386
Views
4
CrossRef citations to date
0
Altmetric
Research Articles

Discovery of AcrAB-TolC pump inhibitors: Virtual screening and molecular dynamics simulation approach

, , , , , , ORCID Icon, & ORCID Icon show all
Pages 12503-12520 | Received 23 Sep 2022, Accepted 04 Jan 2023, Published online: 10 Feb 2023

References

  • Abdali, N., Parks, J. M., Haynes, K. M., Chaney, J. L., Green, A. T., Wolloscheck, D., Walker, J. K., Rybenkov, V. V., Baudry, J., Smith, J. C., & Zgurskaya, H. I. (2017). Reviving antibiotics: Efflux pump inhibitors that interact with AcrA, a membrane fusion protein of the AcrAB-TolC multidrug efflux pump. ACS Infectious Diseases, 3(1), 89–98. https://doi.org/10.1021/acsinfecdis.6b00167
  • Abraham, M. J., Murtola, T., Schulz, R., Páll, S., Smith, J. C., Hess, B., & Lindahl, E. (2015). GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX, 1, 19–25. https://doi.org/10.1016/j.softx.2015.06.001
  • Aparna, V., Dineshkumar, K., Mohanalakshmi, N., Velmurugan, D., & Hopper, W. (2014). Identification of natural compound inhibitors for multidrug efflux pumps of Escherichia coli and Pseudomonas aeruginosa using in silico high-throughput virtual screening and in vitro validation. PLoS One, 9(7), e101840. https://doi.org/10.1371/journal.pone.0101840
  • Atzori, A., Malviya, V. N., Malloci, G., Dreier, J., Pos, K. M., Vargiu, A. V., & Ruggerone, P. (2019). Identification and characterization of carbapenem binding sites within the RND-transporter AcrB. Biochimica et Biophysica Acta. Biomembranes, 1861(1), 62–74. https://doi.org/10.1016/j.bbamem.2018.10.012
  • Blanco, P., Hernando-Amado, S., Reales-Calderon, J., Corona, F., Lira, F., Alcalde-Rico, M., Bernardini, A., Sanchez, M., & Martinez, J. (2016). Bacterial multidrug efflux pumps: Much more than antibiotic resistance determinants. Microorganisms, 4(1), 14. https://doi.org/10.3390/microorganisms4010014
  • Bohnert, J., Schuster, S., & Kern, W. (2013). Pimozide inhibits the AcrAB-TolC efflux pump in Escherichia coli. The Open Microbiology Journal, 7, 83–86. https://doi.org/10.2174/1874285801307010083
  • Bohnert, J. A., Schuster, S., Kern, W. V., Karcz, T., Olejarz, A., Kaczor, A., Handzlik, J., & Kieć-Kononowicz, K. (2016). Novel piperazine arylideneimidazolones inhibit the AcrAB-TolC pump in Escherichia coli and simultaneously act as fluorescent membrane probes in a combined real-time influx and efflux assay. Antimicrobial Agents and Chemotherapy, 60(4), 1974–1983. https://doi.org/10.1128/AAC.01995-15
  • Bohnert, J. A., Szymaniak-Vits, M., Schuster, S., & Kern, W. V. (2011). Efflux inhibition by selective serotonin reuptake inhibitors in Escherichia coli. The Journal of Antimicrobial Chemotherapy, 66(9), 2057–2060. https://doi.org/10.1093/jac/dkr258
  • Bohnert, J. r A., & Kern, W. V. (2005). Selected arylpiperazines are capable of reversing multidrug resistance in Escherichia coli overexpressing RND efflux pumps. Antimicrobial Agents and Chemotherapy, 49(2), 849–852. https://doi.org/10.1128/AAC.49.2.849-852.2005
  • Bursulaya, B. D., Totrov, M., Abagyan, R., & Brooks, C. L. (2003). Comparative study of several algorithms for flexible ligand docking. Journal of Computer-Aided Molecular Design, 17(11), 755–763. https://doi.org/10.1023/B:JCAM.0000017496.76572.6f
  • Bussi, G., Donadio, D., & Parrinello, M. (2007). Canonical sampling through velocity rescaling. The Journal of Chemical Physics, 126(1), 014101. https://doi.org/10.1063/1.2408420
  • Cereto-Massagué, A., Guasch, L., Valls, C., Mulero, M., Pujadas, G., & Garcia-Vallvé, S. (2012). DecoyFinder: An easy-to-use python GUI application for building target-specific decoy sets. Bioinformatics (Oxford, England), 28(12), 1661–1662. https://doi.org/10.1093/bioinformatics/bts249
  • Chemdraw. (2010). Chemdraw, version 12.0.2. PerkinElmer Informatics. https://perkinelmerinformatics.com/
  • David, C. C., & Jacobs, D. J. (2014). Principal component analysis: A method for determining the essential dynamics of proteins. Protein dynamics (pp. 193–226). Springer.
  • Dragon for Windows (Software for Molecular Descriptor Calculations). (2007). Version 5.5. Version 5.5 [software]. Talete SRL. [cited 2022 Apr 20]. http://www.tatele.mi.it
  • Empereur-Mot, C., Guillemain, H., Latouche, A., Zagury, J.-F., Viallon, V., & Montes, M. (2015). Predictiveness curves in virtual screening. Journal of Cheminformatics, 7(1), 1–17. https://doi.org/10.1186/s13321-015-0100-8
  • Empereur-Mot, C., Zagury, J.-F., & Montes, M. (2016). Screening explorer–An interactive tool for the analysis of screening results. Journal of Chemical Information and Modeling, 56(12), 2281–2286. https://doi.org/10.1021/acs.jcim.6b00283
  • Green, A. T., Moniruzzaman, M., Cooper, C. J., Walker, J. K., Smith, J. C., Parks, J. M., & Zgurskaya, H. I. (2020). Discovery of multidrug efflux pump inhibitors with a novel chemical scaffold. Biochimica et Biophysica Acta. General Subjects, 1864(6), 129546. https://doi.org/10.1016/j.bbagen.2020.129546
  • Grimsey, E. M., Fais, C., Marshall, R. L., Ricci, V., Ciusa, M. L., Stone, J. W., Ivens, A., Malloci, G., Ruggerone, P., Vargiu, A. V., & Piddock, L. J. V. (2020). Chlorpromazine and amitriptyline are substrates and inhibitors of the AcrB multidrug efflux pump. mBio, 11(3), e00465–00420. https://doi.org/10.1128/mBio.00465-20
  • GROMACS. (2020). GROMACS, version 2020.6. Zenodo. https://doi.org/10.5281/zenodo.4576060
  • Hameed P, S., Bharatham, N., Katagihallimath, N., Sharma, S., Nandishaiah, R., Shanbhag, A. P., Thomas, T., Narjari, R., Sarma, M., Bhowmik, P., Amar, P., Ravishankar, R., Jayaraman, R., Muthan, K., Subbiah, R., Ramachandran, V., Balasubramanian, V., & Datta, S. (2018). Nitrothiophene carboxamides, a novel narrow spectrum antibacterial series: Mechanism of action and Efficacy. Scientific Reports, 8(1), 1–18. https://doi.org/10.1038/s41598-018-25407-7
  • Haynes, K. M., Abdali, N., Jhawar, V., Zgurskaya, H. I., Parks, J. M., Green, A. T., Baudry, J., Rybenkov, V. V., Smith, J. C., & Walker, J. K. (2017). Identification and structure–activity relationships of novel compounds that potentiate the activities of antibiotics in Escherichia coli. Journal of Medicinal Chemistry, 60(14), 6205–6219. https://doi.org/10.1021/acs.jmedchem.7b00453
  • Hess, B., Bekker, H., Berendsen, H. J., & Fraaije, J. G. (1997). LINCS: A linear constraint solver for molecular simulations. Journal of Computational Chemistry, 18(12), 1463–1472. https://doi.org/10.1002/(SICI)1096-987X(199709)18:12<1463::AID-JCC4>3.0.CO;2-H
  • Humphrey, W., Dalke, A., & Schulten, K. (1996). VMD: Visual molecular dynamics. Journal of Molecular Graphics, 14(1), 33–38. https://doi.org/10.1016/0263-7855(96)00018-5
  • Hwang, D., & Lim, Y. H. (2019). Resveratrol controls Escherichia coli growth by inhibiting the AcrAB-TolC efflux pump. FEMS Microbiology Letters, 366(4), fnz030. https://doi.org/10.1093/femsle/fnz030
  • Kincses, A., Szabó, Á. M., Saijo, R., Watanabe, G., Kawase, M., Molnár, J., & Spengler, G. (2016). Fluorinated beta-diketo phosphorus ylides are novel efflux pump inhibitors in bacteria. In Vivo (Athens, Greece), 30(6), 813–817. https://doi.org/10.21873/invivo.10999
  • Kincses, A., Varga, B., Csonka, Á., Sancha, S., Mulhovo, S., Madureira, A. M., Ferreira, M. J. U., & Spengler, G. (2018). Bioactive compounds from the African medicinal plant Cleistochlamys kirkii as resistance modifiers in bacteria. Phytotherapy Research, 32(6), 1039–1046. https://doi.org/10.1002/ptr.6042
  • Lamut, A., Peterlin Mašič, L., Kikelj, D., & Tomašič, T. (2019). Efflux pump inhibitors of clinically relevant multidrug resistant bacteria. Medicinal Research Reviews, 39(6), 2460–2504. https://doi.org/10.1002/med.21591
  • Lasko, T. A., Bhagwat, J. G., Zou, K. H., & Ohno-Machado, L. (2005). The use of receiver operating characteristic curves in biomedical informatics. Journal of Biomedical Informatics, 38(5), 404–415. https://doi.org/10.1016/j.jbi.2005.02.008
  • Le, M. T., Hoang, V. N., Nguyen, D. N., Bui, T. H. L., Phan, T. V., Huynh, P. N. H., Tran, T. D., & Thai, K. M. (2021). Structure-based discovery of ABCG2 inhibitors: A homology protein-based pharmacophore modeling and molecular docking approach. Molecules, 26(11), 3115. https://doi.org/10.3390/molecules26113115
  • Le, M. T., Mai, T. T., Huynh, P., Tran, T. D., Thai, K. M., & Nguyen, Q. T. (2020). Structure-based discovery of interleukin-33 inhibitors: A pharmacophore modelling, molecular docking, and molecular dynamics simulation approach. SAR and QSAR in Environmental Research, 31(12), 883–904. https://doi.org/10.1080/1062936X.2020.1837239
  • Le, M. T., Phan, T. V., Tran-Nguyen, V. K., Tran, T. D., & Thai, K. M. (2021). Prediction model of human ABCC2/MRP2 efflux pump inhibitors: A QSAR study. Molecular Diversity, 25(2), 741–751. https://doi.org/10.1007/s11030-020-10047-9
  • LeadIT. (2011). LeadIT, version 2.0.2. BioSolveIT-GmbH. https://www.biosolveit.de/
  • Lindahl, Abraham, H., & van der, S. (2021). GROMACS 2020.6 manual. Version 2020.6 [software]. Zenodo. Mar 4. [cited 2022 Apr 20]. https://doi.org/10.5281/zenodo.4576060
  • Machado, D., Fernandes, L., Costa, S. S., Cannalire, R., Manfroni, G., Tabarrini, O., Couto, I., Sabatini, S., & Viveiros, M. (2017). Mode of action of the 2-phenylquinoline efflux inhibitor PQQ4R against Escherichia coli. PeerJ. 5, e3168. https://doi.org/10.7717/peerj.3168
  • Mai, T. T., Nguyen, P. G., Le, M.-T., Tran, T.-D., Huynh, P. N. H., Trinh, D.-T T., Nguyen, Q.-T., & Thai, K.-M. (2022). Discovery of small molecular inhibitors for interleukin-33/ST2 protein–protein interaction: A virtual screening, molecular dynamics simulations and binding free energy calculations. Molecular Diversity, 26(5), 2659–2678. https://doi.org/10.1007/s11030-021-10359-4
  • Molecular Operating Environment (MOE) (2016). 2015.10. Version 2015.10 [software]. Chemical Computing Group ULC. [cited 2022 Apr 20]. https://www.chemcomp.com/index.htm
  • Mosolygó, T., Kincses, A., Csonka, A., Tönki, Á. S., Witek, K., Sanmartín, C., Marć, M. A., Handzlik, J., Kieć-Kononowicz, K., Domínguez-Álvarez, E., & Spengler, G. (2019). Selenocompounds as novel antibacterial agents and bacterial efflux pump inhibitors. Molecules, 24(8), 1487. https://doi.org/10.3390/molecules24081487
  • Mowla, R., Wang, Y., Ma, S., & Venter, H. (2018). Kinetic analysis of the inhibition of the drug efflux protein AcrB using surface plasmon resonance. Biochimica et Biophysica Acta. Biomembranes, 1860(4), 878–886. https://doi.org/10.1016/j.bbamem.2017.08.024
  • Nakashima, R., Sakurai, K., Yamasaki, S., Hayashi, K., Nagata, C., Hoshino, K., Onodera, Y., Nishino, K., & Yamaguchi, A. (2013). Structural basis for the inhibition of bacterial multidrug exporters. Nature, 500(7460), 102–106. https://doi.org/10.1038/nature12300
  • Nakashima, R., Sakurai, K., Yamasaki, S., Nishino, K., & Yamaguchi, A. (2011). Structures of the multidrug exporter AcrB reveal a proximal multisite drug-binding pocket. Nature, 480(7378), 565–569. https://doi.org/10.1038/nature10641
  • Ngo, T. D., Tran, T. D., Le, M. T., & Thai, K. M. (2016). Computational predictive models for P-glycoprotein inhibition of in-house chalcone derivatives and drug-bank compounds. Molecular Diversity, 20(4), 945–961. https://doi.org/10.1007/s11030-016-9688-5
  • Nguyen, S. T., Kwasny, S. M., Ding, X., Cardinale, S. C., McCarthy, C. T., Kim, H.-S., Nikaido, H., Peet, N. P., Williams, J. D., Bowlin, T. L., & Opperman, T. J. (2015). Structure–activity relationships of a novel pyranopyridine series of Gram-negative bacterial efflux pump inhibitors. Bioorganic & Medicinal Chemistry, 23(9), 2024–2034. https://doi.org/10.1016/j.bmc.2015.03.016
  • Ohene-Agyei, T., Mowla, R., Rahman, T., & Venter, H. (2014). Phytochemicals increase the antibacterial activity of antibiotics by acting on a drug efflux pump. MicrobiologyOpen, 3(6), 885–896. https://doi.org/10.1002/mbo3.212
  • Onufriev, A., Bashford, D., & Case, D. A. (2004). Exploring protein native states and large-scale conformational changes with a modified generalized born model. Proteins, 55(2), 383–394. https://doi.org/10.1002/prot.20033
  • Opperman, T. J., & Nguyen, S. T. (2015). Recent advances toward a molecular mechanism of efflux pump inhibition. Frontiers in Microbiology, 6, 421. https://doi.org/10.3389/fmicb.2015.00421
  • Pal, A., & Tripathi, A. (2020). Quercetin inhibits carbapenemase and efflux pump activities among carbapenem-resistant Gram-negative bacteria. APMIS: Acta Pathologica, Microbiologica, et Immunologica Scandinavica, 128(3), 251–259. https://doi.org/10.1111/apm.13015
  • Parrinello, M., & Rahman, A. (1981). Polymorphic transitions in single crystals: A new molecular dynamics method. Journal of Applied Physics, 52(12), 7182–7190. https://doi.org/10.1063/1.328693
  • Pruneau, D., Roy, F., & Brown, N. (1990). Cardiovascular properties of LF 2.0254, a new potent vasoselective calcium channel blocker with a slow onset of action. Fundamental & Clinical Pharmacology, 4(2), 223–243. https://doi.org/10.1111/j.1472-8206.1990.tb00490.x
  • Roy, K., & Kar, S. (2014). The rm2 metrics and regression through origin approach: Reliable and useful validation tools for predictive QSAR models (Commentary on ‘Is regression through origin useful in external validation of QSAR models?’). European Journal of Pharmaceutical Sciences, 62, 111–114. https://doi.org/10.1016/j.ejps.2014.05.019
  • Roy, K., Kar, S., & Ambure, P. (2015). On a simple approach for determining applicability domain of QSAR models. Chemometrics and Intelligent Laboratory Systems, 145, 22–29. https://doi.org/10.1016/j.chemolab.2015.04.013
  • Shafie, A., Khan, S., Mohammad, T., Anjum, F., Hasan, G. M., Yadav, D. K., Hassan., & M. I., Zehra. (2021). Identification of phytoconstituents as potent inhibitors of casein kinase-1 alpha using virtual screening and molecular dynamics simulations. Pharmaceutics, 13(12), 2157. https://doi.org/10.3390/pharmaceutics13122157
  • Simoben, C. V., Ghazy, E., Zeyen, P., Darwish, S., Schmidt, M., Romier, C., Robaa, D., & Sippl, W. (2021). Binding Free Energy (BFE) calculations and Quantitative Structure–Activity Relationship (QSAR) analysis of Schistosoma mansoni histone deacetylase 8 (sm HDAC8) inhibitors. Molecules, 26(9), 2584. https://doi.org/10.3390/molecules26092584
  • Song, Y., Qin, R., Pan, X., Ouyang, Q., Liu, T., Zhai, Z., Chen, Y., Li, B., & Zhou, H. (2016). Design of new antibacterial enhancers based on AcrB’s structure and the evaluation of their antibacterial enhancement activity. International Journal of Molecular Sciences, 17(11), 1934. https://doi.org/10.3390/ijms17111934
  • Spengler, G., Takács, D., Horváth, A., Szabó, A. M., Riedl, Z., Hajós, G., Molnár, J., & Burián, K. (2014). Efflux pump inhibiting properties of racemic phenothiazine derivatives and their enantiomers on the bacterial AcrAB-TolC system. In Vivo (Athens, Greece), 28(6), 1071–1075.
  • Su, C. C., Nikaido, H., & Edward, W. Y. (2007). Ligand-transporter interaction in the AcrB multidrug efflux pump determined by fluorescence polarization assay. FEBS Letters, 581(25), 4972–4976. https://doi.org/10.1016/j.febslet.2007.09.035
  • Sybyl-X 2.0 Software. (2011). Version 2.0 [software]. Certara. Sep 30 [cited 2022 Apr 20]. https://www.certara.com/sybyl-x-software/
  • Tam, H.-K., Malviya, V. N., Foong, W.-E., Herrmann, A., Malloci, G., Ruggerone, P., Vargiu, A. V., & Pos, K. M. (2020). Binding and transport of carboxylated drugs by the multidrug transporter AcrB. Journal of Molecular Biology, 432(4), 861–877. https://doi.org/10.1016/j.jmb.2019.12.025
  • Thai, K. M., Ngo, T. D., Phan, T. V., Tran, T. D., Nguyen, N. V., Nguyen, T. H., & Le, M. T. (2015). Virtual screening for novel Staphylococcus aureus NorA efflux pump inhibitors from natural products. Medicinal Chemistry (Shariqah (United Arab Emirates), 11(2), 135–155. https://doi.org/10.2174/1573406410666140902110903
  • Thanos, C. D., DeLano, W. L., & Wells, J. A. (2006). Hot-spot mimicry of a cytokine receptor by a small molecule. Proceedings of the National Academy of Sciences of the United States of America, 103(42), 15422–15427. https://doi.org/10.1073/pnas.0607058103
  • The PyMOL Molecular Graphics System. (2017). Version 2.0 [software]. Schrödinger, LLC [cite 2022 Dec 01]. https://pymol.org/2/
  • Tiu, C., Tzankov, A., Plummer, R., Rulach, R., Vivanco, I., Mulholland, P.J, Gurel, B., Figueiredo, I., Haris, N. Md, Bachmann, F., Engelhardt, M., Kaindl, T, Lane, H., Litherland, K., Pognan, C., Berezowska, S., Evan, J., Kristeleit, R., Lopez, J.S., Anderson, S. (2020). 382P The potential utility of end-binding protein 1 (EB1) as response-predictive biomarker for lisavanbulin: Final results from a phase I study of lisavanbulin (BAL101553) in adult patients with recurrent glioblastoma (GBM). Annals of Oncology, 31, S404. https://doi.org/10.1016/annonc/annonc269
  • TTClust. (2021). tubiana/TTClust, version 4.9.0. Zenodo. https://doi.org/10.5281/zenodo.4583625
  • Tubiana, T., Carvaillo, J.-C., Boulard, Y., & Bressanelli, S. (2018). TTClust: A versatile molecular simulation trajectory clustering program with graphical summaries. Journal of Chemical Information and Modeling, 58(11), 2178–2182. https://doi.org/10.1021/acs.jcim.8b00512
  • Valdés-Tresanco, M. S., Valdés-Tresanco, M. E., Valiente, P. A., & Moreno, E. (2021). gmx_MMPBSA: A new tool to perform end-state free energy calculations with GROMACS. Journal of Chemical Theory and Computation, 17(10), 6281–6291. https://doi.org/10.1021/acs.jctc.1c00645
  • Viveiros, M., Martins, A., Paixão, L., Rodrigues, L., Martins, M., Couto, I., Fähnrich, E., Kern, W. V., & Amaral, L. (2008). Demonstration of intrinsic efflux activity of Escherichia coli K-12 AG100 by an automated ethidium bromide method. International Journal of Antimicrobial Agents, 31(5), 458–462. https://doi.org/10.1016/j.ijantimicag.2007.12.015
  • Wang, E., Sun, H., Wang, J., Wang, Z., Liu, H., Zhang, J. Z., & Hou, T. (2019). End-point binding free energy calculation with MM/PBSA and MM/GBSA: Strategies and applications in drug design. Chemical Reviews, 119(16), 9478–9508. https://doi.org/10.1021/acs.chemrev.9b00055
  • Wang, Y., Mowla, R., Ji, S., Guo, L., De Barros Lopes, M. A., Jin, C., Song, D., Ma, S., & Venter, H. (2018). Design, synthesis and biological activity evaluation of novel 4-subtituted 2-naphthamide derivatives as AcrB inhibitors. European Journal of Medicinal Chemistry, 143, 699–709. https://doi.org/10.1016/j.ejmech.2017.11.102
  • Whalen, K. E., Poulson-Ellestad, K. L., Deering, R. W., Rowley, D. C., & Mincer, T. J. (2015). Enhancement of antibiotic activity against multidrug-resistant bacteria by the efflux pump inhibitor 3, 4-dibromopyrrole-2, 5-dione isolated from a Pseudoalteromonas sp. Journal of Natural Products, 78(3), 402–412. https://doi.org/10.1021/np500775e
  • Weka. (2016). Weka, version 3.8. The WEKA Workbench. https://waikato.github.io/weka-wiki/
  • Witten, I. H., Frank, E., Hall, M. A., & Pal, C. J. (2005). Weka (version 3.8). The WEKA Workbench. https://waikato.github.io/weka-wiki/
  • World Health Organization. (2019). New report calls for urgent action to avert antimicrobial resistance crisis 2019. WHO. [cited 2022 Apr 20]. https://www.who.int/news/item/29-04-2019-new-report-calls-for-urgent-action-to-avert-antimicrobial-resistance-crisis
  • Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., Chen, X., Hou, T., & Cao, D. (2021). ADMETlab 2.0: An integrated online platform for accurate and comprehensive predictions of ADMET properties. Nucleic Acids Research, 49(W1), W5–W14. https://doi.org/10.1093/nar/gkab255
  • Yilmaz, S., Altinkanat-Gelmez, G., Bolelli, K., Guneser-Merdan, D., Ufuk Over-Hasdemir, M., Aki-Yalcin, E., & Yalcin, I. (2015). Binding site feature description of 2-substituted benzothiazoles as potential AcrAB-TolC efflux pump inhibitors in E. coli. SAR and QSAR in Environmental Research, 26(10), 853–871. https://doi.org/10.1080/1062936X.2015.1106581
  • Zoete, V., Cuendet, M. A., Grosdidier, A., & Michielin, O. (2011). SwissParam: A fast force field generation tool for small organic molecules. Journal of Computational Chemistry, 32(11), 2359–2368. https://doi.org/10.1002/jcc.21816

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.