130
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Computational analysis of the effect of Gly100Ala mutation on the thermostability of SazCA

, & ORCID Icon
Pages 12363-12371 | Received 28 Sep 2022, Accepted 02 Jan 2023, Published online: 06 Feb 2023

References

  • Adcock, S., & McCammon, J. (2006). Molecular dynamics: Survey of methods for simulating the activity of proteins. Chemical Reviews, 106(5), 1589–1615. https://doi.org/10.1021/cr040426m
  • Alterio, V., Monti, S., & De Simone, G. (2014). Thermal-stable carbonic anhydrases: A structural overview, Carbonic anhydrase: Mechanism, regulation, links to disease, and industrial applications 387–404.
  • Alvizo, O., Nguyen, L. J., Savile, C. K., Bresson, J. A., Lakhapatri, S. L., Solis, E. O. P., Fox, R. J., Broering, J. M., Benoit, M. R., Zimmerman, S. A., Novick, S. J., Liang, J., & Lalonde, J. J. (2014). Directed evolution of an ultrastable carbonic anhydrase for highly efficient carbon capture from flue gas. Proceedings of the National Academy of Sciences of the United States of America, 111(46), 16436–16441. https://doi.org/10.1073/pnas.1411461111
  • Ban, X., Lahiri, P., Dhoble, A., Li, D., Gu, Z., Li, C., Cheng, L., Hong, Y., Li, Z., & Kaustubh, B. (2019). Evolutionary stability of salt bridges hints its contribution to stability of proteins. Computational and Structural Biotechnology Journal, 17, 895–903. https://doi.org/10.1016/j.csbj.2019.06.022
  • Barbero, R., Carnelli, L., Simon, A., Kao, A., Monforte, A., Ricco, M., Bianchi, D., & Belcher, A. (2013). Engineered yeast for enhanced CO2 mineralization. Energy & Environmental Science, 6(2), 660–674. https://doi.org/10.1039/C2EE24060B
  • Berendsen, H., Postma, J., van Gunsteren, W., DiNola, A., & Haak, J. (1984). Molecular dynamics with coupling to an external bath. The Journal of Chemical Physics, 81(8), 3684–3690. https://doi.org/10.1063/1.448118
  • Best, R., & Hummer, G. (2009). Optimized molecular dynamics force fields applied to the helix- coil transition of polypeptides. The Journal of Physical Chemistry. B, 113(26), 9004–9015. https://doi.org/10.1021/jp901540t
  • Bharatiy, S., Hazra, M., Paul, M., Mohapatra, S., Samantaray, D., Dubey, R., Sanyal, S., Datta, S., & Hazra, S. (2016). In silico designing of an industrially sustainable carbonic anhydrase using molecular dynamics simulation. ACS Omega,.1(6), 1081–1103. https://doi.org/10.1021/acsomega.6b00041
  • Boone, C., Habibzadegan, A., Gill, S., & McKenna, R. (2013). Carbonic anhydrases and their biotechnological applications. Biomolecules, 3(3), 553–562. https://doi.org/10.3390/biom3030553
  • Bosshard, H., Marti, D., & Jelesarov, I. (2004). Protein stabilization by salt bridges: Concepts, experimental approaches and clarification of some misunderstandings. Journal of Molecular Recognition: JMR, 17(1), 1–16. https://doi.org/10.1002/jmr.657
  • Camilloni, C., Sutto, L., Provasi, D., Tiana, G., & Broglia, R. (2008). Early events in protein folding: Is there something more than hydrophobic burst? Protein Science: A Publication of the Protein Society, 17(8), 1424–1433. https://doi.org/10.1110/ps.035105.108
  • Capasso, C., De Luca, V., Carginale, V., Cannio, R., & Rossi, M. (2012). Biochemical properties of a novel and highly thermostable bacterial α-carbonic anhydrase from Sulfurihydrogenibium yellowstonense YO3AOP1. Journal of Enzyme Inhibition and Medicinal Chemistry, 27(6), 892–897. https://doi.org/10.3109/14756366.2012.703185
  • Chan, C., Yu, T., & Wong, K. (2011). Stabilizing salt-bridge enhances protein thermostability by reducing the heat capacity change of unfolding. PLOS One, 6(6), e21624. https://doi.org/10.1371/journal.pone.0021624
  • Cheatham, T. I., Miller, J., Fox, T., Darden, T., & Kollman, P. (1995). Molecular dynamics simulations on solvated biomolecular systems: The particle mesh ewald method leads to stable trajectories of DNA, RNA, and proteins. Journal of the American Chemical Society, 117(14), 4193–4194. https://doi.org/10.1021/ja00119a045
  • Chen, X., Weber, I., & Harrison, R. (2008). Hydration water and bulk water in proteins have distinct properties in radial distributions calculated from 105 atomic resolution crystal structures. The Journal of Physical Chemistry. B, 112(38), 12073–12080. https://doi.org/10.1021/jp802795a
  • De Simone, G., Monti, S., Alterio, V., Buonanno, M., De Luca, V., Rossi, M., Carginale, V., Supuran, C., Capasso, C., & Di Fiore, A. (2015). Crystal structure of the most catalytically effective carbonic anhydrase enzyme known, SazCA from the thermophilic bacterium Sulfurihydrogenibium azorense. Bioorganic & Medicinal Chemistry Letters, 25(9), 2002–2006. https://doi.org/10.1016/j.bmcl.2015.02.068
  • Di Fiore, A., Alterio, V., Monti, S. M., De Simone, G., & D'Ambrosio, K. (2015). Thermostable carbonic anhydrases in biotechnological applications. International Journal of Molecular Sciences, 16(7), 15456–15480. https://doi.org/10.3390/ijms160715456
  • Effendi, S., & Ng, I. (2019). The prospective and potential of carbonic anhydrase for carbon dioxide sequestration: A critical review. Process Biochemistry, 87, 55–65. https://doi.org/10.1016/j.procbio.2019.08.018
  • Elleby, B., Sjoblom, B., & Lindskog, S. (1999). Changing the efficiency and specificity of the esterase activity of human carbonic anhydrase ii by site-specific mutagenesis. European Journal of Biochemistry, 262(2), 516–521. https://doi.org/10.1046/j.1432-1327.1999.00400.x
  • Feller, S., Zhang, Y., Pastor, R., & Brooks, B. (1995). Constant pressure molecular dynamics simulation: The langevin piston method. The Journal of Chemical Physics, 103(11), 4613–4621. https://doi.org/10.1063/1.470648
  • Fierke, C., Calderone, T., & Krebs, J. (1991). Functional consequences of engineering the hydrophobic pocket of carbonic anhydrase ii. Biochemistry, 30(46), 11054–11063. https://doi.org/10.1021/bi00110a007
  • Fisher, Z., Boone, C., Biswas, S., Venkatakrishnan, B., Aggarwal, M., Tu, C., Agbandje-McKenna, M., Silverman, D., & McKenna, R. (2012). Kinetic and structural characterization of thermostabilized mutants of human carbonic anhydrase II. Protein Engineering, Design & Selection: PEDS, 25(7), 347–355. https://doi.org/10.1093/protein/gzs027
  • Humphrey, W., Dalke, A., & Schulten, K. (1996). VMD: Visual molecular dynamics. Journal of Molecular Graphics, 14(1), 33–38. https://doi.org/10.1016/0263-7855(96)00018-5
  • Jo, B., Kim, I., Seo, J., Kang, D., & Cha, H. (2013). Engineered Escherichia coli with periplasmic carbonic anhydrase as a biocatalyst for CO2 sequestration. Applied and Environmental Microbiology, 79(21), 6697–6705. https://doi.org/10.1128/AEM.02400-13
  • Jorgensen, W. L., Chandrasekhar, J., Madura, J. D., Impey, R. W., & Klein, M. L. (1983). Comparison of simple potential functions for simulating liquid water. The Journal of Chemical Physics, 79(2), 926–935. https://doi.org/10.1063/1.445869
  • Kockar, F., Maresca, A., Aydin, M., Işik, S., Turkoglu, S., Sinan, S., Arslan, O., Güler, O. O., Turan, Y., & Supuran, C. T. (2010). Mutation of Phe91 to asn in human carbonic anhydrase I unexpectedly enhanced both catalytic activity and affinity for sulfonamide inhibitors. Bioorganic & Medicinal Chemistry, 18(15), 5498–5503. https://doi.org/10.1016/j.bmc.2010.06.056
  • Kosa, J., & Karlsen, P. (1993). Conformational behavior and flexibility of terminally blocked alanine di- and tripeptides. Journal of Molecular Structure, 291, 271–286.
  • Krebs, J. F., & Fierke, C. (1993). Determinants of catalytic activity and stability of carbonic anhydrase ii as revealed by random mutagenesis. The Journal of Biological Chemistry, 268(2), 948–954. https://doi.org/10.1016/S0021-9258(18)54025-4
  • Kumar, S., & Deshpande, P. (2021). Structural and thermodynamic analysis of factors governing the stability and thermal folding/unfolding of SazCA. PLOS One,.16(4), e0249866. https://doi.org/10.1371/journal.pone.0249866
  • Kumar, S., & Nussinov, R. (2002). Close-range electrostatic interactions in proteins. ChemBioChem, 3(7), 604–617. https://doi.org/10.1002/1439-7633(20020703)3:7<604::AID-CBIC604>3.0.CO;2-X
  • Kumar, S., Seth, D., & Deshpande, P. (2021). Molecular dynamics simulations identify the regions of compromised thermostability in SazCA. Proteins: Structure, FUnction, and Bioinformatics. 89(4), 375–388. https://doi.org/10.1002/prot.26022
  • Kumar, S., Tsai, C., & Nussinov, R. (2000). Factors enhancing protein thermostability. Protein Engineering, 13(3), 179–191. https://doi.org/10.1093/protein/13.3.179
  • Lee, J., Kwak, N., Lee, I., Jang, K., Lee, D., Jang, S., Kim, B., & Shim, J. (2015). Performance and economic analysis of commercial-scale coal-fired power plant with post-combustion CO2 capture. Korean Journal of Chemical Engineering, 32(5), 800–807. https://doi.org/10.1007/s11814-014-0267-0
  • Lee, K. (2012). Molecular dynamics simulations of a hyperthermophilic and a mesophilic protein l30e. Journal of Chemical Information and Modeling, 52(1), 7–15. https://doi.org/10.1021/ci200184y
  • Levy, Y., & Onuchic, J. (2004). Water and proteins: A love–hate relationship. Proceedings of the National Academy of Sciences of the United States of America, 101(10), 3325–3326. https://doi.org/10.1073/pnas.0400157101
  • Lippow, S., & Tidor, B. (2007). Progress in computational protein design. Current Opinion in Biotechnology, 18(4), 305–311. https://doi.org/10.1016/j.copbio.2007.04.009
  • Lopez-Llano, J., Campos, L., & Sancho, J. (2006). α-helix stabilization by alanine relative to glycine: Roles of polar and apolar solvent exposures and of backbone entropy. Proteins: Structure, Function, and Bioinformatics, 64(3), 769–778. https://doi.org/10.1002/prot.21041
  • Mallamace, F., Corsaro, C., Mallamace, D., Vasi, S., Vasi, C., & Dugo, G. (2015). The role of water in protein’s behavior: The two dynamical crossovers studied by nmr and ftir techniques. Computational and Structural Biotechnology Journal, 13, 33–37. https://doi.org/10.1016/j.csbj.2014.11.007
  • Mårtensson, L.-G., Karlsson, M., & Carlsson, U. (2002). Dramatic stabilization of the native state of human carbonic anhydrase II by an engineered disulfide bond. Biochemistry, 41(52), 15867–15875. https://doi.org/10.1021/bi020433+
  • Matthews, B., Nicholson, H., & Becktel, W. (1987). Enhanced protein thermostability from site-directed mutations that decrease the entropy of unfolding. Proceedings of the National Academy of Sciences of the United States of America, 84(19), 6663–6667. https://doi.org/10.1073/pnas.84.19.6663
  • Paquet, E., & Viktor, H. (2015). Molecular dynamics, monte carlo simulations, and langevin dynamics: A computational review. BioMed Research International, 2015, 1–18. https://doi.org/10.1155/2015/183918
  • Parra-Cruz, R., Jager, C., Lau, P., Gomes, R., & Pordea, A. (2018). Rational design of thermostable carbonic anhydrase mutants using molecular dynamics simulations. The Journal of Physical Chemistry. B, 122(36), 8526–8536. https://doi.org/10.1021/acs.jpcb.8b05926
  • Phillips, J., Braun, R., Wang, W., Gumbart, J., Tajkhorshid, E., Villa, E., Chipot, C., Skeel, R., Kale, L., & Schulten, K. (2005). Scalable molecular dynamics with NAMD. Journal of Computational Chemistry, 26(16), 1781–1802. https://doi.org/10.1002/jcc.20289
  • Rani, P., & Biswas, P. (2014). Shape dependence of the radial distribution function of hydration water around proteins. Journal of Physics. Condensed Matter: An Institute of Physics Journal, 26(33), 335102. https://doi.org/10.1088/0953-8984/26/33/335102
  • Sahoo, P., Kumar, M., Puri, S., & Ramakumar, S. (2018). Enzyme inspired complexes for industrial CO2 capture: Opportunities and challenges. Journal of CO2 Utilization, 24, 419–429. https://doi.org/10.1016/j.jcou.2018.02.003
  • Savile, C., & Lalonde, J. (2011). Biotechnology for the acceleration of carbon dioxide capture and sequestration. Current Opinion in Biotechnology, 22(6), 818–823. https://doi.org/10.1016/j.copbio.2011.06.006
  • Sayre, T., Lee, T., King, N., & Yeates, T. (2011). Protein stabilization in a highly knotted protein polymer. Protein Engineering, Design & Selection: PEDS, 24(8), 627–630. https://doi.org/10.1093/protein/gzr024
  • Scott, K., Alonso, D., Sato, S., Fersht, A., & Daggett, V. (2007). Conformational entropy of alanine versus glycine in protein denatured states. Proceedings of the National Academy of Sciences of the United States of America, 104(8), 2661–2666. https://doi.org/10.1073/pnas.0611182104
  • Sheu, S., Yang, D., Selzle, H., & Schlag, E. (2003). Energetics of hydrogen bonds in peptides. Proceedings of the National Academy of Sciences of the United States of America, 100(22), 12683–12687. https://doi.org/10.1073/pnas.2133366100
  • Supuran, C. (2016). Structure and function of carbonic anhydrases. The Biochemical Journal, 473(14), 2023–2032. https://doi.org/10.1042/BCJ20160115
  • Szilagyi, A., & Zavodszky, P. (2000). Structural differences between mesophilic, moderately thermophilic and extremely thermophilic protein subunits: Results of a comprehensive survey. Structure, 8(5), 493–504. https://doi.org/10.1016/S0969-2126(00)00133-7
  • Yakimov, A., Afanaseva, A., Khodorkovskiy, M., & Petukhov, M. (2016). Design of stable α-helical peptides and thermostable proteins in biotechnology and biomedicine. Acta Naturae, 8(4), 70–81. https://doi.org/10.32607/20758251-2016-8-4-70-81
  • Yan, B., & Sun, Y. (1997). Glycine residues provide flexibility for enzyme active sites. The Journal of Biological Chemistry, 272(6), 3190–3194. https://doi.org/10.1074/jbc.272.6.3190

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.