316
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Bioactive plantaricins as potent anti-cancer drug candidates: double docking, molecular dynamics simulation and in vitro cytotoxicity analysis

, , ORCID Icon, & ORCID Icon
Pages 13605-13615 | Received 26 Aug 2022, Accepted 02 Feb 2023, Published online: 12 Feb 2023

References

  • Agrawal, P., Bhagat, D., Mahalwal, M., Sharma, N., & Raghava, G. P. S. (2021). AntiCP 2.0: An updated model for predicting anticancer peptides. Briefings in Bioinformatics, 22, 3–bbaa153. https://doi.org/10.1093/bib/bbaa153.
  • Al-Khafaji, K., & Tok, T. T. (2021). Amygdalin as multitarget anticancer drug against targets of cell division cycle: Double docking and molecular dynamics simulation. Journal of Biomolecular Structure & Dynamics, 39(6), 1965–1974.
  • Amin, K. M., Syam, Y. M., Anwar, M. M., Ali, H. I., Abdel-Ghani, T. M., & Serry, A. M. (2018). Synthesis and molecular docking study of new benzofuran and furo[3,2-g]chromone-based cytotoxic agents against breast cancer and p38α MAP kinase inhibitors. Bioorganic Chemistry, 76, 487–500. https://doi.org/10.1016/j.bioorg.2017.12.029
  • Anwar, F., Altayb, H. N., Al-Abbasi, F. A., Al-Malki, A. L., Kamal, M. A., & Kumar, V. (2021). Antiviral effects of probiotic metabolites on COVID-19. Journal of Biomolecular Structure & Dynamics, 39(11), 4175–4184. https://doi.org/10.1080/07391102.2020.1775123
  • Arias, M., Haney, E. F., Hilchie, A. L., Corcoran, J. A., Hyndman, M. E., Hancock, R. E. W., & Vogel, H. J. (2020). Selective anticancer activity of synthetic peptides derived from the host defence peptide tritrpticin. Biochimica et Biophysica Acta. Biomembranes, 1862(8), 183228. https://doi.org/10.1016/j.bbamem.2020.183228
  • Bahar, E., Han, S. Y., Kim, J. Y., & Yoon, H. (2022). Chemotherapy resistance: Role of mitochondrial and autophagic components. Cancers (Basel), 14(6), 1462. https://doi.org/10.3390/cancers14061462
  • Baindara, P., & Mandal, S. M. (2020). Bacteria and bacterial anticancer agents as a promising alternative for cancer therapeutics. Biochimie, 177, 164–189. https://doi.org/10.1016/j.biochi.2020.07.020
  • Balmeh, N., Mahmoudi, S., & Fard, N. A. (2021). Manipulated bio antimicrobial peptides from probiotic bacteria as proposed drugs for COVID-19 disease. Informatics in Medicine Unlocked, 23, 100515. https://doi.org/10.1016/j.imu.2021.100515
  • Basith, S., Manavalan, B., Shin, T. H., & Lee, G. (2020). Machine intelligence in peptide therapeutics: A next-generation tool for rapid disease screening. Medicinal Research Reviews, 40(4), 1276–1314.
  • Berman, H. M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T. N., Weissig, H., Shindyalov, I. N., & Bourne, P. E. (2000). The protein data bank. Nucleic Acids Research, 28(1), 235–242. https://doi.org/10.1093/nar/28.1.235
  • Chen, Y., Chen, X., Luo, G., Zhang, X., Lu, F., Qiao, L., He, W., Li, G., & Zhang, Y. (2018). Discovery of potential inhibitors of squalene synthase from Traditional Chinese Medicine based on virtual screening and in vitro evaluation of lipid-lowering effect. Molecules, 23(5), 1040. https://doi.org/10.3390/molecules23051040
  • Cheng, F., Li, W., Zhou, Y., Shen, J., Wu, Z., Liu, G., Lee, P. W., & Tang, Y. (2012). admetSAR: A comprehensive source and free tool for assessment of chemical ADMET properties. Journal of Chemical Information and Modeling, 52(11), 3099–3105. https://doi.org/10.1021/ci300367a
  • Chen, F., Wang, Z., Wang, C., Xu, Q., Liang, J., Xu, X., Yang, J., Wang, C., Jiang, T., & Yu, R. (2017). Application of reverse docking for target prediction of marine compounds with anti-tumor activity. Journal of Molecular Graphics & Modelling, 77, 372–377. https://doi.org/10.1016/j.jmgm.2017.09.015
  • Copolovici, D. M., Langel, K., Eriste, E., & Langel, Ü. (2014). Cell-penetrating peptides: Design, synthesis, and applications. ACS Nano, 8(3), 1972–1994. https://doi.org/10.1021/nn4057269
  • Daina, A., Michielin, O., & Zoete, V. (2017). SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Scientific Reports, 7, 42717. https://doi.org/10.1038/srep42717
  • Das, D., & Goyal, A. (2014). Characterization of a noncytotoxic bacteriocin from probiotic Lactobacillus plantarum DM5 with potential as a food preservative. Food & Function, 5(10), 2453–2462. https://doi.org/10.1039/c4fo00481g
  • Doak, B. C., & Kihlberg, J. (2017). Drug discovery beyond the rule of 5 - Opportunities and challenges. Expert Opinion on Drug Discovery, 12(2), 115–119. Feb https://doi.org/10.1080/17460441.2017.1264385
  • El-Meguid, E. A. A., Moustafa, G. O., Awad, H. M., Zaki, E. R., & Nossier, E. S. (2021). Novel benzothiazole hybrids targeting EGFR: Design, synthesis, biological evaluation and molecular docking studies. Journal of Molecular Structure, 1240, 130595. https://doi.org/10.1016/j.molstruc.2021.130595
  • Erol, I., Kotil, S. E., Fidan, O., Yetiman, A. E., Durdagi, S., & Ortakci, F. (2021). In Silico analysis of bacteriocins from lactic acid bacteria against SARS-CoV-2. Probiotics and Antimicrobial Proteins, 27, 1–13. https://doi.org/10.1007/s12602-021-09879-0
  • Fathizadeh, H., Saffari, M., Esmaeili, D., Moniri, R., & Kafil, H. S. (2021). Bacteriocins: New potential therapeutic candidates in cancer therapy. Current Molecular Medicine, 21(3), 211–220. https://doi.org/10.2174/1566524020999200817113730
  • Ferlay, J., Colombet, M., Soerjomataram, I., Parkin, D. M., Piñeros, M., Znaor, A., & Bray, F. (2021). Cancer statistics for the year 2020: An overview. International Journal of Cancer, 149(4), 778–789. https://doi.org/10.1002/ijc.33588
  • Gasteiger, E., Hoogland, C., Gattiker, A., Duvaud, S., Wilkins, M. R., Appel, R. D., & Bairoch, A. (2005). Protein identification and analysis tools on the Expasy server. In: J. M. Walker (Ed.), The proteomics protocols handbook (pp. 571–607). Humana Press.
  • Hammami, R., Zouhir, A., Le Lay, C., Ben Hamida, J., & Fliss, I. (2010). BACTIBASE second release: A database and tool platform for bacteriocin characterization. BMC Microbiology, 10, 22. https://doi.org/10.1186/1471-2180-10-22
  • Hoskin, D. W., & Ramamoorthy, A. (2008). Studies on anticancer activities of antimicrobial peptides. Biochimica et Biophysica Acta, 1778(2), 357–375. https://doi.org/10.1016/j.bbamem.2007.11.008
  • Hwang, J. S., Kim, S. G., Shin, T. H., Jang, Y. E., Kwon, D. H., & Lee, G. (2022). Development of anticancer peptides using artificial intelligence and combinational therapy for cancer therapeutics. Pharmaceutics, 14(5), 997. https://doi.org/10.3390/pharmaceutics14050997
  • Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M., Ronneberger, O., Tunyasuvunakool, K., Bates, R., Žídek, A., Potapenko, A., Bridgland, A., Meyer, C., Kohl, S. A. A., Ballard, A. J., Cowie, A., Romera-Paredes, B., Nikolov, S., Jain, R., Adler, J., … Hassabis, D. (2021). Highly accurate protein structure prediction with AlphaFold. Nature, 596(7873), 583–589. https://doi.org/10.1038/s41586-021-03819-2
  • Kassambara, A. (2017). Practical Guide to Principal Component Methods in R: PCA, M (CA), FAMD, MFA, HCPC, factoextra. vol. 2, STHDA. http://www.sthda.com/english/rpkgs/factoextra.
  • Kim, S., Chen, J., Cheng, T., Gindulyte, A., He, J., He, S., Li, Q., Shoemaker, B. A., Thiessen, P. A., Yu, B., Zaslavsky, L., Zhang, J., & Bolton, E. E. (2021). PubChem in 2021: New data content and improved web interfaces. Nucleic Acids Research, 49(D1), D1388–D1395. https://doi.org/10.1093/nar/gkaa971
  • Klejborowska, G., Urbaniak, A., Maj, E., Preto, J., Moshari, M., Wietrzyk, J., Tuszynski, J. A., Chambers, T. C., & Huczyński, A. (2020). Synthesis, biological evaluation and molecular docking studies of new amides of 4-chlorothiocolchicine as anticancer agents. Bioorganic Chemistry, 97, 103664. https://doi.org/10.1016/j.bioorg.2020.103664
  • Lübeck, M., & Lübeck, P. S. (2019). Application of lactic acid bacteria in green biorefineries. FEMS Microbiology Letters, 366(3), fnz024. https://doi.org/10.1093/femsle/fnz024
  • Nallar, S. C., Xu, D. Q., & Kalvakolanu, D. V. (2017). Bacteria and genetically modified bacteria as cancer therapeutics: Current advances and challenges. Cytokine, 89, 160–172. https://doi.org/10.1016/j.cyto.2016.01.002
  • Niveshika, Verma, E., Maurya, S. K., Mishra, R., & Mishra, A. K. (2017). The combined use of in silico, in vitro, and in vivo analyses to assess anti-cancerous potential of a bioactive compound from cyanobacterium Nostoc sp. MGL001. Frontiers in Pharmacology, 8(873):pp 1-15. https://doi.org/10.3389/fphar.2017.00873
  • Park, N. H., Cheng, W., Lai, F., Yang, C., Florez, de, Sessions, P., Periaswamy, B., Wenhan, Chu, C., Bianco, S., Liu, S., Venkataraman, S., Chen, Q., Yang, Y. Y., & Hedrick, J. L. (2018). Addressing drug resistance in cancer with macromolecular chemotherapeutic agents. Journal of the American Chemical Society, 140(12), 4244–4252. https://doi.org/10.1021/jacs.7b11468
  • Perez, R. H., Zendo, T., & Sonomoto, K. (2014). Novel bacteriocins from lactic acid bacteria (LAB): Various structures and applications. Microbial Cell Factories, 13 Suppl 1(Suppl 1), S3. https://doi.org/10.1186/1475-2859-13-S1-S3
  • Raguz, S., & Yagüe, E. (2008). Resistance to chemotherapy: New treatments and novel insights into an old problem. British Journal of Cancer, 99(3), 387–391. https://doi.org/10.1038/sj.bjc.6604510
  • Rodrigues, G., Silva, G. G. O., Buccini, D. F., Duque, H. M., Dias, S. C., & Franco, O. L. (2019). Bacterial proteinaceous compounds with multiple activities toward cancers and microbial infection. Frontiers in Microbiology, 10(1690), 1-13. https://doi.org/10.3389/fmicb.2019.01690
  • Rolston, K. V. (2017). Infections in cancer patients with solid tumors: A review. Infectious Diseases and Therapy, 6(1), 69–83. https://doi.org/10.1007/s40121-017-0146-1
  • Salo-Ahen, O. M. H., Alanko, I., Bhadane, R., Bonvin, A. M. J. J., Honorato, R. V., Hossain, S., Juffer, A. H., Kabedev, A., Lahtela-Kakkonen, M., Larsen, A. S., Lescrinier, E., Marimuthu, P., Mirza, M. U., Mustafa, G., Nunes-Alves, A., Pantsar, T., Saadabadi, A., Singaravelu, K., & Vanmeert, M. (2021). Molecular dynamics simulations in drug discovery and pharmaceutical development. Processes, 9(1), 71. https://doi.org/10.3390/pr9010071
  • Santos, C. B. R., Santos, K. L. B., Cruz, J. N., Leite, F. H. A., Borges, R. S., Taft, C. A., Campos, J. M., & Silva, C. H. T. P. (2021). Molecular modeling approaches of selective adenosine receptor type 2A agonists as potential anti-inflammatory drugs. Journal of Biomolecular Structure & Dynamics, 39(9), 3115–3127. https://doi.org/10.1080/07391102.2020.1761878
  • Schaduangrat, N., Nantasenamat, C., Prachayasittikul, V., & Shoombuatong, W. (2019). ACPred: A computational tool for the prediction and analysis of anticancer peptides. Molecules, 24(10), 1973. https://doi.org/10.3390/molecules24101973
  • Shoombuatong, W., Schaduangrat, N., & Nantasenamat, C. (2018). Unraveling the bioactivity of anticancer peptides as deduced from machine learning. EXCLI Journal, 17, 734–752. https://doi.org/10.17179/excli2018-1447
  • Sibuh, B. Z., Khanna, S., Taneja, P., Sarkar, P., & Taneja, N. K. (2021). Molecular docking, synthesis and anticancer activity of thiosemicarbazone derivatives against MCF-7 human breast cancer cell line. Life Sciences, 273, 119305. https://doi.org/10.1016/j.lfs.2021.119305
  • Siegel, R. L., Miller, K. D., Fuchs, H. E., & Jemal, A. (2022). Cancer statistics, 2022. CA: A Cancer Journal for Clinicians, 72(1), 7–33. https://doi.org/10.3322/caac.21708
  • Silverman, R. B., & Holladay, M. W. (2014). The Organic Chemistry of Drug Design and Drug Action (3rd ed.), Academic Press.
  • Skjærven, L., Yao, X.-Q., Scarabelli, G., & Grant, B. J. (2014). Integrating protein structural dynamics and evolutionary analysis with Bio3D. BMC Bioinformatics, 15(1), 399. https://doi.org/10.1186/s12859-014-0399-6
  • Song, S., Vuai, M. S., & Zhong, M. (2018). The role of bacteria in cancer therapy - enemies in the past, but allies at present. Infect Agent Cancer, 13, 9. https://doi.org/10.1186/s13027-018-0180-y
  • Sung, H., Ferlay, J., Siegel, R. L., Laversanne, M., Soerjomataram, I., Jemal, A., & Bray, F. (2021). Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: A Cancer Journal for Clinicians, 71(3), 209–249. https://doi.org/10.3322/caac.21660
  • Tahlan, S., Kumar, S., Ramasamy, K., Lim, S. M., Shah, S. A. A., Mani, V., & Narasimhan, B. (2019). In-silico molecular design of heterocyclic benzimidazole scaffolds as prospective anticancer agents. BMC Chemistry, 13(1), 90. https://doi.org/10.1186/s13065-019-0608-5
  • Trott, O., & Olson, A. J. (2010). AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal of Computational Chemistry, 31(2), 455–461. https://doi.org/10.1002/jcc.21334
  • Vieco-Saiz, N., Belguesmia, Y., Raspoet, R., Auclair, E., Gancel, F., Kempf, I., & Drider, D. (2019). Benefits and inputs from lactic acid bacteria and their bacteriocins as alternatives to antibiotic growth promoters during food-animal production. Frontiers in Microbiology, 10, 57. https://doi.org/10.3389/fmicb.2019.00057
  • Volkamer, A., Kuhn, D., Grombacher, T., Rippmann, F., & Rarey, M. (2012). Combining global and local measures for structure-based druggability predictions. Journal of Chemical Information and Modeling, 52(2), 360–372. https://doi.org/10.1021/ci200454v
  • Wang, Y., Qin, Y., Xie, Q., Zhang, Y., Hu, J., & Li, P. (2018). Purification and characterization of plantaricin LPL-1, a novel class IIa Bacteriocin produced by Lactobacillus plantarum LPL-1 isolated from fermented fish. Frontiers in Microbiology, 9, 2276. https://doi.org/10.3389/fmicb.2018.02276
  • Wang, X., Zhang, H., & Chen, X. (2019). Drug resistance and combating drug resistance in cancer. Cancer Drug Resistance (Alhambra, Calif.), 2(2), 141–160. https://doi.org/10.20517/cdr.2019.10
  • Waterhouse, A., Bertoni, M., Bienert, S., Studer, G., Tauriello, G., Gumienny, R., Heer, F. T., de Beer, T. A. P., Rempfer, C., Bordoli, L., Lepore, R., & Schwede, T. (2018). SWISS-MODEL: Homology modelling of protein structures and complexes. Nucleic Acids Research, 46(W1), W296–W303. https://doi.org/10.1093/nar/gky427
  • Yang, Y. F., Chang, Y. C., Jan, Y. H., Yang, C. J., Huang, M. S., & Hsiao, M. (2020). Squalene synthase promotes the invasion of lung cancer cells via the osteopontin/ERK pathway. Oncogenesis, 9(8), 78. https://doi.org/10.1038/s41389-020-00262-2
  • Yang, Y.-F., Jan, Y.-H., Liu, Y.-P., Yang, C.-J., Su, C.-Y., Chang, Y.-C., Lai, T.-C., Chiou, J., Tsai, H.-Y., Lu, J., Shen, C.-N., Shew, J.-Y., Lu, P.-J., Lin, Y.-F., Huang, M.-S., & Hsiao, M. (2014). Squalene synthase induces tumor necrosis factor receptor 1 enrichment in lipid rafts to promote lung cancer metastasis. American Journal of Respiratory and Critical Care Medicine, 190(6), 675–687. https://doi.org/10.1164/rccm.201404-0714OC

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.