170
Views
4
CrossRef citations to date
0
Altmetric
Research Articles

Multi-target molecular dynamic simulations reveal glutathione-S-transferase as the most favorable drug target of knipholone in Plasmodium falciparum

ORCID Icon, ORCID Icon, ORCID Icon, , ORCID Icon, ORCID Icon, & show all
Pages 12808-12824 | Received 12 Oct 2022, Accepted 07 Jan 2023, Published online: 08 Feb 2023

References

  • Abdissa, N., Induli, M., Akala, H. M., Heydenreich, M., Midiwo, J. O., Ndakala, A., & Yenesew, A. (2013). Knipholone cyclooxanthrone and an anthraquinone dimer with antiplasmodial activities from the roots of Kniphofia foliosa. Phytochemistry Letters, 6(2), 241–245. https://doi.org/10.1016/j.phytol.2013.02.005
  • Abegaz, B. M., Bezabih, M., Msuta, T., Brun, R., Menche, D., Mühlbacher, J., & Bringmann, G. (2002). Gaboroquinones A and B and 4‘-O-demethylknipholone-4‘-O-β-d-glucopyranoside, phenylanthraquinones from the roots of bulbine frutescens. Journal of Natural Products, 65(8), 1117–1121. https://doi.org/10.1021/np0201218
  • Alebachew, Y., Bisrat, D., Tadesse, S., & Asres, K. (2021). In vivo anti-malarial activity of the hydroalcoholic extract of rhizomes of Kniphofia foliosa and its constituents. Malaria Journal, 20(1), 3. https://doi.org/10.1186/s12936-020-03552-7
  • Bathke, J., Fritz-Wolf, K., Brandstädter, C., Burkhardt, A., Jortzik, E., Rahlfs, S., & Becker, K. (2016). Structural and functional characterization of plasmodium falciparum nicotinic acid mononucleotide adenylyltransferase. Journal of Molecular Biology, 428(24 Pt B), 4946–4961. https://doi.org/10.1016/j.jmb.2016.10.023
  • Becke, A. D. (1993). Density‐functional thermochemistry. III. The role of exact exchange. The Journal of Chemical Physics, 98(7), 5648–5652. https://doi.org/10.1063/1.464913
  • Belete, T. M. (2020). Recent progress in the development of new antimalarial drugs with novel targets. Drug Design, Development and Therapy, 14, 3875–3889. https://doi.org/10.2147/DDDT.S265602
  • Brazier, A. J., Avril, M., Bernabeu, M., Benjamin, M., & Smith, J. D. (2017). Pathogenicity determinants of the human malaria parasite plasmodium falciparum have ancient origins. mSphere, 2(1), e00348-16. https://doi.org/10.1128/mSphere.00348-16
  • Bringmann, G., Menche, D., Bezabih, M., Abegaz, B., & Kaminsky, R. (1999). Antiplasmodial activity of knipholone and related natural phenylanthraquinones. Planta Medica, 65(8), 757–758. https://doi.org/10.1055/s-2006-960859
  • Çapan, İ., Servi, S., Yıldırım, İ., & Sert, Y. (2021). Synthesis, DFT study, molecular docking and drug‐likeness analysis of the new hydrazine‐1‐carbothioamide, triazole and thiadiazole derivatives: potential inhibitors of HSP90. ChemistrySelect, 6(23), 5838–5846. https://doi.org/10.1002/slct.202101086
  • Chaianantakul, N., Sirawaraporn, R., & Sirawaraporn, W. (2013). Insights into the role of the junctional region of Plasmodium falciparum dihydrofolate reductase-thymidylate synthase. Malaria Journal, 12(1), 91. https://doi.org/10.1186/1475-2875-12-91
  • Chen, D., Oezguen, N., Urvil, P., Ferguson, C., Dann, S. M., & Savidge, T. C. (2016). Regulation of protein-ligand binding affinity by hydrogen bond pairing. Science Advances, 2(3), e1501240. https://doi.org/10.1126/sciadv.1501240
  • Choudhary, M. I., Shaikh, M., Tul-Wahab, A., & Ur-Rahman, A. (2020). In silico identification of potential inhibitors of key SARS-CoV-2 3CL hydrolase (Mpro) via molecular docking, MMGBSA predictive binding energy calculations, and molecular dynamics simulation. PloS One, 15(7), e0235030. https://doi.org/10.1371/journal.pone.0235030
  • Dagne, E., & Steglich, W. (1984). Knipholone: A unique anthraquinone derivative from Kniphofia foliosa. Phytochemistry, 23(8), 1729–1731. https://doi.org/10.1016/S0031-9422(00)83479-2
  • Daina, A., Michielin, O., & Zoete, V. (2017). SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Scientific Reports, 7(1), 42717. https://doi.org/10.1038/srep42717
  • Dallakyan, S., & Olson, A. J. (2015). Small-molecule library screening by docking with PyRx (pp. 243–250). https://doi.org/10.1007/978-1-4939-2269-7_19
  • Deng, X., Gujjar, R., El Mazouni, F., Kaminsky, W., Malmquist, N. A., Goldsmith, E. J., Rathod, P. K., & Phillips, M. A. (2009). Structural plasticity of malaria dihydroorotate dehydrogenase allows selective binding of diverse chemical scaffolds. The Journal of Biological Chemistry, 284(39), 26999–27009. https://doi.org/10.1074/jbc.M109.028589
  • El Fadili, M., Er-Rajy, M., Kara, M., Assouguem, A., Belhassan, A., Alotaibi, A., Mrabti, N. N., Fidan, H., Ullah, R., Ercisli, S., Zarougui, S., & Elhallaoui, M. (2022). QSAR, ADMET in silico pharmacokinetics, molecular docking and molecular dynamics studies of novel bicyclo (aryl methyl) benzamides as potent GlyT1 inhibitors for the treatment of schizophrenia. Pharmaceuticals, 15(6), 670. https://doi.org/10.3390/ph15060670
  • Fatimawali, T., E, T., Kepel, B. J., Alorabi, M., El-Shehawi, A. M., Bodhi, W., Tumilaar, S. G., Celik, I., Mostafa-Hedeab, G., Mohamed, A. A.-R., & Emran, T. B. (2021). Appraisal of bioactive compounds of betel fruit as antimalarial agents by targeting Plasmepsin 1 and 2: A computational approach. Pharmaceuticals, 14(12), 1285. https://doi.org/10.3390/ph14121285
  • Fritz-Wolf, K., Becker, A., Rahlfs, S., Harwaldt, P., Schirmer, R. H., Kabsch, W., & Becker, K. (2003). X-ray structure of glutathione S-transferase from the malarial parasite Plasmodium falciparum. Proceedings of the National Academy of Sciences, 100(24), 13821–13826. https://doi.org/10.1073/pnas.2333763100
  • Ghosh, S., Chetia, D., Gogoi, N., & Rudrapal, M. (2021). Design, molecular docking, drug-likeness, and molecular dynamics studies of 1,2,4-trioxane derivatives as novel Plasmodium falciparum falcipain-2 (FP-2) inhibitors. Biotechnologia, 102(3), 257–275. https://doi.org/10.5114/bta.2021.108722
  • Hall, D. A., Ptacek, J., & Snyder, M. (2007). Protein microarray technology. Mechanisms of Ageing and Development, 128(1), 161–167. https://doi.org/10.1016/j.mad.2006.11.021
  • Hansen, G., Heitmann, A., Witt, T., Li, H., Jiang, H., Shen, X., Heussler, V. T., Rennenberg, A., & Hilgenfeld, R. (2011). Structural basis for the regulation of cysteine-protease activity by a new class of protease inhibitors in plasmodium. Structure, 19(7), 919–929. https://doi.org/10.1016/j.str.2011.03.025
  • Holton, S., Merckx, A., Burgess, D., Doerig, C., Noble, M., & Endicott, J. (2003). Structures of P. falciparum PfPK5 Test the CDK regulation paradigm and suggest mechanisms of small molecule inhibition. Structure (London, England: 1993), 11(11), 1329–1337. https://doi.org/10.1016/j.str.2003.09.020
  • Joshi, T., Joshi, T., Sharma, P., Chandra, S., & Pande, V. (2021). Molecular docking and molecular dynamics simulation approach to screen natural compounds for inhibition of Xanthomonas oryzae pv. Oryzae by targeting peptide deformylase. Journal of Biomolecular Structure & Dynamics, 39(3), 823–840. https://doi.org/10.1080/07391102.2020.1719200
  • Kalita, J., Chetia, D., & Rudrapal, M. (2020). Design, synthesis, antimalarial activity and docking study of 7-Chloro-4-(2-(substituted benzylidene)hydrazineyl)quinolines. Medicinal Chemistry (Shariqah (United Arab Emirates)), 16(7), 928–937. https://doi.org/10.2174/1573406415666190806154722
  • Kanai, Y., Segawa, H., Miyamoto, K., Uchino, H., Takeda, E., & Endou, H. (1998). Expression cloning and characterization of a transporter for large neutral amino acids activated by the heavy chain of 4F2 antigen (CD98). Journal of Biological Chemistry, 273(37), 23629–23632. https://doi.org/10.1074/jbc.273.37.23629
  • Kerr, I. D., Lee, J. H., Pandey, K. C., Harrison, A., Sajid, M., Rosenthal, P. J., & Brinen, L. S. (2009). Structures of Falcipain-2 and Falcipain-3 bound to small molecule inhibitors: Implications for substrate specificity. Journal of Medicinal Chemistry, 52(3), 852–857. https://doi.org/10.1021/jm8013663
  • Kim, J., Tan, Y. Z., Wicht, K. J., Erramilli, S. K., Dhingra, S. K., Okombo, J., Vendome, J., Hagenah, L. M., Giacometti, S. I., Warren, A. L., Nosol, K., Roepe, P. D., Potter, C. S., Carragher, B., Kossiakoff, A. A., Quick, M., Fidock, D. A., & Mancia, F. (2019). Structure and drug resistance of the Plasmodium falciparum transporter PfCRT. Nature, 576(7786), 315–320. https://doi.org/10.1038/s41586-019-1795-x
  • Li, J., Abel, R., Zhu, K., Cao, Y., Zhao, S., & Friesner, R. A. (2011). The VSGB 2.0 model: A next generation energy model for high resolution protein structure modeling. Proteins: Structure, Function, and Bioinformatics, 79(10), 2794–2812. https://doi.org/10.1002/prot.23106
  • Li, Z., Chinnasamy, S., Zhang, Y., & Wei, D.-Q. (2021). Molecular dynamics simulation and binding free energy calculations of microcin J25 binding to the FhuA receptor. Journal of Biomolecular Structure and Dynamics, 39(7), 2585–2594. https://doi.org/10.1080/07391102.2020.1751293
  • Mumit, M. A., Pal, T. K., Alam, M. A., Islam, M. A.-A.-A.-A., Paul, S., & Sheikh, M. C. (2020). DFT studies on vibrational and electronic spectra, HOMO–LUMO, MEP, HOMA, NBO and molecular docking analysis of benzyl-3-N-(2,4,5-trimethoxyphenylmethylene)hydrazinecarbodithioate. Journal of Molecular Structure, 1220, 128715. https://doi.org/10.1016/j.molstruc.2020.128715
  • Nguyen, V.-D., Nguyen, H.-L T., Do, L.-C., Van Tuan, V., Thuong, P. T., & Phan, T.-N. (2018). A new saponin with anti-HIV-1 protease activity from Acacia pennata. Natural Product Communications, 13(4), 1934578X1801300. https://doi.org/10.1177/1934578X1801300408
  • Noureddine, O., Issaoui, N., & Al-Dossary, O. (2021). DFT and molecular docking study of chloroquine derivatives as antiviral to coronavirus COVID-19. Journal of King Saud University. Science, 33(1), 101248. https://doi.org/10.1016/j.jksus.2020.101248
  • Phillips, A., Margaret, K., & Pradipsinh, R. (2010). Plasmodium dihydroorotate dehydrogenase: A promising target for novel anti-malarial chemotherapy. Infectious Disorders Drug Targets, 10(3), 226–239. https://doi.org/10.2174/187152610791163336
  • Prajapati, J., Patel, R., Goswami, D., Saraf, M., & Rawal, R. M. (2021). Sterenin M as a potential inhibitor of SARS-CoV-2 main protease identified from MeFSAT database using molecular docking, molecular dynamics simulation and binding free energy calculation. Computers in Biology and Medicine, 135, 104568. https://doi.org/10.1016/j.compbiomed.2021.104568
  • Pucci, R., & Angilella, G. G. N. (2022). Density functional theory, chemical reactivity, and the Fukui functions. Foundations of Chemistry, 24(1), 59–71. https://doi.org/10.1007/s10698-022-09416-z
  • Rakib, A., Paul, A., Chy, M. N. U., Sami, S. A., Baral, S. K., Majumder, M., Tareq, A. M., Amin, M. N., Shahriar, A., Uddin, M. Z., Dutta, M., Tallei, T. E., Emran, T. B., & Simal-Gandara, J. (2020). Biochemical and computational approach of selected phytocompounds from Tinospora crispa in the management of COVID-19. Molecules, 25(17), 3936. https://doi.org/10.3390/molecules25173936
  • Rudrapal, M., Chetia, D., & Singh, V. (2017). Novel series of 1,2,4-trioxane derivatives as antimalarial agents. Journal of Enzyme Inhibition and Medicinal Chemistry, 32(1), 1159–1173. https://doi.org/10.1080/14756366.2017.1363742
  • Rudrapal, M., Gogoi, N., Chetia, D., Khan, J., Banwas, S., Alshehri, B., Alaidarous, M. A., Laddha, U. D., Khairnar, S. J., & Walode, S. G. (2021). Repurposing of phytomedicine-derived bioactive compounds with promising anti-SARS-CoV-2 potential: Molecular docking, MD simulation and drug-likeness/ADMET studies. Saudi Journal of Biological Sciences, 29(4), 2432–2446. https://doi.org/10.1016/j.sjbs.2021.12.018
  • Sander, T., Freyss, J., von Korff, M., & Rufener, C. (2015). DataWarrior: An open-source program for chemistry aware data visualization and analysis. Journal of Chemical Information and Modeling, 55(2), 460–473. https://doi.org/10.1021/ci500588j
  • Selvaraj, C., Dinesh, D. C., Panwar, U., Abhirami, R., Boura, E., & Singh, S. K. (2021). Structure-based virtual screening and molecular dynamics simulation of SARS-CoV-2 Guanine-N7 methyltransferase (nsp14) for identifying antiviral inhibitors against COVID-19. Journal of Biomolecular Structure & Dynamics, 39(13), 4582–4593. https://doi.org/10.1080/07391102.2020.1778535
  • Shibeshi, M. A., Kifle, Z. D., & Atnafie, S. A. (2020). Antimalarial drug resistance and novel targets for antimalarial drug discovery. Infection and Drug Resistance, 13, 4047–4060. https://doi.org/10.2147/IDR.S279433
  • Shree, P., Mishra, P., Selvaraj, C., Singh, S. K., Chaube, R., Garg, N., & Tripathi, Y. B. (2022). Targeting COVID-19 (SARS-CoV-2) main protease through active phytochemicals of ayurvedic medicinal plants – Withania somnifera (Ashwagandha), Tinospora cordifolia (Giloy) and Ocimum sanctum (Tulsi) – a molecular docking study. Journal of Biomolecular Structure & Dynamics, 40(1), 190–203. https://doi.org/10.1080/07391102.2020.1810778
  • Sturm, N., Hu, Y., Zimmermann, H., Fritz-Wolf, K., Wittlin, S., Rahlfs, S., & Becker, K. (2009). Compounds structurally related to ellagic acid show improved antiplasmodial activity. Antimicrobial Agents and Chemotherapy, 53(2), 622–630. https://doi.org/10.1128/AAC.00544-08
  • Trott, O., & Olson, A. J. (2009). AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal of Computational Chemistry, 31(2), 455–461. https://doi.org/10.1002/jcc.21334
  • Umar, A. K., Zothantluanga, J. H., Aswin, K., Maulana, S., Sulaiman Zubair, M., Lalhlenmawia, H., Rudrapal, M., & Chetia, D. (2022). Antiviral phytocompounds “ellagic acid” and “(+)-sesamin” of Bridelia retusa identified as potential inhibitors of SARS-CoV-2 3CL pro using extensive molecular docking, molecular dynamics simulation studies, binding free energy calculations, and bioactivity. Structural Chemistry, 33(5), 1445–1465. https://doi.org/10.1007/s11224-022-01959-3
  • Whittingham, J. L., Carrero-Lerida, J., Brannigan, J. A., Ruiz-Perez, L. M., Silva, A. P. G., Fogg, M. J., Wilkinson, A. J., Gilbert, I. H., Wilson, K. S., & González-Pacanowska, D. (2010). Structural basis for the efficient phosphorylation of AZT-MP (3′-azido-3′-deoxythymidine monophosphate) and dGMP by Plasmodium falciparum type I thymidylate kinase. The Biochemical Journal, 428(3), 499–509. https://doi.org/10.1042/BJ20091880
  • World Health Organization. (2022). World malaria report 2021. https://www.who.int/teams/global-malaria-programme/reports/world-malaria-report-2021
  • Wube, A. A., Bucar, F., Asres, K., Gibbons, S., Adams, M., Streit, B., Bodensieck, A., & Bauer, R. (2006). Knipholone, a selective inhibitor of leukotriene metabolism. Phytomedicine: International Journal of Phytotherapy and Phytopharmacology, 13(6), 452–456. https://doi.org/10.1016/j.phymed.2005.01.012
  • Wube, A. A., Bucar, F., Asres, K., Gibbons, S., Rattray, L., & Croft, S. L. (2005). Antimalarial compounds from Kniphofia foliosa roots. Phytotherapy Research, 19(6), 472–476. https://doi.org/10.1002/ptr.1635
  • Yang, Y., Yu, Y., Li, X., Li, J., Wu, Y., Yu, J., Ge, J., Huang, Z., Jiang, L., Rao, Y., & Yang, M. (2017). Target elucidation by cocrystal structures of NADH-ubiquinone oxidoreductase of Plasmodium falciparum (Pf NDH2) with small molecule to eliminate drug-resistant malaria. Journal of Medicinal Chemistry, 60(5), 1994–2005. https://doi.org/10.1021/acs.jmedchem.6b01733
  • Yuthavong, Y., Tarnchompoo, B., Vilaivan, T., Chitnumsub, P., Kamchonwongpaisan, S., Charman, S. A., McLennan, D. N., White, K. L., Vivas, L., Bongard, E., Thongphanchang, C., Taweechai, S., Vanichtanankul, J., Rattanajak, R., Arwon, U., Fantauzzi, P., Yuvaniyama, J., Charman, W. N., & Matthews, D. (2012). Malarial dihydrofolate reductase as a paradigm for drug development against a resistance-compromised target. Proceedings of the National Academy of Sciences, 109(42), 16823–16828. https://doi.org/10.1073/pnas.1204556109
  • Zheng, W., Li, G., & Li, X. (2015). Affinity purification in target identification: the specificity challenge. Archives of Pharmacal Research, 38(9), 1661–1685. https://doi.org/10.1007/s12272-015-0635-2
  • Zothantluanga, J. H. (2021). Molecular docking simulation studies, toxicity study, bioactivity prediction, and structure-activity relationship reveals rutin as a potential inhibitor of SARS-CoV-2 3CL pro. Journal of Scientific Research, 65(05), 96–104. https://doi.org/10.37398/JSR.2021.650511
  • Zothantluanga, J. H., Abdalla, M., Rudrapal, M., Tian, Q., Chetia, D., & Li, J. (2022). Computational investigations for identification of bioactive molecules from Baccaurea ramiflora and Bergenia ciliata as inhibitors of SARS-CoV-2 M pro. Polycyclic Aromatic Compounds, 1–29. https://doi.org/10.1080/10406638.2022.2046613
  • Zothantluanga, J. H., Aswin, S. K., Rudrapal, M., & Cheita, D. (2022). Antimalarial flavonoid-glycoside from acacia pennata with inhibitory potential against PfDHFR-TS: An in-silico study. Biointerface Research in Applied Chemistry, 12(4), 4871–4887. https://doi.org/10.33263/BRIAC124.48714887
  • Zubair, M. S., Maulana, S., Widodo, A., Pitopang, R., Arba, M., & Hariono, M. (2021). GC-MS, LC-MS/MS, docking and molecular dynamics approaches to identify potential SARS-CoV-2 3-chymotrypsin-like protease inhibitors from Zingiber officinale Roscoe. Molecules, 26(17), 5230. https://doi.org/10.3390/molecules26175230

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.