220
Views
4
CrossRef citations to date
0
Altmetric
Research Articles

In silico approaches to develop new phenyl-pyrimidines as glycogen synthase kinase 3 (GSK-3) inhibitors with halogen-bonding capabilities: 3D-QSAR CoMFA/CoMSIA, molecular docking and molecular dynamics studies

, , , , , ORCID Icon, ORCID Icon, & ORCID Icon show all
Pages 13250-13259 | Received 19 Oct 2022, Accepted 19 Jan 2023, Published online: 30 Jan 2023

References

  • Meijer, L., Flajolet, M., & Greengard, P. (2004). Pharmacological inhibitors of glycogen synthase kinase 3. Trends in Pharmacological Sciences, 25(9), 471–480. https://doi.org/10.1016/j.tips.2004.07.006
  • Abuhammad, A., & Taha, M. O. (2016). QSAR studies in the discovery of novel type-II diabetic therapies. Expert Opinion on Drug Discovery, 11, 197–214.
  • Balasaheb Aher, R., & Roy, K. (2015). First report on exploring classification and regression based QSAR modelling of plasmodium falciparum glycogen synthase kinase (Pf GSK-3) inhibitors. SAR and QSAR in Environmental Research, 26, 959–976.
  • Beurel, E., Grieco, S. F., & Jope, R. S. (2015). Glycogen synthase kinase-3 (GSK3): Regulation, actions, and diseases. Pharmacology & Therapeutics, 148, 114–131.
  • Bijur, G. N., & Jope, R. S. (2001). Proapoptotic stimuli induce nuclear accumulation of glycogen synthase kinase-3 beta. The Journal of Biological Chemistry, 276(40), 37436–37442. https://doi.org/10.1074/jbc.M105725200
  • Birru, W., Fernley, R. T., Graham, L. D., Grusovin, J., Hill, R. J., Hofmann, A., Howell, L., James, P. J., Jarvis, K. E., Johnson, W. M., Jones, D. A., Leitner, C., Liepa, A. J., Lovrecz, G. O., Lu, L., Nearn, R. H., O'Driscoll, B. J., Phan, T., Pollard, M., Turner, K. A., & Winkler, D. A. (2010). Synthesis, binding and bioactivity of γ-methylene γ-lactam ecdysone receptor ligands: Advantages of QSAR models for flexible receptors. Bioorganic & Medicinal Chemistry, 18(15), 5647–5660.
  • Ciaraldi, T. P., Nikoulina, S. E., & Henry, R. R. (2002). Role of glycogen synthase kinase-3 in skeletal muscle insulin resistance in type 2 diabetes. Journal of Diabetic Complications, 16, 69–71.
  • Cline, G. W., Johnson, K., Regittnig, W., Perret, P., Tozzo, E., Xiao, L., Damico, C., & Shulman, G. I. (2002). Effects of a novel glycogen synthase kinase-3 inhibitor on insulin-stimulated glucose metabolism in zucker diabetic fatty (Fa/Fa) rats. Diabetes, 51(10), 2903–2910. https://doi.org/10.2337/diabetes.51.10.2903
  • Coghlan, M. P., Culbert, A. A., Cross, D. A., Corcoran, S. L., Yates, J. W., Pearce, N. J., Rausch, O. L., Murphy, G. J., Carter, P. S., Roxbee Cox, L., Mills, D., Brown, M. J., Haigh, D., Ward, R. W., Smith, D. G., Murray, K. J., Reith, A. D., & Holder, J. C. (2000). Selective small molecule inhibitors of glycogen synthase kinase-3 modulate glycogen metabolism and gene transcription. Chemistry & Biology, 7(10), 793–803.
  • Cohen, P., & Goedert, M. (2004). GSK3 inhibitors: Development and therapeutic potential. Nature Reviews Drug Discovery, 3, 479–487.
  • Cramer, R. D., Patterson, D. E., & Bunce, J. D. (1988). Comparative molecular field analysis (CoMFA). 1. Effect of shape on binding of steroids to carrier proteins. Journal of the American Chemical Society, 110(18), 5959–5967. https://doi.org/10.1021/ja00226a005
  • Doble, B. W., & Woodgett, J. R. (2003). GSK-3: Tricks of the trade for a multi-tasking kinase. Journal of Cell Science, 116(Pt 7), 1175–1186. https://doi.org/10.1242/jcs.00384[PMC]
  • Eldar-Finkelman, H., & Ilouz, R. (2003). Challenges and opportunities with glycogen synthase kinase-3 inhibitors for insulin resistance and type 2 diabetes treatment. Expert Opinion on Investigational Drugs, 12(9), 1511–1519. https://doi.org/10.1517/13543784.12.9.1511
  • Eldar-Finkelman, H., Schreyer, S., Shinohara, M. M., LeBoeuf, R. C., & Krebs, E. G. (1999). Increased glycogen synthase kinase-3 activity in diabetes-and obesity-prone C57BL/6J mice. Diabetes, 48(8), 1662–1666. https://doi.org/10.2337/diabetes.48.8.1662
  • García, I., Fall, Y., & Gómez, G. (2010). QSAR, docking, and CoMFA studies of GSK3 inhibitors. Current Pharmaceutical Design, 16, 2666–2675.
  • Henriksen, E. J., Kinnick, T. R., Teachey, M. K., O’Keefe, M. P., Ring, D., Johnson, K. W., & Harrison, S. D. (2003). Modulation of muscle insulin resistance by selective inhibition of GSK-3 in zucker diabetic fatty rats. American Journal of Physiology-Endocrinology and Metabolism, 284, E892–E900.
  • Hossain, T., Saha, A., & Mukherjee, A. (2016). Exploring Structural and Physicochemical Profiles of potential GSK-3β inhibitors using structure- and ligand-based modeling studies. Combinatorial Chemistry & High Throughput Screening, 19, 298–306.
  • Intensive Blood-Glucose Control with Sulphonylureas or Insulin Compared with Conventional Treatment and Risk of Complications in Patients with Type 2 Diabetes (UKPDS 33). Lancet, 352, 837–853.
  • Jope, R. S. (2003). Lithium and GSK-3: One inhibitor, two inhibitory actions, multiple outcomes. Trends in Pharmacological Sciences, 24(9), 441–443. https://doi.org/10.1016/S0165-6147(03)00206-2
  • King, T. D., Bijur, G. N., & Jope, R. S. (2001). Caspase-3 activation induced by inhibition of mitochondrial complex I is facilitated by glycogen synthase kinase-3β and attenuated by lithium. Brain research, 919(1), 106–114. https://doi.org/10.1016/s0006-8993(01)03005-0
  • Klebe, G., Abraham, U., & Mietzner, T. (1994). Molecular similarity indices in a comparative analysis (CoMSIA) of drug molecules to correlate and predict their biological activity. Journal of Medicinal Chemistry. 37, 4130–4146.
  • Klein, P. S., & Melton, D. A. (1996). A molecular mechanism for the effect of lithium on development. Proceedings of the National Academy of Sciences of the United States of America, 93(16), 8455–8459.
  • Meares, G. P., & Jope, R. S. (2007). Resolution of the nuclear localization mechanism of glycogen synthase kinase-3: Functional effects in apoptosis. The Journal of Biological Chemistry, 282(23), 16989–17001. https://doi.org/10.1074/jbc.M700610200
  • Mellado, M., González, C., Mella, J., Aguilar, L. F., Celik, I., Borges, F., Uriarte, E., Delogu, G., Viña, D., & Matos, M. J. (2022a). Coumarin-resveratrol-inspired hybrids as monoamine oxidase B inhibitors: 3-Phenylcoumarin versus trans-6-styrylcoumarin. Molecules, 27, 928.
  • Mellado, M., González, C., Mella, J., Aguilar, L. F., Viña, D., Uriarte, E., Cuellar, M., & Matos, M. J. (2021). Combined 3D-QSAR and docking analysis for the design and synthesis of chalcones as potent and selective monoamine oxidase B inhibitors. Bioorganic Chemistry, 108, 104689. https://doi.org/10.1016/j.bioorg.2021.104689
  • Mellado, M., Mella, J., González, C., Viña, D., Uriarte, E., & Matos, M. J. (2020). 3-Arylcoumarins as highly potent and selective monoamine oxidase B inhibitors: Which chemical features matter? Bioorganic Chemistry, 101, 103964. https://doi.org/10.1016/j.bioorg.2020.103964
  • Mellado, M., Reyna‐Jeldes, M., Weinstein‐Oppenheimer, C., Covarrubias, A. A., Aguilar, L. F., Coddou, C., Mella, J., & Cuellar, M. A. (2022b). QSAR‐driven synthesis of antiproliferative chalcones against SH‐SY5Y cancer cells: Design, biological evaluation, and redesign. Archiv der Pharmazie, 355, 2200042.
  • Nikoulina, S. E., Ciaraldi, T. P., Mudaliar, S., Mohideen, P., Carter, L., & Henry, R. R. (2000). Potential role of glycogen synthase kinase-3 in skeletal muscle insulin resistance of type 2 diabetes. Diabetes, 49(2), 263–271. https://doi.org/10.2337/diabetes.49.2.263
  • Palomo, V., Soteras, I., Perez, D. I., Perez, C., Gil, C., Campillo, N. E., & Martinez, A. (2011). Exploring the binding sites of glycogen synthase kinase 3. Identification and characterization of allosteric modulation cavities. Journal of Medicinal Chemistry, 54(24), 8461–8470. https://doi.org/10.1021/jm200996g
  • Roy, K., Kar, S., & Ambure, P. (2015). On a simple approach for determining applicability domain of QSAR models. Chemometrics and Intelligent Laboratory Systems, 145, 22–29.
  • Rücker, C., Rücker, G., & Meringer, M. (2007). Y-randomization and its variants in QSPR/QSAR. Journal of Chemical Information and Modeling, 47(6), 2345–2357. https://doi.org/10.1021/ci700157b
  • Rylatt, D. B., Aitken, A., Bilham, T., Condon, G. D., Embi, N., & Cohen, P. (1980). Glycogen synthase from rabbit skeletal muscle. European Journal of Biochemistry, 107(2), 529–537.
  • Shiri, F., Shahraki, A., & Nejati-Yazdinejad, M. (2018). 3D-QSAR and molecular docking study on maleimide-based glycogen synthase kinase 3 (GSK-3) inhibitors as stimulators of steroidogenesis. Polycyclic Aromatic Compounds, 40, 1–15.
  • Verma, J., Khedkar, V. M., & Coutinho, E. C. (2010). 3D-QSAR in drug design-a review. Current Topics in Medicinal Chemistry, 10(1), 95–115. https://doi.org/10.2174/156802610790232260
  • Wagman, A. S., Boyce, R. S., Brown, S. P., Fang, E., Goff, D., Jansen, J. M., Le, V. P., Levine, B. H., Ng, S. C., Ni, Z.-J., Nuss, J. M., Pfister, K. B., Ramurthy, S., Renhowe, P. A., Ring, D. B., Shu, W., Subramanian, S., Zhou, X. A., Shafer, C. M., … Bussiere, D. E. (2017). Synthesis, binding mode, and antihyperglycemic activity of potent and selective (5-imidazol-2-Yl-4-phenylpyrimidin-2-Yl)[2-(2-pyridylamino)ethyl]amine inhibitors of glycogen synthase kinase 3. Journal of Medicinal Chemistry, 60(20), 8482–8514.
  • Woodgett, J. R. (2003). Physiological roles of glycogen synthase kinase-3: Potential as a therapeutic target for diabetes and other disorders. Current Drug Targets. Immune, Endocrine and Metabolic Disorders, 3(4), 281–290. https://doi.org/10.2174/1568008033340153
  • Živković, J. V., Trutić, N. V., Veselinović, J. B., Nikolić, G. M., & Veselinović, A. M. (2015). Monte carlo method based QSAR modeling of maleimide derivatives as glycogen synthase kinase-3β inhibitors. Computers in Biology and Medicine, 64, 276–282. https://doi.org/10.1016/j.compbiomed.2015.07.004

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.