03.009
  • Takeshi, N. (1977). NII-electronic library service. Chemical Pharmaceutical Bulletin, 57(534), 364–370. http://www.mendeley.com/research/geology-volcanic-history-eruptive-style-yakedake-volcano-group-central-japan/
  • Tanaka, H., Ichino, K., & Ito, K. (1984). Dihydrochalcones from lindera umbellata. Phytochemistry, 23(5), 1198–1199. https://doi.org/10.1016/S0031-9422(00)82646-1
  • Tasdemir, D., Sticher, O., Çalis, I., & Linden, A. (1997). Further labdane diterpenoids isolated from Leonurus persicus. Journal of Natural Products, 60(9), 874–879. https://doi.org/10.1021/np9700782
  • Tih, A. E., Tih, R. G., Sondengam, B. L., Martin, M. T., & Bodo, B. (1999). A novel hexaflavonoid from Lophira alata. Tetrahedron Letters, 40(25), 4721–4724. https://doi.org/10.1016/S0040-4039(99)00832-1
  • Toledo Warshaviak, D., Golan, G., Borrelli, K. W., Zhu, K., & Kalid, O. (2014). Structure-based virtual screening approach for discovery of covalently bound ligands. Journal of Chemical Information and Modeling, 54(7), 1941–1950. https://doi.org/10.1021/ci500175r
  • Tuchinda, P., Reutrakul, V., Claeson, P., Pongprayoon, U., Sematong, T., Santisuk, T., & Taylor, W. C. (2002). Anti-inflammatory cyclohexenyl chalcone derivatives in Boesenbergia pandurata. Phytochemistry, 59(2), 169–173. https://doi.org/10.1016/S0031-9422(01)00451-4
  • Usman, H., Hakim, E. H., Harlim, T., Jalaluddin, M. N., Syah, Y. M., Achmad, S. A., & Takayama, H. (2006). Cytotoxic chalcones and flavanones from the tree bark of Cryptocarya costata. Zeitschrift Fur Naturforschung. C, Journal of Biosciences, 61(3–4), 184–188. https://doi.org/10.1515/znc-2006-3-405
  • Vanommeslaeghe, K., Hatcher, E., Acharya, C., Kundu, S., Zhong, S., Shim, J., Darian, E., Guvench, O., Lopes, P., Vorobyov, I., Mackerell, A. D. (2010). CHARMM general force field: A force field for drug-like molecules compatible with the CHARMM all-atom additive biological force fields. Journal of Computational Chemistry, 31(4), 671–690. https://doi.org/10.1002/jcc.21367
  • Venkata, R., & Rajendra, P. (1992). Two chalcones from Tephrosia spinosa. Phytochemistry, 31(6), 2121–2122.
  • Vickers, N. J. (2017). Animal communication: When I’m calling you, will you answer too? Current Biology: CB, 27(14), R713–R715. https://doi.org/10.1016/j.cub.2017.05.064
  • Wang, Q., Ding, Z. H., Liu, J. K., & Zheng, Y. T. (2004). Xanthohumol, a novel anti-HIV-1 agent purified from Hops Humulus lupulus. Antiviral Research, 64(3), 189–194. https://doi.org/10.1016/j.antiviral.2004.08.005
  • Wang, P. C., Ran, X. H., Luo, H. R., Zheng, Y. M., Liu, Y. Q., Hu, J. M., & Zhou, J. (2013). Nardokanshone A, a new type of sesquieterpenoid-chalcone hybrid from Nardostachys chinensis. Tetrahedron Letters, 54(33), 4365–4368. https://doi.org/10.1016/j.tetlet.2013.05.127
  • Williams, P. G., Luesch, H., Yoshida, W. Y., Moore, R. E., & Paul, V. J. (2003). Continuing studies on the cyanobacterium Lyngbya sp.: Isolation and structure determination of 15-norlyngbyapeptin A and lyngbyabellin D. Journal of Natural Products, 66(5), 595–598. https://doi.org/10.1021/np030011g
  • World Health Organization (WHO). (2022). https://www.who.int/health-topics/dementia#tab=tab_1.
  • Wu, Y. C., Sureshbabu, M., Fang, Y. C., Wu, Y. H., Lan, Y. H., Chang, F. R., Chang, Y. W., & Hwang, T. L. (2013). Potent inhibition of human neutrophil activations by bractelactone, A novel chalcone from Fissistigma bracteolatum. Toxicology and Applied Pharmacology, 266(3), 399–407. https://doi.org/10.1016/j.taap.2012.11.021
  • Wu, W., Ye, H., Wan, L., Han, X., Wang, G., Hu, J., Tang, M., Duan, X., Fan, Y., He, S., Huang, L., Pei, H., Wang, X., Li, X., Xie, C., Zhang, R., Yuan, Z., Mao, Y., Wei, Y., & Chen, L. (2013). Millepachine, a novel chalcone, induces G2/M arrest by inhibiting CDK1 activity and causing apoptosis via ROS-mitochondrial apoptotic pathway in human hepatocarcinoma cells in vitro and in vivo. Carcinogenesis, 34(7), 1636–1643. https://doi.org/10.1093/carcin/bgt087
  • Yang, W. M., Liu, J. K., Qin, X. D., Wu, W. L., & Chen, Z. H. (2004). Antioxidant activities of three dihydrochalcone glucosides from leaves of Lithocarpus pachyphyllus. Zeitschrift Fur Naturforschung. C, Journal of Biosciences, 59(7–8), 481–484. https://doi.org/10.1515/znc-2004-7-805
  • Yang, Z., Ma, X., Tan, W., Zhou, L., Zhuang, X., Yang, S., Qian, Z., & Zhou, Z. (2015). Two new chalcones from Shuteria sinensis. Natural product Research, 29(20), 1909–1913. https://doi.org/10.1080/14786419.2015.1012718
  • Yang, Y., Zhang, T., Xiao, L., Yang, L., & Chen, R. (2010). Two new chalcones from leaves of Morus alba L. Fitoterapia, 81(6), 614–616. https://doi.org/10.1016/j.fitote.2010.03.005
  • Yaylı, N., Üçüncü, O., Aydın, E., Gök, Y., Yaşar, A., Baltacı, C., Yıldırım, N., & Küçük, M. (2005). Stereoselective photochemistry of heteroaryl chalcones in solution and the antioxidant activities. Journal of Photochemistry and Photobiology A: Chemistry, 169(3), 229–234. https://doi.org/10.1016/j.jphotochem.2004.06.015
  • Yenesew, A., Midiwo, J. O., & Waterman, P. G. (1998). Rotenoids, isoflavones and chalcones from the stem bark of Millettia usaramensis subspecies usaramensis. Phytochemistry, 47(2), 295–300. https://doi.org/10.1016/S0031-9422(97)00424-X
  • Yoon, G., Lee, W., Kim, S. N., & Cheon, S. H. (2009). Inhibitory effect of chalcones and their derivatives from Glycyrrhiza inflata on protein tyrosine phosphatase 1B. Bioorganic & Medicinal Chemistry Letters, 19(17), 5155–5157. https://doi.org/10.1016/j.bmcl.2009.07.054
  • Yu, L., Zhang, F., Hu, Z., Ding, H., Tang, H., Ma, Z., & Zhao, X. (2014). Novel prenylated bichalcone and chalcone from Humulus lupulus and their quinone reductase induction activities. Fitoterapia, 93, 115–120. https://doi.org/10.1016/j.fitote.2013.12.019
  • Zhang, X. J., Li, L. Y., Wang, S. S., Que, S., Yang, W. Z., Zhang, F. Y., Gong, N. B., Cheng, W., Liang, H., Ye, M., Jia, Y. X., & Zhang, Q. Y. (2013). Oxyfadichalcones A-C: Three chalcone dimers fused through a cyclobutane ring from Tibetan medicine Oxytropis falcata Bunge. Tetrahedron, 69(52), 11074–11079. https://doi.org/10.1016/j.tet.2013.11.018
  • Zhang, C., Ondeyka, J. G., Zink, D. L., Basilio, A., Vicente, F., Collado, J., Platas, G., Huber, J., Dorso, K., Motyl, M., Byrne, K., & Singh, S. B. (2009). Isolation, structure and antibacterial activity of pleosporone from a pleosporalean ascomycete discovered by using antisense strategy. Bioorganic & Medicinal Chemistry, 17(6), 2162–2166. https://doi.org/10.1016/j.bmc.2008.04.018
  • Zhang, H., Sun, H., & Takeda, Y. (1995). Four new taxanes from the roots of taxus yunnanensis. Journal of Natural Products, 58(8), 1153–1159. https://doi.org/10.1021/np50122a001
  • Zhang, D. h., Wu, K. l., Zhang, X., Deng, S. q., & Peng, B. (2020). In silico screening of Chinese herbal medicines with the potential to directly inhibit 2019 novel coronavirus. Journal of Integrative Medicine, 18(2), 152–158. https://doi.org/10.1016/j.joim.2020.02.005
  • Zhao, Z. X., Jin, J., Lin, C. Z., Zhu, C. C., Liu, Y. M., Lin, A. H., Liu, Y. X., Zhang, L., & Luo, H. F. (2011). Two new chalcone glycosides from the stems of Entada phaseoloides. Fitoterapia, 82(7), 1102–1105. https://doi.org/10.1016/j.fitote.2011.07.005

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.