320
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Molecular docking and dynamics supported investigation of antiviral activity of Lichen metabolites of Roccella montagnei: an in silico and in vitro study

, ORCID Icon, , , , , ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 11484-11497 | Received 24 Aug 2022, Accepted 20 Dec 2022, Published online: 20 Feb 2023

References

  • Akbar, S., Das, S., Iqubal, A., & Ahmed, B. (2021). Synthesis, biological evaluation and molecular dynamics studies of oxadiazine derivatives as potential anti-hepatotoxic agents. Journal of Biomolecular Structure and Dynamics, 22(11), 1–18. https://doi.org/10.1080/07391102.2021.1938233
  • Bennett, M. S., Wien, F., Champness, J. N., Batuwangala, T., Rutherford, T., Summers, W. C., Sun, H., Wright, G., & Sanderson, M. R. (1999a). RCSB PDB – 2KI5: Herpes simplex type-1 thymidine kinase in complex with the drug aciclovir at 1.9A resolution. https://www.rcsb.org/structure/2ki5
  • Bennett, M. S., Wien, F., Champness, J. N., Batuwangala, T., Rutherford, T., Summers, W. C., Sun, H., Wright, G., & Sanderson, M. R. (1999b). Structure to 1.9 Å resolution of a complex with herpes simplex virus type-1 thymidine kinase of a novel, non-substrate inhibitor: X-ray crystallographic comparison with binding of aciclovir. FEBS Letters, 443(2), 121–125. https://doi.org/10.1016/S0014-5793(98)01619-6
  • Coley, P. D. (1988). Effects of plant growth rate and leaf lifetime on the amount and type of anti-herbivore defense. Oecologia, 74(4), 531–536. https://doi.org/10.1007/BF00380050
  • Dayan, F. E., & Romagni, J. G. (2001). Lichens as a potential source of pesticides. Pesticide Outlook, 12(6), 229–232.
  • Denizot, F., & Lang, R. (1986). Rapid colorimetric assay for cell growth and survival. Modifications to the tetrazolium dye procedure giving improved sensitivity and reliability. Journal of Immunological Methods, 89(2), 271–277. https://doi.org/10.1016/0022-1759(86)90368-6
  • Duong, T. H., Huynh, B. L. C., Chavasiri, W., Chollet-Krugler, M., Nguyen, V. K., Nguyen, T. H. T., Hansen, P. E., Le Pogam, P., Thüs, H., Boustie, J., & Nguyen, K. P. P. (2017). New erythritol derivatives from the fertile form of Roccella montagnei. Phytochemistry, 137, 156–164. https://doi.org/10.1016/j.phytochem.2017.02.012
  • Gorla, U. S., Gsn, K. R., Kulandaivelu, U., Alavala, R. R., Das, S., & Joseph, A. (2021). Bioflavonoids as potential target inhibitors in COVID-19: An in silico analysis. Journal of Research in Pharmacy, 25(6), 982–997. https://doi.org/10.29228/jrp.94
  • Haider, K., Ahmad, K., Najmi, A. K., Das, S., Joseph, A., & Shahar Yar, M. (2022). Design, synthesis, biological evaluation, and in silico studies of 2-aminobenzothiazole derivatives as potent PI3K α inhibitors. Archiv Der Pharmazie, 355(10), 2200146. https://doi.org/10.1002/ardp.202200146
  • Haider, K., Sharma, S., Raj, Y., Das, S., Joseph, A., Kalam, A., Faiz, N., Mohammad, A., & Yar, S. (2022). Synthesis, biological evaluation, and in silico studies of indole – Tethered pyrazoline derivatives as anticancer agents targeting topoisomerase II α. Drug Development Research, 83(7), 1555-1577. https://doi.org/10.1002/ddr.21976
  • Halder, D., Das, S., Joseph, A., & Jeyaprakash, R. S. (2022a). Molecular docking and dynamics approach to in silico drug repurposing for inflammatory bowels disease by targeting TNF alpha. Journal of Biomolecular Structure and Dynamics, 0(0), 1–14. https://doi.org/10.1080/07391102.2022.2050948
  • Halder, D., Das, S., Aiswarya, R., & Jeyaprakash, R. S. (2022b). Molecular docking and dynamics based approach for the identification of kinase inhibitors targeting PI3Kα against non-small cell lung cancer: A computational study. RSC Advances, 12(33), 21452–21467. https://doi.org/10.1039/D2RA03451D
  • Hassan, S. T. S., Masarčíková, R., & Berchová, K. (2015). Bioactive natural products with anti-herpes simplex virus properties. Journal of Pharmacy and Pharmacology, 67(10), 1325–1336. https://doi.org/10.1111/jphp.12436
  • Hierholzer, J., & Killington, R. (1996). 2-Virus isolation and quantitation. In Virology methods manual (Vol. 374). Elsevier. https://books.google.nl/books?hl=en&lr=&id=V0AG27Byy4oC&oi=fnd&pg=PA24&dq=Hierholzer+%26+Killington+&ots=-2KlLrOZ2O&sig=TVnjnu_BViQW4JRoGz60Be-gUaA
  • Hu, J. M., & Hsiung, G. D. (1989). Evaluation of new antiviral agents: I. In vitro perspectives. Antiviral Research, 11(5–6), 217–232. https://doi.org/10.1016/0166-3542(89)90032-6
  • Konigheim, B. S., Beranek, M., Comini, L. R., Aguilar, J. J., Marioni, J., Cabrera, J. L., Contigiani, M. S., & Núñez Montoya, S. C. (2012). In vitro antiviral activity of Heterophyllaea pustulata extracts. Natural Product Communications, 7(8), 1934578X1200700–1934578X1201028. https://doi.org/10.1177/1934578X1200700816
  • Lin, L. T., Hsu, W. C., & Lin, C. C. (2014). Antiviral natural products and herbal medicines. Journal of Traditional and Complementary Medicine, 4(1), 24–35. https://doi.org/10.4103/2225-4110.124335
  • Mallavadhani, U. V., & Sudhakar, A. V. S. (2018). Roccellatol, a new β-orcinol based metabolite from the lichen Roccella montagnei. Natural Product Research, 32(3), 268–274. https://doi.org/10.1080/14786419.2017.1353508
  • Mili, A., Das, S., Nandakumar, K., & Lobo, R. (2022). Molecular docking and dynamics guided approach to identify potential anti-inflammatory molecules as NRF2 activator to protect against drug-induced liver injury (DILI): A computational study. Journal of Biomolecular Structure and Dynamics, 0(0), 1–18. https://doi.org/10.1080/07391102.2022.2141885
  • Mishra, T., Shukla, S., Meena, S., Singh, R., Pal, M., Upreti, D. K., & Datta, D. (2017). Isolation and identification of cytotoxic compounds from a fruticose lichen Roccella montagnei, and it’s in silico docking study against CDK-10. Revista Brasileira de Farmacognosia, 27(6), 724–728. https://doi.org/10.1016/j.bjp.2017.07.006
  • Mojzych, M., Bernat, Z., Karczmarzyk, Z., Matysiak, J., & Fruziński, A. (2020). Synthesis, structural characterization, and biological activity of new pyrazolo[4,3-e][1,2,4]triazine acyclonucleosides. Molecules, 25(1), 221. https://doi.org/10.3390/molecules25010221
  • Molnár, K., & Farkas, E. (2010). Current results on biological activities of lichen secondary metabolites: A review. Zeitschrift Für Naturforschung C, 65(3–4), 157–173. https://doi.org/10.1515/znc-2010-3-401
  • Nanayakkara, C., Bombuwala, K., Kathirgamanathar, S., Adikaram, N. K. B., Wijesundara, D. S. A., Hariharan, G. N., Wolseleys, P., & Karunaratne, V. (2005). Effect of some lichen extracts from Sri Lanka on larvae of Aedes aegypti and the fungus Cladosporium cladosporioides. Journal of the National Science Foundation of Sri Lanka, 33(2), 147–150. https://doi.org/10.4038/jnsfsr.v33i2.2345
  • Rao, V. S., & Seshadri, T. R. (1940). Chemical investigation of Indian lichens Part I. Chemical Components of RoccelIa montagnei (pp. 466–471).
  • Rao, V. S., & Seshadri, T. R. (1940a). Chemical investigation of Indian lichens Part III. The isolation of montagnetol, a new phenolic compound from Roccella montagnei (pp. 199–202).
  • Rao, V. S., & Seshadri, T. R. (1940b). Chemical investigation of Indian lichens Part IV. Constitution of Montagnetol (pp. 18–23).
  • Raychaudhuri, R., Pandey, A., Das, S., Nannuri, S. H., Joseph, A., George, S. D., Vincent, A. P., & Mutalik, S. (2021). Nanoparticle impregnated self-supporting protein gel for enhanced reduction in oxidative stress: A molecular dynamics insight for lactoferrin-polyphenol interaction. International Journal of Biological Macromolecules, 189(August), 100–113. https://doi.org/10.1016/j.ijbiomac.2021.08.089
  • Sastry, A., Vedula, G. S., & Tatipamula, V. B. (2018). In-vitro biological profile of mangrove associated lichen, Roccella montagnei extracts. Inventi Rapid: Ethnopharmacology, 2018(3), 153–158.
  • Shrestha, G., & St, L. L. (2013). Lichens : A promising source of antibiotic and anticancer drugs. Phytochemistry Reviews, 12(1), 229–244. https://doi.org/10.1007/s11101-013-9283-7
  • Shukla, V., Joshi, G. P., & Rawat, M. S. M. (2010). Lichens as a potential natural source of bioactive compounds: A review. Phytochemistry Reviews, 9(2), 303–314. https://doi.org/10.1007/s11101-010-9189-6
  • Stocker-Wörgötter, E. (2008). Metabolic diversity of lichen-forming Ascomycetous fungi: Culturing, polyketide and shikimate metabolite production, and PKS genes. Natural Product Reports, 25(1), 188–200. https://doi.org/10.1039/B606983P
  • Tatipamula, V. B., Vedula, G. S., & Sastry, A. V. S. (2019). Chemical and pharmacological evaluation of manglicolous lichen Roccella montagnei Bel em. D. D. Awasthi. Future Journal of Pharmaceutical Sciences, 5(1), 1-9. https://doi.org/10.1186/s43094-019-0009-6
  • van de Sand, L., Bormann, M., Schmitz, Y., Heilingloh, C. S., Witzke, O., & Krawczyk, A. (2021). Antiviral active compounds derived from natural sources against herpes simplex viruses. Viruses, 13(7), 1386–1318. https://doi.org/10.3390/v13071386

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.