270
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Identification of geographic origins of Morus alba Linn. through surfaced enhanced Raman spectrometry and machine learning algorithms

, , , , , , , & ORCID Icon show all
Pages 14285-14298 | Received 22 Aug 2022, Accepted 08 Feb 2023, Published online: 20 Feb 2023

Reference

  • ALmagedi, M. A. S., & Yao, W. (2013). SERS signatures of foodborne pathogenic zoonotic bacteria using gold colloid. International Journal of Engineering Science and Technology, 5(4), 810.
  • Ann, J.-Y., Eo, H., & Lim, Y. (2015). Mulberry leaves (Morus alba L.) ameliorate obesity-induced hepatic lipogenesis, fibrosis, and oxidative stress in high-fat diet-fed mice. Genes & Nutrition, 10(6), 1-13. https://doi.org/10.1007/s12263-015-0495-x
  • Asano, N., Yamashita, T., Yasuda, K., Ikeda, K., Kizu, H., Kameda, Y., Kato, A., Nash, R. J., Lee, H. S., & Ryu, K. S. (2001). Polyhydroxylated alkaloids isolated from mulberry trees (Morus alba L.) and silkworms (Bombyx mori L.). Journal of Agricultural and Food Chemistry, 49(9), 4208–4213. https://doi.org/10.1021/jf010567e
  • Berghian-Grosan, C., & Magdas, D. A. (2020). Application of Raman spectroscopy and machine learning algorithms for fruit distillates discrimination. Scientific Reports, 10(1), 1-9. https://doi.org/10.1038/s41598-020-78159-8
  • Boopathi, M., Udhayakala, P., Devi, T. R., Rajendiran, T., & Gunasekaran, S. (2015). Vibrational spectroscopic (FT-IR, FT-Raman and NMR) and DFT analysis of 2-methoxy-3-(trifluoromethyl) pyridine. Journal of Chemical and Pharmaceutical Research, 7(7), 1172–1183.
  • Butt, M. S., Nazir, A., Sultan, M. T., & Schroën, K. (2008). Morus alba L. nature’s functional tonic. Trends in Food Science & Technology, 19(10), 505–512. https://doi.org/10.1016/j.tifs.2008.06.002
  • Chao, Y., & Zhang, T. (2012). Surface-enhanced Raman scattering (SERS) revealing chemical variation during biofilm formation: from initial attachment to mature biofilm. Analytical and Bioanalytical Chemistry, 404(5), 1465–1475. https://doi.org/10.1007/s00216-012-6225-y
  • Chen, C., Mohamad Razali, U. H., Saikim, F. H., Mahyudin, A., & Mohd Noor, N. Q. I. (2021). Morus alba L. Plant: Bioactive compounds and potential as a functional food ingredient. Foods, 10(3), 1–28.
  • Chen, X., Sheng, Z., Qiu, S., Yang, H., Jia, J., Wang, J., & Jiang, C. (2019). Purification, characterization and in vitro and in vivo immune enhancement of polysaccharides from mulberry leaves. PLoS One, 14(1), 1–20.
  • Clement, W. L., & Weiblen, G. D. (2009). Morphological evolution in the mulberry family (Moraceae). Systematic Botany, 34(3), 530–552. https://doi.org/10.1600/036364409789271155
  • De Gelder, J., Gussem, K., Vandenabeele, P., & Moens, L. (2007). Reference database of Raman spectra of biological molecules. Journal of Raman Spectroscopy, 38(9), 1133–1147. https://doi.org/10.1002/jrs.1734
  • De Luca, E., Redaelli, M., Zaffino, C., & Bruni, S. (2018). A SERS and HPLC study of traditional dyes from native Chinese plants. Vibrational Spectroscopy, 95, 62–67. https://doi.org/10.1016/j.vibspec.2018.01.008
  • Ding, S.-Y., Yi, J., Li, J.-F., Ren, B., Wu, D.-Y., Panneerselvam, R., & Tian, Z.-Q. (2016). Nanostructure-based plasmon-enhanced Raman spectroscopy for surface analysis of materials. Nature Reviews Materials, 1(6), 1-16. https://doi.org/10.1038/natrevmats.2016.21
  • Du, Y., Li, D-x., Lu, D-y., Zhang, R., Zhong, Q-q., Zhao, Y-l., Zheng, X-x., Ji, S., Wang, L., & Tang, D.-Q. (2022). Amelioration of lipid accumulations and metabolism disorders in differentiation and development of 3T3-L1 adipocytes through mulberry leaf water extract. Phytomedicine, 98, 153959. https://doi.org/10.1016/j.phymed.2022.153959
  • Edwards, H., & Farwell, D. (1995). Raman spectroscopic studies of silk. Journal of Raman Spectroscopy, 26(8–9), 901–909. https://doi.org/10.1002/jrs.1250260842
  • El-Beshbishy, H. A., Singab, A. N., Sinkkonen, J., & Pihlaja, K. (2006). Hypolipidemic and antioxidant effects of Morus alba L. (Egyptian mulberry) root bark fractions supplementation in cholesterol-fed rats. Life Sciences, 78(23), 2724–2733. https://doi.org/10.1016/j.lfs.2005.10.010
  • Enejder, A. M. K., Koo, T.-W., Oh, J., Hunter, M., Sasic, S., Feld, M. S., & Horowitz, G. L. (2002). Blood analysis by Raman spectroscopy. Optics Letters, 27(22), 2004. https://doi.org/10.1364/OL.27.002004
  • Fang, Y., & Ramasamy, R. (2015). Current and prospective methods for plant disease detection. Biosensors, 5(3), 537–561. https://doi.org/10.3390/bios5030537
  • Fatima, A., Cyril, G., Vincent, V., Stéphane, J., & Olivier, P. (2020). Towards normalization selection of Raman data in the context of protein glycation: Application of validity indices to PCA processed spectra. The Analyst, 145(8), 2945–2957. https://doi.org/10.1039/C9AN02155H
  • Feng, S., Huang, S., & Lin, D. (2015). Surface-enhanced Raman spectroscopy of saliva proteins for the noninvasive differentiation of benign and malignant breast tumors. International Journal of Nanomedicine, 10, 537–547.
  • Feng, S., Huang, S., Lin, D., Chen, G., Xu, Y., Li, Y., Huang, Z., Pan, J., Chen, R., & Zeng, H. (2015). Surface-enhanced Raman spectroscopy of saliva proteins for the noninvasive differentiation of benign and malignant breast tumors. International Journal of Nanomedicine, 10, 537.
  • Hao, J.-Y., Wan, Y., Yao, X.-H., Zhao, W.-G., Hu, R.-Z., Chen, C., Li, L., Zhang, D.-Y., & Wu, G.-H. (2018). Effect of different planting areas on the chemical compositions and hypoglycemic and antioxidant activities of mulberry leaf extracts in Southern China. PLoS One, 13(6), e0198072. https://doi.org/10.1371/journal.pone.0198072
  • Havens, K. J., & Sharp, E. J. (2016). Remote sensing. In Thermal imaging techniques to survey and monitor animals in the wild (pp. 35–62). Elsevier.
  • Hu, Z., Wang, X., Wang, W., Zhang, Z., Gao, H., & Mao, Y. (2015). Raman spectroscopy for detecting supported planar lipid bilayers composed of ganglioside-GM1/sphingomyelin/cholesterol in the presence of amyloid-β. Physical Chemistry Chemical Physics, 17(35), 22711–22720. https://doi.org/10.1039/C5CP02366A
  • Ji, W., Zhao, B., & Ozaki, Y. (2016). Semiconductor materials in analytical applications of surface-enhanced Raman scattering. Journal of Raman Spectroscopy, 47(1), 51–58. https://doi.org/10.1002/jrs.4854
  • Jiang, X., Li, X., Jia, X., Li, G., Wang, X., Wang, G., Li, Z., Yang, L., & Zhao, B. (2012). Surface-enhanced Raman scattering from synergistic contribution of metal and semiconductor in TiO2/MBA/Ag(Au) and Ag(Au)/MBA/TiO2 assemblies. The Journal of Physical Chemistry C, 116(27), 14650–14655. https://doi.org/10.1021/jp302139e
  • Kimura, T., Nakagawa, K., Kubota, H., Kojima, Y., Goto, Y., Yamagishi, K., Oita, S., Oikawa, S., & Miyazawa, T. (2007). Food-grade mulberry powder enriched with 1-deoxynojirimycin suppresses the elevation of postprandial blood glucose in humans. Journal of Agricultural and Food Chemistry, 55(14), 5869–5874. https://doi.org/10.1021/jf062680g
  • Kuska, M., Wahabzada, M., Leucker, M., Dehne, H.-W., Kersting, K., Oerke, E.-C., Steiner, U., & Mahlein, A.-K. (2015). Hyperspectral phenotyping on the microscopic scale: Towards automated characterization of plant-pathogen interactions. Plant Methods, 11(1), 1-14. https://doi.org/10.1186/s13007-015-0073-7
  • Lee, S., Hwang, J., Lee, H., & Chung, H. (2015). Exploring supervised neighborhood preserving embedding (SNPE) as a nonlinear feature extraction method for vibrational spectroscopic discrimination of agricultural samples according to geographical origins. Talanta, 144, 960–968. https://doi.org/10.1016/j.talanta.2015.07.028
  • Li, M., Hou, X.-F., Zhang, J., Wang, S.-C., Fu, Q., & He, L.-C. (2011). Applications of HPLC/MS in the analysis of traditional Chinese medicines. Journal of Pharmaceutical Analysis, 1(2), 81–91. https://doi.org/10.1016/S2095-1779(11)70015-6
  • Liu, Y., Chen, Y.-R., Nou, X., & Chao, K. (2007). Potential of surface-enhanced Raman spectroscopy for the rapid identification of Escherichia coli and Listeria monocytogenes cultures on silver colloidal nanoparticles. Applied Spectroscopy, 61(8), 824–831. https://doi.org/10.1366/000370207781540060
  • Liu, Z.-Z., Liu, Q.-H., Liu, Z., Tang, J.-W., Chua, E.-G., Li, F., Xiong, X.-S., Wang, M.-M., Wen, P.-B., Shi, X.-Y., Xi, X.-Y., Zhang, X., & Wang, L. (2021). Ethanol extract of mulberry leaves partially restores the composition of intestinal microbiota and strengthens liver glycogen fragility in type 2 diabetic rats. BMC Complementary Medicine and Therapies, 21(1), 1-15. https://doi.org/10.1186/s12906-021-03342-x
  • Liu, W., Tang, J.-W., Lyu, J.-W., Wang, J. J., Pan, Y.-C., Shi, X.-Y., Liu, Q.-H., Zhang, X., Gu, B., & Wang, L. (2022). Discrimination between Carbapenem-Resistant and Carbapenem-Sensitive Klebsiella pneumoniae strains through computational analysis of surface-enhanced Raman spectra: A pilot study. Microbiology Spectrum, 10(1), 1–13.
  • Li, N., Wang, Y., & Xu, K. (2006). Fast discrimination of traditional Chinese medicine according to geographical origins with FTIR spectroscopy and advanced pattern recognition techniques. Optics Express, 14(17), 7630. https://doi.org/10.1364/OE.14.007630
  • López-Sánchez, M., Ayora-Cañada, M. J., & Molina-Díaz, A. (2010). Olive fruit growth and ripening as seen by vibrational spectroscopy. Journal of Agricultural and Food Chemistry, 58(1), 82–87. https://doi.org/10.1021/jf902509f
  • Luo, H., Huang, Y., Lai, K., Rasco, B. A., & Fan, Y. (2016). Surface-enhanced Raman spectroscopy coupled with gold nanoparticles for rapid detection of phosmet and thiabendazole residues in apples. Food Control, 68, 229–235. https://doi.org/10.1016/j.foodcont.2016.04.003
  • Ma, J., Li, K., Shi, S., Li, J., Tang, S., & Liu, L. (2022). The application of UHPLC-HRMS for quality control of traditional Chinese medicine. Frontiers in Pharmacology, 13, 1-10.
  • Maier, O., Oberle, V., & Hoekstra, D. (2002). Fluorescent lipid probes: Some properties and applications (a review). Chemistry and Physics of Lipids, 116(1–2), 3–18. https://doi.org/10.1016/S0009-3084(02)00017-8
  • McAughtrie, S., Faulds, K., & Graham, D. (2014). Surface enhanced Raman spectroscopy (SERS): Potential applications for disease detection and treatment. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 21, 40–53. https://doi.org/10.1016/j.jphotochemrev.2014.09.002
  • Mlynárik, V. (2017). Introduction to nuclear magnetic resonance. Analytical Biochemistry, 529, 4–9. https://doi.org/10.1016/j.ab.2016.05.006
  • Muthuselvi, C., Pandiaraja, S. S., Ravikumar, B., Athimoolam, S., Srinivasan, N., & Krishnakum, R. V. (2018). FT-IR and FT-Raman spectroscopic analyzes of indeno quinoxaline derivative crystal. Asian Journal of Applied Sciences, 11(2), 83–91. https://doi.org/10.3923/ajaps.2018.83.91
  • Nekvapil, F., Brezestean, I., Barchewitz, D., Glamuzina, B., Chiş, V., & Pinzaru, C. (2018). S. Citrus fruits freshness assessment using Raman spectroscopy. Food Chemistry, 242, 560–567. https://doi.org/10.1016/j.foodchem.2017.09.105
  • Paul, A., Rajiung, M., Zaman, K., Chaudhary, S. K., Bhat, H. R., & Shakya, A. (2021). An overview of phytochemical and pharmacological profile of Morus alba Linn. Current Bioactive Compounds, 17(8), 1-50. https://doi.org/10.2174/1573407216666201228114004
  • Ramos-Guerrero, L., Montalvo, G., Cosmi, M., García-Ruiz, C., & Ortega-Ojeda, F. E. (2022). Classification of various marijuana varieties by Raman microscopy and chemometrics. Toxics, 10(3), 115. https://doi.org/10.3390/toxics10030115
  • Samantara, A. K., Acharya, C., Satpathy, D., Panda, C. R., Bhaskara, P. K., & Sasmal, A. (2018). Functionalized graphene: An unique platform for biomedical application. In: Fullerens, graphenes and nanotubes (pp. 545–584). Elsevier.
  • Sánchez-Salcedo, E. M., Mena, P., García-Viguera, C., Hernández, F., & Martínez, J. J. (2015). Poly)phenolic compounds and antioxidant activity of white (Morus alba) and black (Morus nigra) mulberry leaves: Their potential for new products rich in phytochemicals. Journal of Functional Foods, 18, 1039–1046. ( https://doi.org/10.1016/j.jff.2015.03.053
  • Schenzel, K., & Fischer, S. (2001). NIR FT Raman Spectroscopy–a rapid analytical tool for detecting the transformation of cellulose polymorphs. Cellulose, 8(1), 49–57. https://doi.org/10.1023/A:1016616920539
  • Schneider, A., & Feussner, H. (2017). Diagnostic procedures. In Biomedical engineering in gastrointestinal surgery (pp. 87–220). Elsevier.
  • Shao, X., Pan, J., Wang, Y., Zhu, Y., Xu, F., Shangguan, X., Dong, B., Sha, J., Chen, N., Chen, Z., Wang, T., Liu, S., & Xue, W. (2017). Evaluation of expressed prostatic secretion and serum using surface-enhanced Raman spectroscopy for the noninvasive detection of prostate cancer, a preliminary study. Nanomedicine: Nanotechnology, Biology and Medicine, 13(3), 1051–1059. https://doi.org/10.1016/j.nano.2016.12.001
  • Shen, M.-R., He, Y., & Shi, S.-M. (2021). Development of chromatographic technologies for the quality control of Traditional Chinese Medicine in the Chinese Pharmacopoeia. Journal of Pharmaceutical Analysis, 11(2), 155–162. https://doi.org/10.1016/j.jpha.2020.11.008
  • Sugiyama, M., Katsube, T., Koyama, A., & Itamura, H. (2016). Effect of solar radiation on the functional components of mulberry (Morus alba L.) leaves. Journal of the Science of Food and Agriculture, 96(11), 3915–3921. https://doi.org/10.1002/jsfa.7614
  • Szymańska-Chargot, M., Chylińska, M., Pieczywek, P. M., Rösch, P., Schmitt, M., Popp, J., & Zdunek, A. (2016). Raman imaging of changes in the polysaccharides distribution in the cell wall during apple fruit development and senescence. Planta, 243(4), 935–945. https://doi.org/10.1007/s00425-015-2456-4
  • Tang, X., Fu, J., Gao, Q., Liu, G., Ye, J., Guan, W., Shi, Y., & Xu, M. (2022). Effects of mulberry (Morus alba L.) leaf extracts on growth, immune response, and antioxidant functions in Nile Tilapia (Oreochromis niloticus). Annals of Animal Science, 22(1), 349–369. https://doi.org/10.2478/aoas-2021-0038
  • Tang, J.-W., Liu, Q.-H., Yin, X.-C., Pan, Y.-C., Wen, P.-B., Liu, X., Kang, X.-X., Gu, B., Zhu, Z.-B., & Wang, L. (2021). Comparative analysis of machine learning algorithms on surface enhanced Raman spectra of clinical Staphylococcus species. Frontiers in Microbiology, 12, 1–14. https://doi.org/10.3389/fmicb.2021.696921
  • Tang, J. W., Li, J. Q., Yin, X. C., Xu, W.-W., Pan, Y.-C., Liu, Q.-H., Gu, B., Zhang, X., & Wang, L. (2022). Rapid discrimination of clinically important pathogens through machine learning analysis of surface enhanced Raman spectra. Frontiers in Microbiology, 13, 843417.
  • Tang, J.-W., Qiao, R., Xiong, X.-S., Tang, B.-X., He, Y.-W., Yang, Y.-Y., Ju, P., Wen, P.-B., Zhang, X., & Wang, L. (2022). Rapid discrimination of glycogen particles originated from different eukaryotic organisms. International Journal of Biological Macromolecules, 222, 1027–1036. https://doi.org/10.1016/j.ijbiomac.2022.09.233
  • Tang, J.-W., Xiong, X.-S., Qian, C.-L., Liu, Q.-H., Wen, P.-B., Shi, X.-Y., Blen Dereje, S., Zhang, X., & Wang, L. (2021). Network pharmacological analysis of ethanol extract of Morus alba linne in the treatment of type 2 diabetes mellitus. Arabian Journal of Chemistry, 14(10), 103384. https://doi.org/10.1016/j.arabjc.2021.103384
  • Tarapoulouzi, M., Skiada, V., Agriopoulou, S., Psomiadis, D., Rébufa, C., Roussos, S., Theocharis, C. R., Katsaris, P., & Varzakas, T. (2021). Chemometric discrimination of the geographical origin of three Greek cultivars of olive oils by stable isotope ratio analysis. Foods, 10(2), 336. https://doi.org/10.3390/foods10020336
  • Tong, T. T., Zhao, E. H., Gao, H. L., Xu, Y.-H., Zhao, Y.-J., Fu, G., & Cui, H.-J. (2018). Recent research advances of 1-deoxynojirimycin and its derivatives. Zhongguo Zhong Yao Za Zhi, 43(10), 1990–1997.
  • Usman, M., Tang, J.-W., Li, F., Lai, J.-X., Liu, Q.-H., Liu, W., & Wang, L. (2022). Recent advances in surface enhanced Raman spectroscopy for bacterial pathogen identifications. Journal of Advanced Research, 1-17. https://doi.org/10.1016/j.jare.2022.11.010
  • Wang, L., Liu, W., Tang, J.-W., Wang, J. J., Liu, Q.-H., Wen, P.-B., Wang, M.-M., Pan, Y.-C., Gu, B., & Zhang, X. (2021). Applications of Raman spectroscopy in bacterial infections: Principles, advantages, and shortcomings. Frontiers in Microbiology, 12, 1–8.
  • Wang, L., Zhang, X.-D., Tang, J.-W., Ma, Z.-W., Usman, M., Liu, Q.-H., Wu, C.-Y., Li, F., Zhu, Z.-B., & Gu, B. (2022). Machine learning analysis of SERS fingerprinting for the rapid determination of Mycobacterium tuberculosis infection and drug resistance. Computational and Structural Biotechnology Journal, 20, 5364–5377. https://doi.org/10.1016/j.csbj.2022.09.031
  • Wong, M. Y.-M., So, P.-K., & Yao, Z.-P. (2016). Direct analysis of traditional Chinese medicines by mass spectrometry. Journal of Chromatography B, 1026, 2–14. https://doi.org/10.1016/j.jchromb.2015.11.032
  • Worley, B., & Powers, R. (2016). PCA as a practical indicator of OPLS-DA model reliability. Current Metabolomics, 4(2), 97–103. https://doi.org/10.2174/2213235X04666160613122429
  • Yang, D. K., & Jo, D.-G. (2018). Mulberry fruit extract ameliorates nonalcoholic fatty liver disease (NAFLD) through inhibition of mitochondrial oxidative stress in rats. Evidence-Based Complementary and Alternative Medicine, 2018, 1–9.
  • Yang, Y., Wu, Y., Li, W., Liu, X., Zheng, J., Zhang, W., & Chen, Y. (2018). Determination of geographical origin and icariin content of Herba Epimedii using near infrared spectroscopy and chemometrics. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 191, 233–240. https://doi.org/10.1016/j.saa.2017.10.019
  • Yao, Q., Zhu, X., Han, M., Chen, C., Li, W., Bai, H., & Ning, K. (2022). Decoding herbal materials of TCM preparations with the multi-barcode sequencing approach. Scientific Reports, 12(1), 1-18. https://doi.org/10.1038/s41598-022-09979-z
  • Yu, Y., Li, H., Zhang, B., Wang, J., Shi, X., Huang, J., Yang, J., Zhang, Y., & Deng, Z. (2018). Nutritional and functional components of mulberry leaves from different varieties: Evaluation of their potential as food materials. International Journal of Food Properties, 21(1), 1495–1507. https://doi.org/10.1080/10942912.2018.1489833
  • Zhang, H., Chen, Z., Li, T., Chen, N., Xu, W., & Liu, S. (2017). Surface-enhanced Raman scattering spectra revealing the inter-cultivar differences for Chinese ornamental Flos Chrysanthemum: A new promising method for plant taxonomy. Plant Methods, 13(1), 1-11. https://doi.org/10.1186/s13007-017-0242-y
  • Zhou, X.-D., Li, X., & Shen, A.-G. (2022). Surface-enhanced Raman scattering nanotags design and synthesis. In Principles and clinical diagnostic applications of surface-enhanced Raman spectroscopy (pp. 171–223). Elsevier.
  • Zhou, D., Yu, Y., Hu, R., & Li, Z. (2020). Discrimination of Tetrastigma hemsleyanum according to geographical origin by near-infrared spectroscopy combined with a deep learning approach. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 238, 118380. https://doi.org/10.1016/j.saa.2020.118380
  • Zou, S., Ma, L., Li, J., Liu, Y., Zhao, D., & Zhang, Z. (2019). Ag nanorods-based surface-enhanced Raman scattering: synthesis, quantitative analysis strategies, and applications. Frontiers in Chemistry, 7, 1–16. https://doi.org/10.3389/fchem.2019.00376

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.