259
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Identification of structural scaffold from interbioscreen (IBS) database to inhibit 3CLpro, PLpro, and RdRp of SARS-CoV-2 using molecular docking and dynamic simulation studies

ORCID Icon, ORCID Icon, , ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 13168-13179 | Received 02 Oct 2022, Accepted 15 Jan 2023, Published online: 09 Feb 2023

References

  • Báez-Santos, Y. M., St. John, S. E., & Mesecar, A. D. (2015). The SARS-coronavirus papain-like protease: Structure, function and inhibition by designed antiviral compounds. Antiviral Research, 115, 21–38. https://doi.org/10.1016/j.antiviral.2014.12.015
  • Bhardwaj, V. K., Singh, R., Sharma, J., Rajendran, V., Purohit, R., & Kumar, S. (2021). Identification of bioactive molecules from tea plant as SARS-CoV-2 main protease inhibitors. Journal of Biomolecular Structure and Dynamics, 39(10), 3449–3458. https://doi.org/10.1080/07391102.2020.1766572
  • B-Rao, C., Subramanian, J., & Sharma, S. D. (2009). Managing protein flexibility in docking and its applications. Drug discovery Today, 14(7-8), 394–400. https://doi.org/10.1016/J.DRUDIS.2009.01.003
  • Cannalire, R., Cerchia, C., Beccari, A. R., Di Leva, F. S., & Summa, V. (2022). Targeting SARS-CoV-2 proteases and polymerase for COVID-19 treatment: state of the art and future opportunities. Journal of Medicinal Chemistry, 65(4), 2716–2746. https://doi.org/10.1021/acs.jmedchem.0c01140
  • Chan, J. F.-W., Kok, K.-H., Zhu, Z., Chu, H., To, K. K.-W., Yuan, S., & Yuen, K.-Y. (2020). Genomic characterization of the 2019 novel human-pathogenic coronavirus isolated from a patient with atypical pneumonia after visiting Wuhan. Emerging Microbes & Infections, 9(1), 221–236. https://doi.org/10.1080/22221751.2020.1719902
  • Croci, R., Tarantino, D., Milani, M., Pezzullo, M., Rohayem, J., Bolognesi, M., & Mastrangelo, E. (2014). PPNDS inhibits murine norovirus RNA-dependent RNA-polymerase mimicking two RNA stacking bases. FEBS Letters, 588(9), 1720–1725. https://doi.org/10.1016/j.febslet.2014.03.021
  • Da, A., Antonio, S., Silveira, L., Wiedemann, M., Florêncio, V., & Florêncio Veiga-Junior, F. (2020). Natural products’ role against COVID-19. RSC Advances, 10(39), 23379–23393. https://doi.org/10.1039/D0RA03774E
  • Daina, A., Michielin, O., & Zoete, V. (2017). SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Scientific Reports, 7, 42717. https://doi.org/10.1038/srep42717
  • Elfiky, A. A. (2020). Ribavirin, remdesivir, sofosbuvir, galidesivir, and tenofovir against SARS-CoV-2 RNA dependent RNA polymerase (RdRp): A molecular docking study. Life Sciences, 253, 117592. https://doi.org/10.1016/j.lfs.2020.117592
  • Ertl, P., & Schuffenhauer, A. (2009). Estimation of synthetic accessibility score of drug-like molecules based on molecular complexity and fragment contributions. Journal of Cheminformatics, 1(1), 8–11. https://doi.org/10.1186/1758-2946-1-8/TABLES/1
  • Esam, Z., Akhavan, M., Lotfi, M., & Bekhradnia, A. (2022). Molecular docking and dynamics studies of Nicotinamide Riboside as a potential multi-target nutraceutical against SARS-CoV-2 entry, replication, and transcription: A new insight. Journal of Molecular Structure, 1247, 131394. https://doi.org/10.1016/J.MOLSTRUC.2021.131394
  • Gorbalenya, A. E., Snijder, E. J., & Ziebuhr, J. (2000). Virus-encoded proteinases and proteolytic processing in the Nidovirales. The Journal of General Virology, 81(Pt 4), 853–879. https://doi.org/10.1099/0022-1317-81-4-853
  • Harder, E., Damm, W., Maple, J., Wu, C., Reboul, M., Xiang, J. Y., Wang, L., Lupyan, D., Dahlgren, M. K., Knight, J. L., Kaus, J. W., Cerutti, D. S., Krilov, G., Jorgensen, W. L., Abel, R., & Friesner, R. A. (2016). OPLS3: A force field providing broad coverage of drug-like small molecules and proteins. Journal of Chemical Theory and Computation, 12(1), 281–296. https://doi.org/10.1021/acs.jctc.5b00864
  • Hillen, H. S., Kokic, G., Farnung, L., Dienemann, C., Tegunov, D., & Cramer, P. (2020). Structure of replicating SARS-CoV-2 polymerase. Nature, 584(7819), 154–156. https://doi.org/10.1038/s41586-020-2368-8
  • Ioakimidis, L., Thoukydidis, L., Mirza, A., Naeem, S., & Reynisson, J. (2008). Benchmarking the reliability of QikProp. Correlation between experimental and predicted values. QSAR & Combinatorial Science, 27(4), 445–456. https://doi.org/10.1002/qsar.200730051
  • Khan, N., Chen, X., & Geiger, J. D. (2021). Possible therapeutic use of natural compounds against COVID-19. Journal of Cellular Signaling, 2(1), 63–79. https://doi.org/10.33696/Signaling.2.036
  • Kuenemann, M. A., Sperandio, O., Labbé, C. M., Lagorce, D., Miteva, M. A., & Villoutreix, B. O. (2015). In silico design of low molecular weight protein–protein interaction inhibitors: Overall concept and recent advances. Progress in Biophysics and Molecular Biology, 119(1), 20–32. https://doi.org/10.1016/J.PBIOMOLBIO.2015.02.006
  • Lamontagne, F., Agarwal, A., Rochwerg, B., Siemieniuk, R. A., Agoritsas, T., Askie, L., Lytvyn, L., Leo, Y.-S., Macdonald, H., Zeng, L., Amin, W., da Silva, A. R. A., Aryal, D., Barragan, F. A., Bausch, F. J., Burhan, E., Calfee, C. S., Cecconi, M., Chacko, B., … Vandvik, P. O. (2020). A living WHO guideline on drugs for COVID-19. BMJ (Clinical Research Ed.), 370, m3379. https://doi.org/10.1136/bmj.m3379
  • LigPrep, Schrödinger, LLC, New York, N. (2017). Schrödinger Release 2017-3. https://www.schrodinger.com
  • Lipinski, C. A. (2004). Lead- and drug-like compounds: The rule-of-five revolution. Drug discovery Today Technologies, 1(4), 337–341. https://doi.org/10.1016/j.ddtec.2004.11.007
  • Liu, J., Cao, R., Xu, M., Wang, X., Zhang, H., Hu, H., Li, Y., Hu, Z., Zhong, W., & Wang, M. (2020). Hydroxychloroquine, a less toxic derivative of chloroquine, is effective in inhibiting SARS-CoV-2 infection in vitro. Cell Discovery, 6(1), 1–4. https://doi.org/10.1038/s41421-020-0156-0
  • Lu, R., Zhao, X., Li, J., Niu, P., Yang, B., Wu, H., Wang, W., Song, H., Huang, B., Zhu, N., Bi, Y., Ma, X., Zhan, F., Wang, L., Hu, T., Zhou, H., Hu, Z., Zhou, W., Zhao, L., … Tan, W. (2020). Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. The Lancet, 395(10224), 565–574. https://doi.org/10.1016/S0140-6736(20)30251-8
  • Martinez, M. A. (2020a). Compounds with therapeutic potential against novel respiratory 2019 coronavirus. Antimicrobial Agents and Chemotherapy, 64(5), 1–7. https://doi.org/10.1128/AAC.00399-20
  • Martinez, M. A. (2020b). Clinical trials of repurposed antivirals for SARS-CoV-2. Antimicrobial Agents and Chemotherapy, 64(9), e01101-20. https://doi.org/10.1128/AAC.01101-20
  • Menchon, G., Maveyraud, L., & Czaplicki, G. (2018). Molecular dynamics as a tool for virtual ligand screening. Methods in Molecular Biology (Clifton, N.J.), 1762, 145–178. https://doi.org/10.1007/978-1-4939-7756-7_9
  • Min, Q., Cai, X., Sun, W., Gao, F., Li, Z., Zhang, Q., Wan, L.-S., Li, H., & Chen, J. (2017). Identification of mangiferin as a potential Glucokinase activator by structure-based virtual ligand screening. Scientific Reports, 7(1), 44681. https://doi.org/10.1038/srep44681
  • Mishra, A., & Rathore, A. S. (2022). RNA dependent RNA polymerase (RdRp) as a drug target for SARS-CoV2. Journal of Biomolecular Structure & Dynamics, 40(13), 6039–6051. https://doi.org/10.1080/07391102.2021.1875886
  • Morse, J. S., Lalonde, T., Xu, S., & Liu, W. R. (2020). Learning from the past: Possible urgent prevention and treatment options for severe acute respiratory infections caused by 2019‐nCoV. Chembiochem: A European Journal of Chemical Biology, 21(5), 730–738. https://doi.org/10.1002/cbic.202000047
  • Rampogu, S., Lee, G., Kulkarni, A. M., Kim, D., Yoon, S., Kim, M. O., & Lee, K. W. (2021). Computational approaches to discover novel natural compounds for SARS-CoV-2 therapeutics. ChemistryOpen, 10(5), 593–599. https://doi.org/10.1002/OPEN.202000332
  • Ratia, K., Pegan, S., Takayama, J., Sleeman, K., Coughlin, M., Baliji, S., Chaudhuri, R., Fu, W., Prabhakar, B. S., Johnson, M. E., Baker, S. C., Ghosh, A. K., & Mesecar, A. D. (2008). A noncovalent class of papain-like protease/deubiquitinase inhibitors blocks SARS virus replication. Proceedings of the National Academy of Sciences of the United States of America, 105(42), 16119–16124. https://doi.org/10.1073/pnas.0805240105
  • Rydberg, P., & Olsen, L. (2012). Predicting Drug Metabolism by Cytochrome P450 2C9: Comparison with the 2D6 and 3A4 Isoforms. ChemMedChem. 7(7), 1202–1209. https://doi.org/10.1002/cmdc.201200160
  • Sahoo, B. M., Ravi Kumar, B. V. V., Sruti, J., Mahapatra, M. K., Banik, B. K., & Borah, P. (2021). Drug repurposing strategy (DRS): Emerging approach to identify potential therapeutics for treatment of novel coronavirus infection. Frontiers in Molecular Biosciences, 8, 628144. https://doi.org/10.3389/FMOLB.2021.628144/BIBTEX
  • Sastry, M. G., Adzhigirey, M., Day, T., Annabhimoju, R., & Sherman, W. (2013). Protein and ligand preparation: parameters, protocols, and influence on virtual screening enrichments. Journal of Computer-Aided Molecular Design, 27(3), 221–234. https://doi.org/10.1007/s10822-013-9644-8
  • Seo, M., Shin, H. K., Myung, Y., Hwang, S., & No, K. T. (2020). Development of natural compound molecular fingerprint (NC-MFP) with the dictionary of natural products (DNP) for natural product-based drug development. Journal of Cheminformatics, 12(1), 6–17. https://doi.org/10.1186/S13321-020-0410-3/TABLES/5
  • Sorokina, M., & Steinbeck, C. (2020). Review on natural products databases: where to find data in 2020. Journal of Cheminformatics, 12(1), 20. https://doi.org/10.1186/s13321-020-00424-9
  • St. John, S. E., Tomar, S., Stauffer, S. R., & Mesecar, A. D. (2015). Targeting zoonotic viruses: Structure-based inhibition of the 3C-like protease from bat coronavirus HKU4—The likely reservoir host to the human coronavirus that causes Middle East Respiratory Syndrome (MERS). Bioorganic & Medicinal Chemistry, 23(17), 6036–6048. https://doi.org/10.1016/J.BMC.2015.06.039
  • Su, S., Wong, G., Shi, W., Liu, J., Lai, A. C. K., Zhou, J., Liu, W., Bi, Y., & Gao, G. F. (2016). Epidemiology, genetic recombination, and pathogenesis of coronaviruses. Trends in Microbiology, 24(6), 490–502. https://doi.org/10.1016/j.tim.2016.03.003
  • Taha, M. O., Habash, M., & Khanfar, M. A. (2014). The use of docking-based comparative intermolecular contacts analysis to identify optimal docking conditions within glucokinase and to discover of new GK activators. Journal of Computer-Aided Molecular Design, 28(5), 509–547. https://doi.org/10.1007/s10822-014-9740-4
  • Vijayakumar, S., Manogar, P., Prabhu, S., Pugazhenthi, M., & Praseetha, P. K. (2019). A pharmacoinformatic approach on Cannabinoid receptor 2 (CB2) and different small molecules: Homology modelling, molecular docking, MD simulations, drug designing and ADME analysis. Computational biology and Chemistry, 78(vember 2018), 95–107. https://doi.org/10.1016/j.compbiolchem.2018.11.013
  • Vijayakumar, S., Manogar, P., Prabhu, S., & Sanjeevkumar Singh, R. (2018). Novel ligand-based docking; molecular dynamic simulations; and absorption, distribution, metabolism, and excretion approach to analyzing potential acetylcholinesterase inhibitors for Alzheimer’s disease. Journal of Pharmaceutical Analysis, 8(6), 413–420. https://doi.org/10.1016/j.jpha.2017.07.006
  • Wang, M., Cao, R., Zhang, L., Yang, X., Liu, J., Xu, M., Shi, Z., Hu, Z., Zhong, W., & Xiao, G. (2020). Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Research, 30(3), 269–271. https://doi.org/10.1038/s41422-020-0282-0
  • Weston, S., Coleman, C. M., Haupt, R., Logue, J., Matthews, K., Li, Y., Reyes, H. M., Weiss, S. R., & Frieman, M. B. (2020). Broad anti-coronavirus activity of food and drug administration-approved drugs against SARS-CoV-2 in vitro and SARS-CoV In Vivo. Journal of Virology, 94(21), 1–13. https://doi.org/10.1128/JVI.01218-20
  • Xian, Y., Zhang, J., Bian, Z., Zhou, H., Zhang, Z., Lin, Z., & Xu, H. (2020). Bioactive natural compounds against human coronaviruses: a review and perspective. Acta Pharmaceutica Sinica. B, 10(7), 1163–1174. https://doi.org/10.1016/J.APSB.2020.06.002
  • Zhu, N., Zhang, D., Wang, W., Li, X., Yang, B., Song, J., Zhao, X., Huang, B., Shi, W., Lu, R., Niu, P., Zhan, F., Ma, X., Wang, D., Xu, W., Wu, G., Gao, G. F., & Tan, W. (2020). A novel Coronavirus from patients with pneumonia in China, 2019. The New England Journal of Medicine, 382(8), 727–733. https://doi.org/10.1056/NEJMoa2001017

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.