589
Views
3
CrossRef citations to date
0
Altmetric
Research Articles

Design of multi-epitope based vaccine against Mycobacterium tuberculosis: a subtractive proteomics and reverse vaccinology based immunoinformatics approach

, &
Pages 14116-14134 | Received 24 Sep 2022, Accepted 02 Feb 2023, Published online: 12 Feb 2023

References

  • Abdi, S. A. H., Ali, A., Sayed, S. F., Ali, A., Abutahir, & Alam, P. (2022). Multi-epitope-based vaccine candidate for Monkeypox: An in silico approach. Vaccines, 10(9), 1564. https://doi.org/10.3390/vaccines10091564
  • Abraham, M. J., Murtola, T., Schulz, R., Páll, S., Smith, J. C., Hess, B., & Lindahl, E. (2015). GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX, 1-2, 19–25. https://doi.org/10.1016/j.softx.2015.06.001
  • Albutti, A. (2021). An integrated computational framework to design a multi-epitopes vaccine against Mycobacterium tuberculosis. Scientific Reports, 11(1), 1–18. https://doi.org/10.1038/s41598-021-01283-6
  • Andersen, P., & Doherty, T. M. (2005). The success and failure of BCG—Implications for a novel tuberculosis vaccine. Nature Reviews. Microbiology, 3(8), 656–662. https://doi.org/10.1038/nrmicro1211
  • Aslam, S., Ahmad, S., Noor, F., Ashfaq, U. A., Shahid, F., Rehman, A., Tahir Ul Qamar, M., Alatawi, E. A., Alshabrmi, F. M., Allemailem, K. S., & Lampiasi, N. (2021). Designing a multi-epitope vaccine against Chlamydia trachomatis by employing integrated core proteomics, immuno-informatics and in silico approaches. Biology, 10(10), 997. https://doi.org/10.3390/biology10100997
  • Ayyagari, V. S., Venkateswarulu, T. C., Abraham Peele, K., & Srirama, K. (2022). Design of a multi-epitope-based vaccine targeting M-protein of SARS-CoV2: an immunoinformatics approach. Journal of Biomolecular Structure & Dynamics, 40(7), 2963–2977. https://doi.org/10.1080/07391102.2020.1850357
  • Bibi, S., Ullah, I., Zhu, B., Adnan, M., Liaqat, R., Kong, W. B., & Niu, S. (2021). In silico analysis of epitope-based vaccine candidate against tuberculosis using reverse vaccinology. Scientific Reports, 11(1), 1–16. https://doi.org/10.1038/s41598-020-80899-6
  • Bourai, N., Jacobs, W. R., & Narayanan, S. (2012). Deletion and overexpression studies on DacB2, a putative low molecular mass penicillin binding protein from Mycobacterium tuberculosis H 37Rv. Microbial Pathogenesis, 52(2), 109–116. https://doi.org/10.1016/j.micpath.2011.11.003
  • Bui, H. H., Sidney, J., Dinh, K., Southwood, S., Newman, M. J., & Sette, A. (2006). Predicting population coverage of T-cell epitope-based diagnostics and vaccines. BMC Bioinformatics, 7(1), 5. https://doi.org/10.1186/1471-2105-7-153
  • Chatterjee, N., Ojha, R., Khatoon, N., & Prajapati, V. K. (2018). Scrutinizing Mycobacterium tuberculosis membrane and secretory proteins to formulate multiepitope subunit vaccine against pulmonary tuberculosis by utilizing immunoinformatic approaches. International Journal of Biological Macromolecules, 118(Pt A), 180–188. https://doi.org/10.1016/j.ijbiomac.2018.06.080
  • Chen, L., Yang, J., Yu, J., Yao, Z., Sun, L., Shen, Y., & Jin, Q. (2005). VFDB: A reference database for bacterial virulence factors. Nucleic Acids Research, 33(Database issue), D325–D328. https://doi.org/10.1093/nar/gki008
  • Chiliza, T. E., Pillay, M., Naidoo, K., & Pillay, B. (2019). Immunoscreening of the M. tuberculosis F15/LAM4/KZN secretome library against TB patients′ sera identifies unique active-and latent-TB specific biomarkers. Tuberculosis (Edinburgh, Scotland), 115, 161–170. https://doi.org/10.1016/j.tube.2019.03.005
  • Chowdhury, U. F., Al Saba, A., Sufi, A. S., Khan, A. M., Sharmin, I., Sultana, A., & Islam, M. O. (2021). Subtractive proteomics approach to Unravel the druggable proteins of the emerging pathogen Waddlia chondrophila and drug repositioning on its MurB protein. Heliyon, 7(6), e07320. https://doi.org/10.1016/j.heliyon.2021.e07320
  • Dar, H. A., Waheed, Y., Najmi, M. H., Ismail, S., Hetta, H. F., Ali, A., & Muhammad, K. (2020). Multiepitope subunit vaccine design against COVID-19 based on the spike protein of SARS-CoV-2: an in silico analysis. Journal of Immunology Research, 2020, 1–15. https://doi.org/10.1155/2020/8893483
  • Davenne, T., & McShane, H. (2016). Why don’t we have an effective tuberculosis vaccine yet? Expert Review of Vaccines, 15(8), 1009–1013. https://doi.org/10.1586/14760584.2016.1170599
  • Dimitrov, I., Naneva, L., Doytchinova, I., & Bangov, I. (2014). AllergenFP: Allergenicity prediction by descriptor fingerprints. Bioinformatics (Oxford, England), 30(6), 846–851. https://doi.org/10.1093/bioinformatics/btt619
  • Doytchinova, I. A., & Flower, D. R. (2007). VaxiJen: A server for prediction of protective antigens, tumour antigens and subunit vaccines. BMC Bioinformatics, 8(1), 1–7. https://doi.org/10.1186/1471-2105-8-4
  • Ezaj, M. M. A., Junaid, M., Akter, Y., Nahrin, A., Siddika, A., Afrose, S. S., Nayeem, S. M. A., Haque, M. S., Moni, M. A., & Hosen, S. M. Z. (2022). Whole proteome screening and identification of potential epitopes of SARS-CoV-2 for vaccine design-an immunoinformatic, molecular docking and molecular dynamics simulation accelerated robust strategy. Journal of Biomolecular Structure & Dynamics, 40(14), 6477–6502. https://doi.org/10.1080/07391102.2021.1886171
  • Gasteiger, E., Hoogland, C., Gattiker, A., Duvaud, S., Wilkins, M. R., Appel, R. D., & Bairoch, A. (2005). Protein identification and analysis tools on the ExPASy server. The Proteomics Protocols Handbook, 571–607. https://doi.org/10.1385/1592598900
  • Ghaffari-Nazari, H., Tavakkol-Afshari, J., Jaafari, M. R., Tahaghoghi-Hajghorbani, S., Masoumi, E., & Jalali, S. A. (2015). Improving multi-epitope long peptide vaccine potency by using a strategy that enhances CD4+ T help in BALB/c mice. Plos One, 10(11), e0142563. https://doi.org/10.1371/journal.pone.0142563
  • Gong, W., Liang, Y., & Wu, X. (2018). The current status, challenges, and future developments of new tuberculosis vaccines. Human Vaccines & Immunotherapeutics, 14(7), 1697–1716. https://doi.org/10.1080/21645515.2018.1458806
  • Gong, W., Pan, C., Cheng, P., Wang, J., Zhao, G., & Wu, X. (2022). Peptide-based vaccines for tuberculosis. Frontiers in Immunology, 13 https://doi.org/10.3389/fimmu.2022.830497
  • Grote, A., Hiller, K., Scheer, M., Münch, R., Nörtemann, B., Hempel, D. C., & Jahn, D. (2005). JCat: A novel tool to adapt codon usage of a target gene to its potential expression host. Nucleic Acids Research, 33(Web Server issue), W526–W531. https://doi.org/10.1093/nar/gki376
  • Gupta, S. K., Padmanabhan, B. R., Diene, S. M., Lopez-Rojas, R., Kempf, M., Landraud, L., & Rolain, J. M. (2014). ARG-ANNOT, a new bioinformatic tool to discover antibiotic resistance genes in bacterial genomes. Antimicrobial Agents and Chemotherapy, 58(1), 212–220. https://doi.org/10.1128/AAC.01310-13
  • Gupta, S., Kapoor, P., Chaudhary, K., Gautam, A., Kumar, R., & Raghava, G. P.; Open Source Drug Discovery Consortium. (2013). In silico approach for predicting toxicity of peptides and proteins. PloS One, 8(9), e73957. https://doi.org/10.1371/journal.pone.0073957
  • Heo, L., Park, H., & Seok, C. (2013). GalaxyRefine: Protein structure refinement driven by side-chain repacking. Nucleic Acids Research, 41(Web Server issue), W384–W388. https://doi.org/10.1093/nar/gkt458
  • Huang, Y., Niu, B., Gao, Y., Fu, L., & Li, W. (2010). CD-HIT Suite: A web server for clustering and comparing biological sequences. Bioinformatics (Oxford, England), 26(5), 680–682. https://doi.org/10.1093/bioinformatics/btq003
  • Hwang, W. H., Lee, W. K., Ryoo, S. W., Yoo, K. Y., & Tae, G. S. (2014). Expression, purification and improved antigenicity of the Mycobacterium tuberculosis PstS1 antigen for serodiagnosis. Protein Expression and Purification, 95, 77–83. https://doi.org/10.1016/j.pep.2013.11.011
  • Jalal, K., Abu-Izneid, T., Khan, K., Abbas, M., Hayat, A., Bawazeer, S., & Uddin, R. (2022). Identification of vaccine and drug targets in Shigella dysenteriae sd197 using reverse vaccinology approach. Scientific Reports, 12(1), 1–19. https://doi.org/10.1038/s41598-021-03988-0
  • López-Blanco, J. R., Aliaga, J. I., Quintana-Ortí, E. S., & Chacón, P. (2014). iMODS: Internal coordinates normal mode analysis server. Nucleic Acids Research, 42(Web Server issue), W271–W276. https://doi.org/10.1093/nar/gku339
  • Kim, D. E., Chivian, D., & Baker, D. (2004). Protein structure prediction and analysis using the Robetta server. Nucleic Acids Research, 32(Web Server issue), W526–W531. https://doi.org/10.1093/nar/gkh468
  • Kozakov, D., Hall, D. R., Xia, B., Porter, K. A., Padhorny, D., Yueh, C., Beglov, D., & Vajda, S. (2017). The ClusPro web server for protein-protein docking. Nature Protocols, 12(2), 255–278. https://doi.org/10.1038/nprot.2016.169
  • Krogh, A., Larsson, B., Von Heijne, G., & Sonnhammer, E. L. (2001). Predicting transmembrane protein topology with a hidden Markov model: Application to complete genomes. Journal of Molecular Biology, 305(3), 567–580. https://doi.org/10.1006/jmbi.2000.4315
  • Kumar, A., Thotakura, P. L., Tiwary, B. K., & Krishna, R. (2016). Target identification in Fusobacterium nucleatum by subtractive genomics approach and enrichment analysis of host-pathogen protein-protein interactions. BMC Microbiology, 16(1), 1–12. https://doi.org/10.1186/s12866-016-0700-0
  • Kumar, S., Kumari, K., & Azad, G. K. (2022). Emerging genetic diversity of SARS-CoV-2 RNA dependent RNA polymerase (RdRp) alters its B-cell epitopes. Biologicals: Journal of the International Association of Biological Standardization, 75, 29–36. https://doi.org/10.1016/j.biologicals.2021.11.002
  • Kumari, R., Kumar, R., & Lynn, A.; Open Source Drug Discovery Consortium. (2014). g_mmpbsa- A GROMACS tool for high-throughput MM-PBSA calculations. Journal of Chemical Information and Modeling, 54(7), 1951–1962. https://doi.org/10.1021/ci500020m
  • Kwofie, S. K., Dankwa, B., Odame, E. A., Agamah, F. E. A., Doe, L. P., Teye, J., Agyapong, O., Miller, III, W. A., Mosi, L., & Wilson, M. D. (2018). In silico screening of isocitrate lyase for novel anti-buruli ulcer natural products originating from Africa. Molecules, 23(7), 1550. https://doi.org/10.3390/molecules23071550
  • Larsen, M. V., Lundegaard, C., Lamberth, K., Buus, S., Lund, O., & Nielsen, M. (2007). Large-scale validation of methods for cytotoxic T-lymphocyte epitope prediction. BMC Bioinformatics, 8(1), 1–12. https://doi.org/10.1186/1471-2105-8-424
  • Lee, S., & Nguyen, M. T. (2015). Recent advances of vaccine adjuvants for infectious diseases. Immune Network, 15(2), 51–57. https://doi.org/10.4110/in.2015.15.2.51
  • Liu, H., Jiang, Y., Dou, X., Wang, H., Zhao, X., Zhang, W., Wan, L., Zhang, Z., Chen, C., & Wan, K. (2013). PstS1 polymorphisms of Mycobacterium tuberculosis strains may reflect ongoing immune evasion. Tuberculosis (Edinburgh, Scotland), 93(5), 475–481. https://doi.org/10.1016/j.tube.2013.05.003
  • Luo, H., Lin, Y., Gao, F., Zhang, C. T., & Zhang, R. (2014). DEG 10, an update of the database of essential genes that includes both protein-coding genes and noncoding genomic elements. Nucleic Acids Research, 42(Database issue), D574–D580. https://doi.org/10.1093/nar/gkt1131
  • Mahapatra, S. R., Sahoo, S., Dehury, B., Raina, V., Patro, S., Misra, N., & Suar, M. (2020). Designing an efficient multi-epitope vaccine displaying interactions with diverse HLA molecules for an efficient humoral and cellular immune response to prevent COVID-19 infection. Expert Review of Vaccines, 19(9), 871–885. https://doi.org/10.1080/14760584.2020.1811091
  • Malviya, D., Singh, U. B., Dehury, B., Singh, P., Kumar, M., Singh, S., Chaurasia, A., Yadav, M. K., Shankar, R., Roy, M., Rai, J. P., Mukherjee, A. K., Solanki, I. S., Kumar, A., Kumar, S., & Singh, H. V. (2022). Novel insights into understanding the molecular dialogues between Bipolaroxin and the Gα and Gβ subunits of the wheat heterotrimeric G-protein during host–pathogen interaction. Antioxidants, 11(9), 1754. https://doi.org/10.3390/antiox11091754
  • McGuffin, L. J., Bryson, K., & Jones, D. T. (2000). The PSIPRED protein structure prediction server. Bioinformatics (Oxford, England), 16(4), 404–405. https://doi.org/10.1093/bioinformatics/16.4.404
  • Mukherjee, S., Kundu, I., Askari, M., Barai, R. S., Venkatesh, K. V., & Idicula-Thomas, S. (2021). Exploring the druggable proteome of Candida species through comprehensive computational analysis. Genomics, 113(2), 728–739. https://doi.org/10.1016/j.ygeno.2020.12.040
  • Niu, C., Yu, D., Wang, Y., Ren, H., Jin, Y., Zhou, W., Li, B., Cheng, Y., Yue, J., Gao, Z., & Liang, L. (2013). Common and pathogen-specific virulence factors are different in function and structure. Virulence, 4(6), 473–482. https://doi.org/10.4161/viru.25730
  • Nogueira, W. G., Jaiswal, A. K., Tiwari, S., Ramos, R. T. J., Ghosh, P., Barh, D., Azevedo, V., & Soares, S. C. (2021). Computational identification of putative common genomic drug and vaccine targets in Mycoplasma genitalium. Genomics, 113(4), 2730–2743. https://doi.org/10.1016/j.ygeno.2021.06.011
  • Noor, F., Ahmad, S., Saleem, M., Alshaya, H., Qasim, M., Rehman, A., Ehsan, H., Talib, N., Saleem, H., Bin Jardan, Y. A., & Aslam, S. (2022). Designing a multi-epitope vaccine against Chlamydia pneumoniae by integrating the core proteomics, subtractive proteomics and reverse vaccinology-based immunoinformatics approaches. Computers in Biology and Medicine, 145, 105507. https://doi.org/10.1016/j.compbiomed.2022.105507
  • Oli, A. N., Obialor, W. O., Ositadimma Ifeanyichukwu, M., Odimegwu, D. C., Okoyeh, J. N., Emechebe, G. O., Adejumo, S. A., & Ibeanu, G. C. (2020). Immunoinformatics and vaccine development: An overview. ImmunoTargets and Therapy, 9, 13–30. https://doi.org/10.2147/ITT.S241064
  • Olowo-Okere, A., Ibrahim, Y. K. E., Olayinka, B. O., Mohammed, Y., Nabti, L. Z., Lupande-Mwenebitu, D., Rolain, J. M., & Diene, S. M. (2022). Genomic features of an isolate of Empedobacter falsenii harbouring a novel variant of metallo-β-lactamase, blaEBR-4 gene. Infection, Genetics and Evolution: Journal of Molecular Epidemiology and Evolutionary Genetics in Infectious Diseases, 98, 105234. https://doi.org/10.1016/j.meegid.2022.105234
  • Palatnik-de-Sousa, I., Wallace, Z. S., Cavalcante, S. C., Ribeiro, M. P. F., Silva, J., Cavalcante, R. C., Scheuermann, R. H., & Palatnik-de-Sousa, C. B. (2022). A novel vaccine based on SARS-CoV-2 CD4+ and CD8+ T cell conserved epitopes from variants Alpha to Omicron. Scientific Reports, 12(1), 1–21. https://doi.org/10.1038/s41598-022-21207-2
  • Pettersen, E. F., Goddard, T. D., Huang, C. C., Couch, G. S., Greenblatt, D. M., Meng, E. C., & Ferrin, T. E. (2004). UCSF Chimera—A visualization system for exploratory research and analysis. Journal of Computational Chemistry, 25(13), 1605–1612. https://doi.org/10.1002/jcc.20084
  • Potocnakova, L., Bhide, M., & Pulzova, L. B. (2016). An introduction to B-cell epitope mapping and in silico epitope prediction. Journal of Immunology Research, 2016, 6760830. https://doi.org/10.1155/2016/6760830
  • Pyasi, S., Sharma, V., Dipti, K., Jonniya, N. A., & Nayak, D. (2021). Immunoinformatics approach to design multi-epitope-subunit vaccine against bovine ephemeral fever disease. Vaccines, 9(8), 925. https://doi.org/10.3390/vaccines9080925
  • Laskowski, R. A., & Swindells, M. B. (2011). LigPlot+: Multiple ligand–protein interaction diagrams for drug discovery. Journal of Chemical Information and Modeling, 51, 2778–2786. https://doi.org/10.1021/ci200227u
  • Rajguru, T., Bora, D., & Modi, M. K. (2022). Identification of promising inhibitors for Plasmodium haemoglobinase Falcipain-2, using virtual screening, molecular docking, and MD simulation. Journal of Molecular Structure, 1248, 131427. https://doi.org/10.1016/j.molstruc.2021.131427
  • Rapin, N., Lund, O., Bernaschi, M., & Castiglione, F. (2010). Computational immunology meets bioinformatics: The use of prediction tools for molecular binding in the simulation of the immune system. PloS One, 5(4), e9862. https://doi.org/10.1371/journal.pone.0009862
  • Rashid, M., Saha, S., & Raghava, G. P. (2007). Support Vector Machine-based method for predicting subcellular localization of mycobacterial proteins using evolutionary information and motifs. BMC Bioinformatics, 8(1), 337–339. https://doi.org/10.1186/1471-2105-8-337
  • Soman, S. S., Sivakumar, K. C., & Sreekumar, E. (2010). Molecular dynamics simulation studies and in vitro site directed mutagenesis of avian beta-defensin Apl_AvBD2. BMC Bioinformatics, 11(S1), 1–9. https://doi.org/10.1186/1471-2105-11-S1-S7
  • Sah, P. P., Bhattacharya, S., Banerjee, A., & Ray, S. (2020). Identification of novel therapeutic target and epitopes through proteome mining from essential hypothetical proteins in Salmonella strains: an in silico approach towards antivirulence therapy and vaccine development. Infection, Genetics and Evolution, 83, 104315. https://doi.org/10.1016/j.meegid.2020.104315
  • Saha, S., & Raghava, G. P. S. (2006). AlgPred: prediction of allergenic proteins and mapping of IgE epitopes. Nucleic Acids Research, 34(Web Server issue), W202–W209. https://doi.org/10.1093/nar/gkl343
  • Saleem, A., & Azher, M. (2013). The next Pandemic-Tuberculosis: The oldest disease of mankind rising one more time. British Journal of Medical Practitioners BJMP, 66, 21.
  • Sen, T. Z., Jernigan, R. L., Garnier, J., & Kloczkowski, A. (2005). GOR V server for protein secondary structure prediction. Bioinformatics, 21(11), 2787–2788. https://doi.org/10.1093/bioinformatics/bti408
  • Sethi, G., Sethi, S., & Krishna, R. (2022). Multi-epitope based vaccine design against Staphylococcus epidermidis: A subtractive proteomics and immunoinformatics approach. Microbial Pathogenesis, 165, 105484. https://doi.org/10.1016/j.micpath.2022.105484
  • Sethi, G., Varghese, R. P., & Krishna, R. (2021). Identification and design of a multi-epitope subunit vaccine against the opportunistic pathogen Staphylococcus epidermidis: An immunoinformatics approach. Journal of Biomolecular Structure and Dynamics, 0(0), 1–13. https://doi.org/10.1080/07391102.2021.1997819
  • Shahid, F., Alghamdi, Y. S., Mashraqi, M., Khurshid, M., & Ashfaq, U. A. (2022). Proteome based mapping and molecular docking revealed DnaA as a potential drug target against Shigella sonnei. Saudi Journal of Biological Sciences, 29(2), 1147–1159. https://doi.org/10.1016/j.sjbs.2021.09.051
  • Shamriz, S., Ofoghi, H., & Moazami, N. (2016). Effect of linker length and residues on the structure and stability of a fusion protein with malaria vaccine application. Computers in Biology and Medicine, 76, 24–29. https://doi.org/10.1016/j.compbiomed.2016.06.015
  • Shende, G., Haldankar, H., Barai, R. S., Bharmal, M. H., Shetty, V., & Idicula-Thomas, S. (2017). PBIT: pipeline builder for identification of drug targets for infectious diseases. Bioinformatics (Oxford, England), 33(6), 929–931. https://doi.org/10.1093/bioinformatics/btw760
  • Solanki, V., & Tiwari, V. (2018). Subtractive proteomics to identify novel drug targets and reverse vaccinology for the development of chimeric vaccine against Acinetobacter baumannii. Scientific Reports, 8(1), 1–19. https://doi.org/10.1038/s41598-018-26689-7
  • Sudha, R., Katiyar, A., Katiyar, P., Singh, H., & Prasad, P. (2019). Identification of potential drug targets and vaccine candidates in Clostridium botulinum using subtractive genomics approach. Bioinformation, 15(1), 18–25. https://doi.org/10.6026/97320630015018
  • Sultana, Z. Z., Hoque, F. U., Beyene, J., Akhlak-Ul-Islam, M., Khan, M. H. R., Ahmed, S., Hawlader, D. H., & Hossain, A. (2021). HIV infection and multidrug resistant tuberculosis: A systematic review and meta-analysis. BMC Infectious Diseases, 21(1), 86–13. https://doi.org/10.1186/s12879-020-05749-2
  • Susithra Priyadarshni, M., Isaac Kirubakaran, S., & Harish, M. C. (2021). In silico approach to design a multi-epitopic vaccine candidate targeting the non-mutational immunogenic regions in envelope protein and surface glycoprotein of SARS-CoV-2. Journal of Biomolecular Structure and Dynamics, 40(23), 1–16. https://doi.org/10.1080/07391102.2021.1977702
  • Sussman, J. L., Lin, D., Jiang, J., Manning, N. O., Prilusky, J., Ritter, O., & Abola, E. E. (1998). Protein Data Bank (PDB): Database of three-dimensional structural information of biological macromolecules. Acta Crystallographica. Section D, Biological Crystallography, 54(Pt 6 Pt 1), 1078–1084. https://doi.org/10.1107/S0907444998009378
  • Swain, S. S., Paidesetty, S. K., Dehury, B., Sahoo, J., Vedithi, S. C., Mahapatra, N., Hussain, T., & Padhy, R. N. (2018). Molecular docking and simulation study for synthesis of alternative dapsone derivative as a newer antileprosy drug in multidrug therapy. Journal of Cellular Biochemistry, 119(12), 9838–9852. https://doi.org/10.1002/jcb.27304
  • Ul Qamar, M. T., Ahmad, S., Fatima, I., Ahmad, F., Shahid, F., Naz, A., Abbasi, S. W., Khan, A., Mirza, M. U., Ashfaq, U. A., & Chen, L. L. (2021). Designing multi-epitope vaccine against Staphylococcus aureus by employing subtractive proteomics, reverse vaccinology and immuno-informatics approaches. Computers in Biology and Medicine, 132, 104389. https://doi.org/10.1016/j.compbiomed.2021.104389
  • Thursby, E., & Juge, N. (2017). Introduction to the human gut microbiota. Biochemical Journal, 474(11), 1823–1836. https://doi.org/10.1042/BCJ20160510
  • Vita, R., Mahajan, S., Overton, J. A., Dhanda, S. K., Martini, S., Cantrell, J. R., Wheeler, D. K., Sette, A., & Peters, B. (2019). The immune epitope database (IEDB): 2018 update. Nucleic Acids Research, 47(D1), D339–D343. https://doi.org/10.1093/nar/gky1006
  • Wang, P., Sidney, J., Kim, Y., Sette, A., Lund, O., Nielsen, M., & Peters, B. (2010). Peptide binding predictions for HLA DR, DP and DQ molecules. BMC Bioinformatics, 11(1), 568–512. https://doi.org/10.1186/1471-2105-11-568
  • Huang, D., Sherman, B. T., Tan, Q., Collins, J. R., Alvord, W. G., Roayaei, J., Stephens, R., Baseler, M. W., Lane, H. C., & Lempicki, R. A. (2007). The DAVID gene functional classification tool: A novel biological module-centric algorithm to functionally analyze large gene lists. Genome Biology, 8(9), R183. https://doi.org/10.1186/gb-2007-8-9-r183
  • Wiederstein, M., & Sippl, M. J. (2007). ProSA-web: interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic Acids Research, 35(Web Server issue), W407–W410. https://doi.org/10.1093/nar/gkm290
  • Wishart, D. S., Knox, C., Guo, A. C., Cheng, D., Shrivastava, S., Tzur, D., Gautam, B., & Hassanali, M. (2008). DrugBank: A knowledgebase for drugs, drug actions and drug targets. Nucleic Acids Research, 36(Database issue), D901–D906. https://doi.org/10.1093/nar/gkm958
  • Yılmaz Çolak, Ç. (2021). Computational design of a multi-epitope vaccine against Clostridium chauvoei: An immunoinformatics approach. International Journal of Peptide Research and Therapeutics, 27(4), 2639–2649. https://doi.org/10.1007/s10989-021-10279-9
  • Yu, C. S., Lin, C. J., & Hwang, J. K. (2004). Predicting subcellular localization of proteins for Gram‐negative bacteria by support vector machines based on n‐peptide compositions. Protein Science: A Publication of the Protein Society, 13(5), 1402–1406. https://doi.org/10.1110/ps.03479604
  • Yu, Y., & Tian, X. (2020). Analysis of genes associated with prognosis of lung adenocarcinoma based on GEO and TCGA databases. Medicine, 99(19), e20183. https://doi.org/10.1097/MD.0000000000020183
  • Zaib, S., Akram, F., Liaqat, S. T., Altaf, M. Z., Khan, I., Dera, A. A., Uddin, J., Khan, A., & Al-Harrasi, A. (2022). Bioinformatics approach for the construction of multiple epitope vaccine against omicron variant of SARS-CoV-2. Scientific Reports, 12(1), 1–16. https://doi.org/10.1038/s41598-022-23550-w
  • Zhou, Y., Zhang, Y., Lian, X., Li, F., Wang, C., Zhu, F., Qiu, Y., & Chen, Y. (2022). Therapeutic target database update 2022: Facilitating drug discovery with enriched comparative data of targeted agents. Nucleic Acids Research, 50(D1), D1398–D1407. https://doi.org/10.1093/nar/gkab953

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.