143
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Prediction of dual NF-κB/IκB inhibitors using an integrative in-silico approaches

ORCID Icon, , &
Pages 14164-14178 | Received 11 Mar 2022, Accepted 04 Feb 2023, Published online: 15 Feb 2023

References

  • Abraham, M., van der Spoel, D., Lindahl, E., & Hess, B. (2019). The GROMACS development team GROMACS user mManual. Version 2019. www.gromacs.org.
  • Aher, N. G., Park, J. W., Park, B. H., Kim, C. K., Han, I. O., & Cho, H. (2016). Ethylenedisalicylic Acid Derivatives as Dual Inhibitors of PTP1B and IKKβ and their Antiobesity and Antidiabetic Effects in Mice. Bulletin of the Korean Chemical Society, 37(6), 855–863. https://doi.org/10.1002/bkcs.10786.
  • Biswas, D. K., Dai, S.-C., Cruz, A., Weiser, B., Graner, E., & Pardee, A. B. (2001). The nuclear factor kappa B (NF-κB): A potential therapeutic target for estrogen receptor negative breast cancers. Proceedings of the National Academy of Sciences, 98(18), 10386–10391. https://doi.org/10.1073/pnas.151257998.
  • Biswas, D. K., Martin, K. J., McAlister, C., Cruz, A. P., Graner, E., Dai, S.-C., & Pardee, A. B. (2003). Apoptosis caused by chemotherapeutic inhibition of nuclear factor-κB activation. Cancer Research, 63(2), 290–295.
  • Biswas, D. K., Shi, Q., Baily, S., Strickland, I., Ghosh, S., Pardee, A. B., & Iglehart, J. D. (2004). NF-κB activation in human breast cancer specimens and its role in cell proliferation and apoptosis. Proceedings of the National Academy of Sciences, 101(27), 10137–10142. https://doi.org/10.1073/pnas.0403621101.
  • Blackwell, T. S., & Christman, J. W. (1997). The role of nuclear factor-κ B in cytokine gene regulation. American Journal of Respiratory Cell and Molecular Biology, 17(1), 3–9. https://doi.org/10.1165/ajrcmb.17.1.f132
  • Brown, M., Cohen, J., Arun, P., Chen, Z., & Van Waes, C. (2008). NF-kappaB in carcinoma therapy and prevention. Expert Opinion on Therapeutic Targets, 12(9), 1109–1122. https://doi.org/10.1517/14728222.12.9.1109
  • Chen, J. (2016). The cell-cycle arrest and apoptotic functions of p53 in tumor initiation and progression. Cold Spring Harbor Perspectives in Medicine, 6(3), a026104. https://doi.org/10.1101/cshperspect.a026104
  • Cho, A. E., Guallar, V., Berne, B. J., & Friesner, R. (2005). Importance of accurate charges in molecular docking: Quantum mechanical/molecular mechanical (QM/MM) approach. Journal of Computational Chemistry, 26(9), 915–931. https://doi.org/10.1002/jcc.20222.
  • Christian, F., Smith, E. L., & Carmody, R. J. (2016). The regulation of NF-κB subunits by phosphorylation. Cells, 5(1), 12. https://doi.org/10.3390/cells5010012
  • Cornell, W. D., Cieplak, P., Bayly, C. I., Gould, I. R., Merz, K. M., Ferguson, D. M., Fox, T., Caldwell, J. W., & Kollman, P. A. (1996). A second generation force field for the simulation of proteins, nucleic acids, and organic molecules. Journal of the American Chemical Society, 117(9), 5179–5197. https://doi.org/10.1021/ja00124a002.
  • Crespo, I., Garcia-Mediavilla, M. V., Gutiérrez, B., Sánchez-Campos, S., Tunon, M. J., & González-Gallego, J. (2008). A comparison of the effects of kaempferol and quercetin on cytokine-induced pro-inflammatory status of cultured human endothelial cells. The British Journal of Nutrition, 100(5), 968–976. https://doi.org/10.1017/S0007114508966083
  • Da Silva, A. W. S., & Vranken, W. F. (2012). ACPYPE-Antechamber python parser interface. BMC Research Notes, 5(1), 1–8. http://www.ccpn.ac.uk/acpype.
  • Filimonov, D., Lagunin, A., Gloriozova, T., Rudik, A., Druzhilovskii, D., Pogodin, P., & Poroikov, V. (2014). Prediction of the biological activity spectra of organic compounds using the PASS online web resource. Chemistry of Heterocyclic Compounds, 50(3), 444–457. https://doi.org/10.1007/s10593-014-1496-1.
  • Francescone, R., Hou, V., & Grivennikov, S. I. (2015). Cytokines, IBD, and colitis-associated cancer. Inflammatory Bowel Diseases, 21(2), 409–418. https://doi.org/10.1097/MIB.0000000000000236
  • Giridharan, S., & Srinivasan, M. (2018). Mechanisms of NF-κB p65 and strategies for therapeutic manipulation. Journal of Inflammation Research, 11, 407–419. https://doi.org/10.2147/JIR.S140188
  • Huang, N., Kalyanaraman, C., Irwin, J. J., & Jacobson, M. P. (2006). Physics-based scoring of protein − ligand complexes: Enrichment of known inhibitors in large-scale virtual screening. Journal of Chemical Information and Modeling, 46(1), 243–253. https://doi.org/10.1021/ci0502855
  • Humphrey, W., Dalke, A., & Schulten, K. (1996). VMD: Visual molecular dynamics. Journal of Molecular Graphics, 14(1), 33–38. https://doi.org/10.1016/0263-7855(96)00018-5
  • Imbert, V., & Peyron, J. F. (2017). NF-κB in hematological malignancies. Biomedicines, 5(2), 27. https://doi.org/10.3390/biomedicines5020027.
  • Jorgensen, W. L., Chandrasekhar, J., Madura, J. D., Impey, R. W., & Klein, M. L. (1983). Comparison of simple potential functions for simulating liquid water. The Journal of Chemical Physics, 79(2), 926–935. https://doi.org/10.1063/1.445869.
  • Jorgensen, W. L., Maxwell, D. S., & Tirado-Rives, J. (1996). Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids. Journal of the American Chemical Society, 118(45), 11225–11236. https://doi.org/10.1021/ja9621760.
  • Kanarek, N., London, N., Schueler-Furman, O., & Ben-Neriah, Y. (2010). Ubiquitination and degradation of the inhibitors of NF-kappaB. Cold Spring Harbor Perspectives in Biology, 2(2), a000166. https://doi.org/10.1101/cshperspect.a000166
  • Karin, M. (2009). NF-kappaB as a critical link between inflammation and cancer. Cold Spring Harbor Perspectives in Biology, 1(5), a000141–a000141. https://doi.org/10.1101/cshperspect.a000141
  • Khan, M. K., Ansari, I. A., Khan, M. S., & Arif, J. M. (2013). Dietary phytochemicals as potent chemotherapeutic agents against breast cancer: Inhibition of NF-κB pathway via molecular interactions in rel homology domain of its precursor protein p105. Pharmacognosy Magazine, 9(33), 51–57. https://doi.org/10.4103/0973-1296.108140.
  • Kim, S., Chen, J., Cheng, T., Gindulyte, A., He, J., He, S., Li, Q., Shoemaker, B. A., Thiessen, P. A., Yu, B., Zaslavsky, L., Zhang, J., & Bolton, E. E. (2021). PubChem in 2021: New data content and improved web interfaces. Nucleic Acids Research, 49(D1), D1388–D1395. https://doi.org/10.1093/nar/gkaa971.
  • Lawrence, T. (2009). The nuclear factor NF-κB pathway in inflammation. Cold Spring Harbor Perspectives in Biology, 1(6), a001651. https://doi.org/10.1101/cshperspect.a001651
  • Liu, S., Misquitta, Y. R., Olland, A., Johnson, M. A., Kelleher, K. S., Kriz, R., Lin, L. L., Stahl, M., & Mosyak, L. (2013). Crystal structure of a human IκB kinase β asymmetric dimer. The Journal of Biological Chemistry, 288(31), 22758–22767. https://doi.org/10.1074/jbc.M113.482596
  • Liu, T., Zhang, L., Joo, D., & Sun, S. C. (2017). NF-κB signaling in inflammation. Signal Transduction and Targeted Therapy, 2, 17023–17023. https://doi.org/10.1038/sigtrans.2017.23
  • Lyne, P. D., Lamb, M. L., & Saeh, J. C. (2006). Accurate prediction of the relative potencies of members of a series of kinase inhibitors using molecular docking and MM-GBSA scoring. Journal of Medicinal Chemistry, 49(16), 4805–4808. https://doi.org/10.1021/jm060522a
  • Massova, I., & Kollman, P. A. (2000). Combined molecular mechanical and continuum solvent approach (MM-PBSA/GBSA) to predict ligand binding. Perspectives in Drug Discovery and Design, 18(1), 113–135. https://doi.org/10.1023/A:1008763014207.
  • Morotti, A., Crivellaro, S., Panuzzo, C., Carrà, G., Guerrasio, A., & Saglio, G. (2017). IκB-α: At the crossroad between oncogenic and tumor-suppressive signals. Oncology Letters, 13(2), 531–534. https://doi.org/10.3892/ol.2016.5465
  • Müller, C. W., Rey, F. A., Sodeoka, M., Verdine, G. L., & Harrison, S. C. (1995). Structure of the NF-κB p50 homodimer bound to DNA. Nature, 373(6512), 311–317. https://doi.org/10.1038/373311a0
  • Nakshatri, H., Bhat-Nakshatri, P., Martin, D. A., Goulet, R. J., Jr., & Sledge, Jr, G. W. (1997). Constitutive activation of NF-kappaB during progression of breast cancer to hormone-independent growth. Molecular and Cellular Biology, 17(7), 3629–3639. https://doi.org/10.1128/MCB/17.7.3629.
  • Obexer, P., & Ausserlechner, M. J. (2014). X-linked inhibitor of apoptosis protein - a critical death resistance regulator and therapeutic target for personalized cancer therapy. Frontiers in Oncology, 4, 197–197. https://doi.org/10.3389/fonc.2014.00197
  • Oeckinghaus, A., & Ghosh, S. (2009). The NF-kappaB family of transcription factors and its regulation. Cold Spring Harbor Perspectives in Biology, 1(4), a000034. https://doi.org/10.1101/cshperspect.a000034
  • Paolino, M., Brindisi, M., Vallone, A., Butini, S., Campiani, G., Nannicini, C., Giuliani, G., Anzini, M., Lamponi, S., Giorgi, G., Sbardella, D., Ferraris, D. M., Marini, S., Coletta, M., Palucci, I., Minerva, M., Delogu, G., Pepponi, I., Goletti, D., … Brogi, S. (2018). Development of potent inhibitors of the Mycobacterium tuberculosis virulence factor Zmp1 and evaluation of their effect on mycobacterial survival inside macrophages. ChemMedChem. 13(5), 422–430. https://doi.org/10.1002/cmdc.201700759
  • Parameswari, P., & Devika, R. (2019). In silico molecular docking studies of quercetin compound against anti-inflammatory and anticancer proteins. Research Journal of Pharmacy and Technology, 12(11), 5305–5309. https://doi.org/10.5958/0974-360X.2019.00919.3
  • Parasuraman, S. (2011). Prediction of activity spectra for substances. Journal of Pharmacology & Pharmacotherapeutics, 2(1), 52–53. https://doi.org/10.4103/0976-500X.77119
  • Park, M. H., & Hong, J. T. (2016). Roles of NF-κB in cancer and inflammatory diseases and their therapeutic approaches. Cells, 5(2), 15. https://doi.org/10.3390/cells5020015.
  • Paul, A., Edwards, J., Pepper, C., & Mackay, S. (2018). Inhibitory-Κb kinase (IKK) α and nuclear factor-κB (NFκB)-inducing kinase (NIK) as anti-cancer drug targets. Cells, 7(10), 176.
  • Peng, C., Ouyang, Y., Lu, N., & Li, N. (2020). The NF-κB signaling pathway, the microbiota, and gastrointestinal tumorigenesis: Recent advances. Frontiers in Immunology, 11, 1387–1387. https://doi.org/10.3389/fimmu.2020.01387
  • QikProp (2015). QikProp Version 4.3. New York, NY: Schrödinger, LLC.
  • Release, S. (2015a). LigPrep version 3.3. version3.4. NewYork, NY: Schrodinger, LLC..
  • Release, S. (2015b). Epik 2015,Epik version 3.4. New York, NY: Schrodinger, LLC.
  • Rinkenbaugh, A. L., & Baldwin, A. S. (2016). The NF-κB pathway and cancer stem cells. Cells, 5(2), 16. https://doi.org/10.3390/cells5020016
  • Rivlin, N., Brosh, R., Oren, M., & Rotter, V. (2011). Mutations in the p53 tumor suppressor gene: Important milestones at the various steps of tumorigenesis. Genes & Cancer, 2(4), 466–474. https://doi.org/10.1177/1947601911408889
  • Schrödinger, L. (2015). Schrödinger release 2015–2: Glide, version 6.7. Schrödinger, LLC.
  • Shahbazi, S., Zakerali, T., Frycz, B., & Kaur, J. (2020). Impact of novel N-aryl substituted piperamide on NF-kappa B translocation as a potent anti-neuroinflammatory agent. Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie, 127, 110199. https://doi.org/10.1016/j.biopha.2020.110199
  • Protein Preparation Wizard. (2015). New York, NY: Schrodinger, LLC.
  • Xia, Y., Shen, S., & Verma, I. M. (2014). NF-κB, an active player in human cancers. Cancer Immunology Research, 2(9), 823–830. https://doi.org/10.1158/2326-6066.CIR-14-0112
  • Yu, H., Lin, L., Zhang, Z., Zhang, H., & Hu, H. (2020). Targeting NF-κB pathway for the therapy of diseases: Mechanism and clinical study. Signal Transduction and Targeted Therapy, 5(1), 1–23. https://doi.org/10.1038/s41392-020-00312-6.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.