214
Views
2
CrossRef citations to date
0
Altmetric
Research Articles

Computational design of candidate multi-epitope vaccine against SARS-CoV-2 targeting structural (S and N) and non-structural (NSP3 and NSP12) proteins

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, , ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 13348-13367 | Received 15 Apr 2022, Accepted 20 Jan 2023, Published online: 06 Feb 2023

References

  • Adam, K. M. (2021). Immunoinformatics approach for multi-epitope vaccine design against structural proteins and ORF1a polyprotein of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). Tropical Diseases, Travel Medicine and Vaccines, 7(1), 1–13. https://doi.org/10.1186/s40794-021-00147-1
  • Aftab, S. O., Ghouri, M. Z., Masood, M. U., Haider, Z., Khan, Z., Ahmad, A., & Munawar, N. (2020). Analysis of SARS-CoV-2 RNA-dependent RNA polymerase as a potential therapeutic drug target using a computational approach. Journal of Translational Medicine, 18 (1), 1–15. https://doi.org/10.1186/s12967-020-02439-0
  • Ahlers, J. D., & Belyakov, I. M. (2010). Molecular pathways regulating CD4+ T cell differentiation, anergy and memory with implications for vaccines. Trends in Molecular Medicine, 16 (10), 478–491. https://doi.org/10.1016/j.molmed.2010.07.007
  • Ahmed, S. F., Quadeer, A. A., & McKay, M. R. (2020). Preliminary identification of potential vaccine targets for the COVID-19 coronavirus (SARS-CoV-2) based on SARS-CoV immunological studies. Viruses, 12 (3), 254. https://doi.org/10.3390/v12030254
  • Akira, S., & Takeda, K. (2004). Toll-like receptor signalling. Nature Reviews. Immunology, 4(7), 499–511. https://doi.org/10.1038/nri1391
  • Antonio-Herrera, L., Badillo-Godinez, O., Medina-Contreras, O., Tepale-Segura, A., García-Lozano, A., Gutierrez-Xicotencatl, L., Soldevila, G., Esquivel-Guadarrama, F. R., Idoyaga, J., & Bonifaz, L. C. (2018). The nontoxic cholera B subunit is a potent adjuvant for intradermal DC-targeted vaccination. Frontiers in Immunology, 9, 2212. https://doi.org/10.3389/fimmu.2018.02212
  • Basak, S., Deb, D., Narsaria, U., Kar, T., Castiglione, F., Sanyal, I., Bade, P. D., & Srivastava, A. P. (2021). In silico designing of vaccine candidate against Clostridium difficile. Scientific Reports, 11 (1), 1–22. https://doi.org/10.1038/s41598-021-93305-6
  • Bayati, A., Kumar, R., Francis, V., & McPherson, P. S. (2021). SARS-CoV-2 infects cells after viral entry via clathrin-mediated endocytosis. The Journal of Biological Chemistry, 296, 100306. https://doi.org/10.1016/j.jbc.2021.100306
  • Bazhan, S. I., Antonets, D. V., Karpenko, L. I., Oreshkova, S. F., Kaplina, O. N., Starostina, E. V., Dudko, S. G., Fedotova, S. A., & Ilyichev, A. A. (2019). In silico designed ebola virus T-cell multi-epitope DNA vaccine constructions are immunogenic in mice. Vaccines, 7 (2), 34. https://doi.org/10.3390/vaccines7020034
  • Calis, J. J., Maybeno, M., Greenbaum, J. A., Weiskopf, D., De Silva, A. D., Sette, A., Keşmir, C., & Peters, B. (2013). Properties of MHC class I presented peptides that enhance immunogenicity. PLoS Computational Biology, 9 (10), e1003266. https://doi.org/10.1371/journal.pcbi.1003266
  • Carty, M., & Bowie, A. G. (2010). Recent insights into the role of Toll-like receptors in viral infection. Clinical and Experimental Immunology, 161 (3), 397–406. https://doi.org/10.1111/j.1365-2249.2010.04196.x
  • Cascella, M., Rajnik, M., Aleem, A., Dulebohn, S. C., & Di Napoli, R. (2022). Features, evaluation, and treatment of coronavirus (COVID-19). StatPearls.
  • Case, D. A., Darden, T. A., Cheatham, T. E., Simmerling, C. L., Wang, J., Duke, R. E., Luo, R., Crowley, M., Walker, R. C., Zhang, W., Merz, K. M., Wang, B., Hayik, S., Roitberg, A., Seabra, G., Kolossváry, I., Wong, K. F., Paesani, F., Vanicek, J. … Kollman, P. A. (2008). Amber 10 (No. BOOK). University of California.
  • Castiglione, F., Mantile, F., De Berardinis, P., & Prisco, A. (2012). How the interval between prime and boost injection affects the immune response in a computational model of the immune system. Computational and Mathematical Methods in Medicine, 2012, 842329. https://doi.org/10.1155/2012/842329
  • Chang, C-k., Sue, S.-C., Yu, T-h., Hsieh, C.-M., Tsai, C.-K., Chiang, Y.-C., Lee, S-j., Hsiao, H-h., Wu, W.-J., & Chang, W.-L. (2006). Modular organization of SARS coronavirus nucleocapsid protein. Journal of Biomedical Science, 13 (1), 59–72. https://doi.org/10.1007/s11373-005-9035-9
  • Cheng, L., Zhang, X., Chen, Y., Wang, D., Zhang, D., Yan, S., Wang, H., Xiao, M., Liang, T., & Li, H. (2021). Dynamic landscape mapping of humoral immunity to SARS-CoV-2 identifies non-structural protein antibodies associated with the survival of critical COVID-19 patients. Signal Transduction and Targeted Therapy, 6 (1), 1–14. https://doi.org/10.1038/s41392-021-00718-w
  • Chi, X., Yan, R., Zhang, J., Zhang, G., Zhang, Y., Hao, M., Zhang, Z., Fan, P., Dong, Y., Yang, Y., Chen, Z., Guo, Y., Zhang, J., Li, Y., Song, X., Chen, Y., Xia, L., Fu, L., Hou, L., … Chen, W. (2020). A neutralizing human antibody binds to the N-terminal domain of the Spike protein of SARS-CoV-2. Science (New York, N.Y.), 369 (6504), 650–655. https://doi.org/10.1126/science.abc6952
  • Cong, Y., Ulasli, M., Schepers, H., Mauthe, M., V’kovski, P., Kriegenburg, F., Thiel, V., de Haan, C. A., & Reggiori, F. (2020). Nucleocapsid protein recruitment to replication-transcription complexes plays a crucial role in coronaviral life cycle. Journal of Virology, 94 (4), e01925-19. https://doi.org/10.1128/JVI.01925-19
  • Crotty, S. (2019). T follicular helper cell biology: A decade of discovery and diseases. Immunity, 50(5), 1132–1148. https://doi.org/10.1016/j.immuni.2019.04.011
  • Dar, H. A., Zaheer, T., Shehroz, M., Ullah, N., Naz, K., Muhammad, S. A., Zhang, T., & Ali, A. (2019). Immunoinformatics-aided design and evaluation of a potential multi-epitope vaccine against Klebsiella pneumoniae. Vaccines, 7 (3), 88. https://doi.org/10.3390/vaccines7030088
  • De Wit, E., Van Doremalen, N., Falzarano, D., & Munster, V. J. (2016). SARS and MERS: Recent insights into emerging coronaviruses. Nature reviews. Microbiology, 14(8), 523–534. https://doi.org/10.1038/nrmicro.2016.81
  • Deb, D., Basak, S., Kar, T., Narsaria, U., Castiglione, F., Paul, A., Pandey, A., & Srivastava, A. P. (2022). Immunoinformatics based designing a multi‐epitope vaccine against pathogenic Chandipura vesiculovirus. Journal of Cellular Biochemistry, 123 (2), 322–346. https://doi.org/10.1002/jcb.30170
  • Diamond, M. S., & Kanneganti, T. D. (2022). Innate immunity: The first line of defense against SARS-CoV-2. Nature Immunology, 23(2), 165–176. https://doi.org/10.1038/s41590-021-01091-0
  • Doherty, P. C., Allan, W., Eichelberger, M., & Carding, S. R. (1992). Roles of alphabeta and gammadelta T cell subsets in viral immunity. Annual review of Immunology, 10 (1), 123–151. https://doi.org/10.1146/annurev.iy.10.040192.001011
  • Doytchinova, I. A., & Flower, D. R. (2007). VaxiJen: A server for prediction of protective antigens, tumour antigens and subunit vaccines. BMC Bioinformatics, 8 (1), 1–7. https://doi.org/10.1186/1471-2105-8-4
  • Fehr, A. R., Channappanavar, R., Jankevicius, G., Fett, C., Zhao, J., Athmer, J., Meyerholz, D. K., Ahel, I., & Perlman, S. (2016). The conserved coronavirus macrodomain promotes virulence and suppresses the innate immune response during severe acute respiratory syndrome coronavirus infection. mBio, 7 (6), e01721-16. https://doi.org/10.1128/mBio.01721-16
  • Foroutan, M., Ghaffarifar, F., Sharifi, Z., & Dalimi, A. (2020). Vaccination with a novel multi-epitope ROP8 DNA vaccine against acute Toxoplasma gondii infection induces strong B and T cell responses in mice. Comparative immunology, Microbiology and Infectious Diseases, 69, 101413. https://doi.org/10.1016/j.cimid.2020.101413
  • Freitas, B. T., Durie, I. A., Murray, J., Longo, J. E., Miller, H. C., Crich, D., Hogan, R. J., Tripp, R. A., & Pegan, S. D. (2020). Characterization and noncovalent inhibition of the deubiquitinase and deISGylase activity of SARS-CoV-2 papain-like protease. ACS infectious Diseases, 6 (8), 2099–2109. https://doi.org/10.1021/acsinfecdis.0c00168
  • Grote, A., Hiller, K., Scheer, M., Münch, R., Nörtemann, B., Hempel, D. C., & Jahn, D. (2005). JCat: A novel tool to adapt codon usage of a target gene to its potential expression host. Nucleic acids Research, 33 (Web Server issue), W526–W531. https://doi.org/10.1093/nar/gki376
  • Guo, L., Yin, R., Liu, K., Lv, X., Li, Y., Duan, X., Chu, Y., Xi, T., & Xing, Y. (2014). Immunological features and efficacy of a multi-epitope vaccine CTB-UE against H. pylori in BALB/c mice model. Applied microbiology and Biotechnology, 98 (8), 3495–3507. https://doi.org/10.1007/s00253-013-5408-6
  • Hardenbrook, N. J., & Zhang, P. (2022). A structural view of the SARS-CoV-2 virus and its assembly. Current opinion in Virology, 52, 123–134. https://doi.org/10.1016/j.coviro.2021.11.011
  • Hoffmann, M., Kleine-Weber, H., Schroeder, S., Krüger, N., Herrler, T., Erichsen, S., Schiergens, T. S., Herrler, G., Wu, N.-H., Nitsche, A., Müller, M. A., Drosten, C., & Pöhlmann, S. (2020). SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell, 181 (2), 271–280. e8. https://doi.org/10.1016/j.cell.2020.02.052
  • Hon, J., Marusiak, M., Martinek, T., Kunka, A., Zendulka, J., Bednar, D., & Damborsky, J. (2021). SoluProt: Prediction of soluble protein expression in Escherichia coli. Bioinformatics, 37(1), 23-28. https://doi.org/10.1093/bioinformatics/btaa1102
  • Honorato, R. V., Koukos, P. I., Jiménez-García, B., Tsaregorodtsev, A., Verlato, M., Giachetti, A., Rosato, A., & Bonvin, A. M. (2021). Structural biology in the clouds: The WeNMR-EOSC ecosystem. Frontiers in Molecular Biosciences, 8, 729513. https://doi.org/10.3389/fmolb.2021.729513
  • Humphrey, W., Dalke, A., & Schulten, K. (1996). VMD: Visual molecular dynamics. Journal of Molecular Graphics, 14(1), 33–38. https://doi.org/10.1016/0263-7855(96)00018-5
  • Ilinskaya, A. N., & Dobrovolskaia, M. A. (2016). Understanding the immunogenicity and antigenicity of nanomaterials: Past, present and future. Toxicology and Applied Pharmacology, 299, 70–77. https://doi.org/10.1016/j.taap.2016.01.005
  • Iwasaki, A., & Medzhitov, R. (2010). Regulation of adaptive immunity by the innate immune system. Science (New York, N.Y.), 327(5963), 291–295. https://doi.org/10.1126/science.1183021
  • Jabbar, B., Rafique, S., Salo-Ahen, O. M., Ali, A., Munir, M., Idrees, M., Mirza, M. U., Vanmeert, M., Shah, S. Z., & Jabbar, I. (2018). Antigenic peptide prediction from E6 and E7 oncoproteins of HPV types 16 and 18 for therapeutic vaccine design using immunoinformatics and MD simulation analysis. Frontiers in Immunology, 9, 3000. https://doi.org/10.3389/fimmu.2018.03000
  • Jensen, K. K., Andreatta, M., Marcatili, P., Buus, S., Greenbaum, J. A., Yan, Z., Sette, A., Peters, B., & Nielsen, M. (2018). Improved methods for predicting peptide binding affinity to MHC class II molecules. Immunology, 154 (3), 394–406. https://doi.org/10.1111/imm.12889
  • Kar, T., Narsaria, U., Basak, S., Deb, D., Castiglione, F., Mueller, D. M., & Srivastava, A. P. (2020). A candidate multi-epitope vaccine against SARS-CoV-2. Scientific reports, 10 (1), 1–24. https://doi.org/10.1038/s41598-020-67749-1
  • Karimi, M., Ignasiak, M. T., Chan, B., Croft, A. K., Radom, L., Schiesser, C. H., Pattison, D. I., & Davies, M. J. (2016). Reactivity of disulfide bonds is markedly affected by structure and environment: implications for protein modification and stability. Scientific Reports, 6 (1), 38572–12. https://doi.org/10.1038/srep38572
  • Kawasaki, T., & Kawai, T. (2014). Toll-like receptor signaling pathways. Frontiers in Immunology, 5, 461. https://doi.org/10.3389/fimmu.2014.00461
  • Khan, S., Shafiei, M. S., Longoria, C., Schoggins, J. W., Savani, R. C., & Zaki, H. (2021). SARS-CoV-2 spike protein induces inflammation via TLR2-dependent activation of the NF-κB pathway. Elife, 10, e68563. https://doi.org/10.7554/eLife.68563
  • Kirchdoerfer, R. N., & Ward, A. B. (2019). Structure of the SARS-CoV nsp12 polymerase bound to nsp7 and nsp8 co-factors. Nature communications, 10 (1), 1–9. https://doi.org/10.1038/s41467-019-10280-3
  • Knoops, K., Kikkert, M., Worm, S. H. V. D., Zevenhoven-Dobbe, J. C., Van Der Meer, Y., Koster, A. J., Mommaas, A. M., & Snijder, E. J. (2008). SARS-coronavirus replication is supported by a reticulovesicular network of modified endoplasmic reticulum. PLoS biology, 6(9), e226. https://doi.org/10.1371/journal.pbio.0060226
  • Krogsgaard, M., & Davis, M. M. (2005). How T cells’ see’antigen. Nature Immunology, 6 (3), 239–245. https://doi.org/10.1038/ni1173
  • Larsen, M. V., Lundegaard, C., Lamberth, K., Buus, S., Lund, O., & Nielsen, M. (2007). Large-scale validation of methods for cytotoxic T-lymphocyte epitope prediction. BMC Bioinformatics, 8 (1), 1–12. https://doi.org/10.1186/1471-2105-8-424
  • Lee, S., Channappanavar, R., & Kanneganti, T. D. (2020). Coronaviruses: Innate immunity, inflammasome activation, inflammatory cell death, and cytokines. Trends in Immunology, 41(12), 1083–1099. https://doi.org/10.1016/j.it.2020.10.005
  • Lennerz, V., Gross, S., Gallerani, E., Sessa, C., Mach, N., Boehm, S., Hess, D., von Boehmer, L., Knuth, A., Ochsenbein, A. F., Gnad-Vogt, U., Zieschang, J., Forssmann, U., Woelfel, T., & Kaempgen, E. (2014). Immunologic response to the survivin-derived multi-epitope vaccine EMD640744 in patients with advanced solid tumors. Cancer immunology, Immunotherapy : CII, 63 (4), 381–394. https://doi.org/10.1007/s00262-013-1516-5
  • Lester, S. N., & Li, K. (2014). Toll-like receptors in antiviral innate immunity. Journal of Molecular Biology, 426 (6), 1246–1264. https://doi.org/10.1016/j.jmb.2013.11.024
  • Li, W., Joshi, M. D., Singhania, S., Ramsey, K. H., & Murthy, A. K. (2014). Peptide vaccine: Progress and challenges. Vaccines, 2(3), 515–536. https://doi.org/10.3390/vaccines2030515
  • Littler, D. R., MacLachlan, B. J., Watson, G. M., Vivian, J. P., & Gully, B. S. (2020). A pocket guide on how to structure SARS-CoV-2 drugs and therapies. Biochemical Society Transactions, 48 (6), 2625–2641. https://doi.org/10.1042/bst20200396
  • Liu, L., Wang, P., Nair, M. S., Yu, J., Rapp, M., Wang, Q., Luo, Y., Chan, J. F.-W., Sahi, V., Figueroa, A., Guo, X. V., Cerutti, G., Bimela, J., Gorman, J., Zhou, T., Chen, Z., Yuen, K.-Y., Kwong, P. D., Sodroski, J. G., … Ho, D. D. (2020). Potent neutralizing antibodies against multiple epitopes on SARS-CoV-2 spike. Nature, 584 (7821), 450–456. https://doi.org/10.1038/s41586-020-2571-7
  • Mahdevar, E., Kefayat, A., Safavi, A., Behnia, A., Hejazi, S. H., Javid, A., & Ghahremani, F. (2021a). Immunoprotective effect of an in silico designed multiepitope cancer vaccine with BORIS cancer-testis antigen target in a murine mammary carcinoma model. Scientific Reports, 11(1), 1–13. https://doi.org/10.1038/s41598-021-01770-w
  • Mahdevar, E., Safavi, A., Abiri, A., Kefayat, A., Hejazi, S. H., Miresmaeili, S. M., & Iranpur Mobarakeh, V. (2021b). Exploring the cancer-testis antigen BORIS to design a novel multi-epitope vaccine against breast cancer based on immunoinformatics approaches. Journal of Biomolecular Structure and Dynamics, 40(14), 6363–6380. https://doi.org/10.1080/07391102.2021.1883111
  • Mariano, G., Farthing, R. J., Lale-Farjat, S. L., & Bergeron, J. R. (2020). Structural characterization of SARS-CoV-2: Where we are, and where we need to be. Frontiers in Molecular Biosciences, 7, 605236. https://doi.org/10.3389/fmolb.2020.605236
  • Matthews, K. L., Coleman, C. M., van der Meer, Y., Snijder, E. J., & Frieman, M. B. (2014). The ORF4b-encoded accessory proteins of Middle East respiratory syndrome coronavirus and two related bat coronaviruses localize to the nucleus and inhibit innate immune signalling. The Journal of General Virology, 95 (Pt 4), 874. https://doi.org/10.1099/vir.0.062059-0
  • McBride, R., Van Zyl, M., & Fielding, B. C. (2014). The coronavirus nucleocapsid is a multifunctional protein. Viruses, 6 (8), 2991–3018. https://doi.org/10.3390/v6082991
  • Messaoudi, A., Belguith, H., & Ben Hamida, J. (2013). Homology modeling and virtual screening approaches to identify potent inhibitors of VEB-1 β-lactamase. Theoretical Biology and Medical Modelling, 10 (1), 1–10. https://doi.org/10.1186/1742-4682-10-22
  • Mir, S. A., Alaidarous, M., Alshehri, B., Bin Dukhyil, A. A., Banawas, S., Madkhali, Y., Alsagaby, S. A., & Al Othaim, A. (2022). Immunoinformatics-based identification of B and T cell epitopes in RNA-dependent RNA polymerase of SARS-CoV-2. Vaccines, 10(10), 1660. https://doi.org/10.3390/vaccines10101660
  • Moutaftsi, M., Peters, B., Pasquetto, V., Tscharke, D. C., Sidney, J., Bui, H.-H., Grey, H., & Sette, A. (2006). A consensus epitope prediction approach identifies the breadth of murine TCD8+-cell responses to vaccinia virus. Nature biotechnology, 24 (7), 817–819. https://doi.org/10.1038/nbt1215
  • Nelson, M. T., Humphrey, W., Gursoy, A., Dalke, A., Kalé, L. V., Skeel, R. D., & Schulten, K. (1996). NAMD: A parallel, object-oriented molecular dynamics program. The International Journal of Supercomputer Applications and High Performance Computing, 10(4), 251–268. https://doi.org/10.1177/109434209601000401
  • Ojha, R., Pareek, A., Pandey, R. K., Prusty, D., & Prajapati, V. K. (2019). Strategic development of a next-generation multi-epitope vaccine to prevent Nipah virus zoonotic infection. ACS omega, 4 (8), 13069–13079. https://doi.org/10.1021/acsomega.9b00944
  • Ong, E., Wong, M. U., Huffman, A., & He, Y. (2020). COVID-19 coronavirus vaccine design using reverse vaccinology and machine learning. Frontiers in Immunology, 11, 158. https://doi.org/10.3389/fimmu.2020.01581
  • Palm, N. W., & Medzhitov, R. (2009). Pattern recognition receptors and control of adaptive immunity. Immunological Reviews, 227 (1), 221–233. https://doi.org/10.1111/j.1600-065x.2008.00731.x
  • Panina‐Bordignon, P., Tan, A., Termijtelen, A., Demotz, S., Corradin, G., & Lanzavecchia, A. (1989). Universally immunogenic T cell epitopes: Promiscuous binding to human MHC class II and promiscuous recognition by T cells. European Journal of Immunology, 19 (12), 2237–2242. https://doi.org/10.1002/eji.1830191209
  • Park, S. E. (2020). Epidemiology, virology, and clinical features of severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2; Coronavirus Disease-19). Clinical and Experimental Pediatrics, 63 (4), 119–124. https://doi.org/10.3345/cep.2020.00493
  • Peng, X.-L., Cheng, J.-S.-Y., Gong, H.-L., Yuan, M.-D., Zhao, X.-H., Li, Z., & Wei, D.-X. (2021). Advances in the design and development of SARS-CoV-2 vaccines. Military Medical Research, 8 (1), 1–31. https://doi.org/10.1186/s40779-021-00360-1
  • Peng, Q., Peng, R., Yuan, B., Zhao, J., Wang, M., Wang, X., Wang, Q., Sun, Y., Fan, Z., Qi, J., Gao, G. F., & Shi, Y. (2020). Structural and biochemical characterization of the nsp12-nsp7-nsp8 core polymerase complex from SARS-CoV-2. Cell reports, 31 (11), 107774. https://doi.org/10.1016/j.celrep.2020.107774
  • Phongsisay, V., Iizasa, E. i., Hara, H., & Yoshida, H. (2015). Evidence for TLR4 and FcRγ–CARD9 activation by cholera toxin B subunit and its direct bindings to TREM2 and LMIR5 receptors. Molecular Immunology, 66 (2), 463–471. https://doi.org/10.1016/j.molimm.2015.05.008
  • Piccoli, L., Park, Y.-J., Tortorici, M. A., Czudnochowski, N., Walls, A. C., Beltramello, M., Silacci-Fregni, C., Pinto, D., Rosen, L. E., Bowen, J. E., Acton, O. J., Jaconi, S., Guarino, B., Minola, A., Zatta, F., Sprugasci, N., Bassi, J., Peter, A., De Marco, A., … Veesler, D. (2020). Mapping neutralizing and immunodominant sites on the SARS-CoV-2 spike receptor-binding domain by structure-guided high-resolution serology. Cell, 183 (4), 1024–1042. e21. https://doi.org/10.1016/j.cell.2020.09.037
  • Rapin, N., Lund, O., Bernaschi, M., & Castiglione, F. (2010). Computational immunology meets bioinformatics: The use of prediction tools for molecular binding in the simulation of the immune system. PloS One, 5 (4), e9862. https://doi.org/10.1371/journal.pone.0009862
  • Rouzbahani, A. K., Kheirandish, F., & Hosseini, S. Z. (2022). Design of a multi-epitope-based peptide vaccine against the S and N proteins of SARS-COV-2 using immunoinformatics approach. Egyptian Journal of Medical Human Genetics, 23(1), 1–18. https://doi.org/10.1186/s43042-022-00224-w
  • Saadi, M., Karkhah, A., & Nouri, H. R. (2017). Development of a multi-epitope peptide vaccine inducing robust T cell responses against brucellosis using immunoinformatics based approaches. Infection, Genetics and Evolution, 51, 227–234. https://doi.org/10.1016/j.meegid.2017.04.009
  • Safavi, A., Kefayat, A., Abiri, A., Mahdevar, E., Behnia, A. H., & Ghahremani, F. (2019). In silico analysis of transmembrane protein 31 (TMEM31) antigen to design novel multiepitope peptide and DNA cancer vaccines against melanoma. Molecular Immunology, 112, 93–102. https://doi.org/10.1016/j.molimm.2019.04.030
  • Safavi, A., Kefayat, A., Mahdevar, E., Abiri, A., & Ghahremani, F. (2020). Exploring the out of sight antigens of SARS-CoV-2 to design a candidate multi-epitope vaccine by utilizing immunoinformatics approaches. Vaccine, 38(48), 7612–7628. https://doi.org/10.1016/j.vaccine.2020.10.016
  • Safavi, A., Kefayat, A., Mahdevar, E., Ghahremani, F., Nezafat, N., & Modarressi, M. H. (2021). Efficacy of co-immunization with the DNA and peptide vaccines containing SYCP1 and ACRBP epitopes in a murine triple-negative breast cancer model. Human Vaccines & Immunotherapeutics, 17(1), 22–34. https://doi.org/10.1080/21645515.2020.1763693
  • Safavi, A., Kefayat, A., Sotoodehnejadnematalahi, F., Salehi, M., & Modarressi, M. H. (2019). Production, purification, and in vivo evaluation of a novel multiepitope peptide vaccine consisted of immunodominant epitopes of SYCP1 and ACRBP antigens as a prophylactic melanoma vaccine. International Immunopharmacology, 76, 105872. https://doi.org/10.1016/j.intimp.2019.105872
  • Safavi, A., Kefayat, A., Sotoodehnejadnematalahi, F., Salehi, M., & Modarressi, M. H. (2019). In silico analysis of synaptonemal complex protein 1 (SYCP1) and acrosin binding protein (ACRBP) antigens to design novel multiepitope peptide cancer vaccine against breast cancer. International Journal of Peptide Research and Therapeutics, 25(4), 1343–1359. https://doi.org/10.1007/s10989-018-9780-z
  • Sakaguchi, S., Miyara, M., Costantino, C. M., & Hafler, D. A. (2010). FOXP3+ regulatory T cells in the human immune system. Nature Reviews. Immunology, 10 (7), 490–500. https://doi.org/10.1038/nri2785
  • Sawicki, S. G., Sawicki, D. L., & Siddell, S. G. (2007). A contemporary view of coronavirus transcription. Journal of Virology, 81(1), 20–29. https://doi.org/10.1128/JVI.01358-06
  • Sette, A., & Crotty, S. (2021). Adaptive immunity to SARS-CoV-2 and COVID-19. Cell, 184(4), 861–880. https://doi.org/10.1016/j.cell.2021.01.007
  • Shankar, U., Jain, N., Mishra, S. K., Sk, M. F., Kar, P., & Kumar, A. (2021). Mining of Ebola virus genome for the construction of multi-epitope vaccine to combat its infection. Journal of Biomolecular Structure and Dynamics, 40(11), 1–17. https://doi.org/10.1080/07391102.2021.1874529
  • Shilling, P. J., Mirzadeh, K., Cumming, A. J., Widesheim, M., Köck, Z., & Daley, D. O. (2020). Improved designs for pET expression plasmids increase protein production yield in Escherichia coli. Communications biology, 3(1), 1–8. https://doi.org/10.1038/s42003-020-0939-8
  • Singh, G., Pritam, M., Banerjee, M., Singh, A. K., & Singh, S. P. (2020). Designing of precise vaccine construct against visceral leishmaniasis through predicted epitope ensemble: A contemporary approach. Computational Biology and Chemistry, 86, 107259. https://doi.org/10.1016/j.compbiolchem.2020.107259
  • Slingluff, C. L., Lee, S., Zhao, F., Chianese-Bullock, K. A., Olson, W. C., Butterfield, L. H., Whiteside, T. L., Leming, P. D., & Kirkwood, J. M. (2013). A randomized phase II trial of multiepitope vaccination with melanoma peptides for cytotoxic T cells and helper T cells for patients with metastatic melanoma (E1602). Clinical Cancer Research, 19 (15), 4228–4238. https://doi.org/10.1158/1078-0432.ccr-13-0002
  • Stratmann, T. (2015). Cholera toxin subunit B as adjuvant––an accelerator in protective immunity and a break in autoimmunity. Vaccines, 3 (3), 579–596. https://doi.org/10.3390/vaccines3030579
  • Sun, Y., Koh, V., Marimuthu, K., Ng, O. T., Young, B., Vasoo, S., Chan, M., Lee, V. J. M., De, P. P., Barkham, T., Lin, R. T. P., Cook, A. R., & Leo, Y. S. (2020). Epidemiological and clinical predictors of COVID-19. Clinical Infectious Diseases, 71 (15), 786–792. https://doi.org/10.1093/cid/ciaa322
  • Tarke, A., Sidney, J., Methot, N., Yu, E. D., Zhang, Y., Dan, J. M., Goodwin, B., Rubiro, P., Sutherland, A., & Wang, E. (2021). Impact of SARS-CoV-2 variants on the total CD4+ and CD8+ T cell reactivity in infected or vaccinated individuals. Cell Reports Medicine, 2 (7), 100355. https://doi.org/10.1016/j.xcrm.2021.100355
  • Testa, J. S., & Philip, R. (2012). Role of T-cell epitope-based vaccine in prophylactic and therapeutic applications. Future Virology, 7 (11), 1077–1088. https://doi.org/10.2217/fvl.12.108
  • Thiel, V., Ivanov, K. A., Putics, Á., Hertzig, T., Schelle, B., Bayer, S., Weißbrich, B., Snijder, E. J., Rabenau, H., Doerr, H. W., Gorbalenya, A. E., & Ziebuhr, J. (2003). Mechanisms and enzymes involved in SARS coronavirus genome expression. The Journal of General Virology, 84(Pt 9), 2305–2315. https://doi.org/10.1099/vir.0.19424-0
  • Tortorici, M. A., Beltramello, M., Lempp, F. A., Pinto, D., Dang, H. V., Rosen, L. E., McCallum, M., Bowen, J., Minola, A., Jaconi, S., Zatta, F., De Marco, A., Guarino, B., Bianchi, S., Lauron, E. J., Tucker, H., Zhou, J., Peter, A., Havenar-Daughton, C., … Veesler, D. (2020). Ultrapotent human antibodies protect against SARS-CoV-2 challenge via multiple mechanisms. Science (New York, N.Y.), 370 (6519), 950–957. https://doi.org/10.1126/science.abe3354
  • Tosta, S. F. D. O., Passos, M. S., Kato, R., Salgado, Á., Xavier, J., Jaiswal, A. K., Soares, S. C., Azevedo, V., Giovanetti, M., Tiwari, S., & Alcantara, L. C. J. (2021). Multi-epitope based vaccine against yellow fever virus applying immunoinformatics approaches. Journal of Biomolecular Structure and Dynamics, 39(1), 219–235. https://doi.org/10.1080/07391102.2019.1707120
  • Turner, P., & Xmgrace, V. (2005). 5.1.19. Center for Coastal and Land-Margin Research. Oregon Graduate Institute of Science and Technology. 2.
  • Vangone, A., Schaarschmidt, J., Koukos, P., Geng, C., Citro, N., Trellet, M. E., Xue, L. C., & Bonvin, A. M. (2019). Large-scale prediction of binding affinity in protein–small ligand complexes: The PRODIGY-LIG web server. Bioinformatics (Oxford, England), 35 (9), 1585–1587. https://doi.org/10.1093/bioinformatics/bty816
  • Wahome, N., Pfeiffer, T., Ambiel, I., Yang, Y., Keppler, O. T., Bosch, V., & Burkhard, P. (2012). Conformation‐specific display of 4E10 and 2F5 epitopes on self‐assembling protein nanoparticles as a potential HIV vaccine. Chemical Biology & Drug Design, 80(3), 349–357. https://doi.org/10.1111/j.1747-0285.2012.01423.x
  • Walker, J. M. (2005). The proteomics protocols handbook. Springer.
  • Walls, A. C., Park, Y.-J., Tortorici, M. A., Wall, A., McGuire, A. T., & Veesler, D. (2020). Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein. Cell, 181 (2), 281–292. e6. https://doi.org/10.1016/j.cell.2020.02.058
  • Wiederstein, M., & Sippl, M. J. (2007). ProSA-web: Interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic Acids Research, 35 (Web Server issue), W407–W410. https://doi.org/10.1093/nar/gkm290
  • Williams, C. J., Headd, J. J., Moriarty, N. W., Prisant, M. G., Videau, L. L., Deis, L. N., Verma, V., Keedy, D. A., Hintze, B. J., Chen, V. B., Jain, S., Lewis, S. M., Arendall, W. B., Snoeyink, J., Adams, P. D., Lovell, S. C., Richardson, J. S., & Richardson, D. C. (2018). MolProbity: More and better reference data for improved all‐atom structure validation. Protein Science, 27 (1), 293–315. https://doi.org/10.1002/pro.3330
  • Yadav, R., Chaudhary, J. K., Jain, N., Chaudhary, P. K., Khanra, S., Dhamija, P., Sharma, A., Kumar, A., & Handu, S. (2021). Role of structural and non-structural proteins and therapeutic targets of SARS-CoV-2 for COVID-19. Cells, 10 (4), 821. https://doi.org/10.3390/cells10040821
  • Yang, J., Anishchenko, I., Park, H., Peng, Z., Ovchinnikov, S., & Baker, D. (2020). Improved protein structure prediction using predicted interresidue orientations. Proceedings of the National Academy of Sciences of the United States of America, 117 (3), 1496–1503. https://doi.org/10.1073/pnas.1914677117
  • Yoshimoto, F. K. (2020). The proteins of severe acute respiratory syndrome coronavirus-2 (SARS CoV-2 or n-COV19), the cause of COVID-19. The Protein Journal, 39 (3), 198–216. https://doi.org/10.1007/s10930-020-09901-4
  • Zhang, L. (2018). Multi-epitope vaccines: a promising strategy against tumors and viral infections. Cellular & Molecular Immunology, 15 (2), 182–184. https://doi.org/10.1038/cmi.2017.92
  • Zhao, Y., Kuang, M., Li, J., Zhu, L., Jia, Z., Guo, X., Hu, Y., Kong, J., Yin, H., Wang, X., & You, F. (2021). SARS-CoV-2 spike protein interacts with and activates TLR41. Cell Research, 31 (7), 818–820. https://doi.org/10.1038/s41422-021-00495-9
  • Zhou, P., Yang, X.-L., Wang, X.-G., Hu, B., Zhang, L., Zhang, W., Si, H.-R., Zhu, Y., Li, B., Huang, C.-L., Chen, H.-D., Chen, J., Luo, Y., Guo, H., Jiang, R.-D., Liu, M.-Q., Chen, Y., Shen, X.-R., Wang, X., … Shi, Z.-L. (2020). A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature, 579(7798), 270–273. https://doi.org/10.1038/s41586-020-2012-7
  • Zhu, S., Feng, Y., Rao, P., Xue, X., Chen, S., Li, W., Zhu, G., & Zhang, L. (2014). Hepatitis B virus surface antigen as delivery vector can enhance Chlamydia trachomatis MOMP multi-epitope immune response in mice. Applied microbiology and Biotechnology, 98(9), 4107–4117. https://doi.org/10.1007/s00253-014-5517-x

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.