365
Views
2
CrossRef citations to date
0
Altmetric
Research Articles

The biguanide–sulfonamide derivatives: synthesis, characterization and investigation of anticholinesterase inhibitory, antioxidant and DNA/BSA binding properties

&
Pages 14952-14967 | Received 14 Oct 2022, Accepted 19 Feb 2023, Published online: 01 Mar 2023

References

  • Arshad, N., Saeed, A., Perveen, F., Ujan, R., Farooqi, S. I., Ali Channar, P., Shabir, G., El-Seedi, H. R., Javed, A., Yamin, M., Bolte, M., & Hökelek, T. (2021). Synthesis, X-ray, Hirshfeld surface analysis, exploration of DNA binding, urease enzyme inhibition and anticancer activities of novel adamantane-naphthyl thiourea conjugate. Bioorganic Chemistry, 109, 104707. https://doi.org/10.1016/j.bioorg.2021.104707
  • Askin, S., Tahtaci, H., Türkeş, C., Demir, Y., Ece, A., Akalın Çiftçi, G., & Beydemir, Ş. (2021). Design, synthesis, characterization, in vitro and in silico evaluation of novel imidazo[2,1-b][1,3,4]thiadiazoles as highly potent acetylcholinesterase and non-classical carbonic anhydrase inhibitors. Bioorganic Chemistry, 113, 105009. https://doi.org/10.1016/j.bioorg.2021.105009
  • Azadeh, E. H., Asadbegi, M., Salehi, I., Yaghmaei, P., & Komaki, A. (2016). Neuroprotective role of antidiabetic drug metformin against amyloid β peptide-induced neuronal loss in hippocampal CA1 pyramidal neurons in rats fed high fat diet. Journal of Chemical and Pharmaceutical Sciences, 9, 3460–3465.
  • Bag, S. S., & Gogoi, H. (2018). Design of “click” fluorescent labeled 2′-deoxyuridines via C5-[4-(2-propynyl(methyl)amino)]phenyl acetylene as a universal linker: Synthesis, photophysical properties, and ınteraction with BSA. The Journal of Organic Chemistry, 83(15), 7606–7621. https://doi.org/10.1021/acs.joc.7b03097
  • Chaves, O. A., Calheiro, T. P., Netto-Ferreira, J. C., de Oliveira, M. C. C., Franceschini, S. Z., de Salles, C. M. C., Zanatta, N., Frizzo, C. P., Iglesias, B. A., & Bonacorso, H. G. (2020). Biological assays of BF2-naphthyridine compounds: Tyrosinase and acetylcholinesterase activity, CT-DNA and HSA binding property evaluations. International Journal of Biological Macromolecules, 160, 1114–1129. https://doi.org/10.1016/j.ijbiomac.2020.05.162
  • Chierrito, T. P. C., Mantoani, S. P., Roca, C., Requena, C., Sebastian-Perez, V., Castillo, W. O., Moreira, N. C. S., Pérez, C., Sakamoto-Hojo, E. T., Takahashi, C. S., Jiménez-Barbero, J., Cañada, F. J., Campillo, N. E., Martinez, A., & Carvalho, I. (2017). From dual binding site acetylcholinesterase inhibitors to allosteric modulators: A new avenue for disease-modifying drugs in Alzheimer’s disease. European Journal of Medicinal Chemistry, 139, 773–791. https://doi.org/10.1016/j.ejmech.2017.08.051
  • Ćoćić, D., Jovanović-Stević, S., Jelić, R., Matić, S., Popović, S., Djurdjević, P., Baskić, D., & Petrović, B. (2020). Homo- And hetero-dinuclear Pt(ii)/Pd(ii) complexes: Studies of hydrolysis, nucleophilic substitution reactions, DNA/BSA interactions, DFT calculations, molecular docking and cytotoxic activity. Dalton Transactions (Cambridge, England : 2003), 49(41), 14411–14431. https://doi.org/10.1039/d0dt02906h
  • Diamant, S., Podoly, E., Friedler, A., Ligumsky, H., Livnah, O., & Soreq, H. (2006). Butyrylcholinesterase attenuates amyloid fibril formation in vitro. Proceedings of the National Academy of Sciences of the United States of America, 103(23), 8628–8633. https://doi.org/10.1073/pnas.0602922103
  • Ellman, G. L., Courtney, K. D., Andres, V., & Feather-Stone, R. M. (1961). A new and rapid colorimetric determination of acetylcholinesterase activity. Biochemical Pharmacology, 7, 88–95. https://doi.org/10.1016/0006-2952(61)90145-9
  • Feizi-Dehnayebi, M., Dehghanian, E., & Mansouri-Torshizi, H. (2021). A novel palladium(II) antitumor agent: Synthesis, characterization, DFT perspective, CT-DNA and BSA interaction studies via in-vitro and in-silico approaches. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy, 249, 119215. https://doi.org/10.1016/j.saa.2020.119215
  • Gelamo, E. L., Silva, C., Imasato, H., & Tabak, M. (2002). Interaction of bovine (BSA) and human (HSA) serum albumins with ionic surfactants: Spectroscopy and modelling. Biochimica et Biophysica Acta, 1594(1), 84–99. https://doi.org/10.1016/s0167-4838(01)00287-4
  • Güngör, Ö., & Köse, M. (2022). Design, synthesis and biological evaluation of biguanids and biguanid-sulfonamides as cholinesterase inhibitors. Journal of Molecular Structure, 1260, 132817. https://doi.org/10.1016/j.molstruc.2022.132817
  • Güngör, S. A., Köse, M., Tümer, M., & Bal, M. (2021). Structural characterization, DNA binding properties and molecular docking studies of imine compounds derived from Disperse black 9. Journal of Molecular Structure, 1243, 130776. https://doi.org/10.1016/j.molstruc.2021.130776
  • Gungor, O., Kocer, F., & Kose, M. (2020). Cu(II) complexes of biguanidine ligands: Structural characterisation, DNA binding and antimicrobial properties. Journal of Molecular Structure, 1204, 127533. https://doi.org/10.1016/j.molstruc.2019.127533
  • Johnson, G., & Moore, S. W. (2006). The peripheral anionic site of acetylcholinesterase: structure, functions and potential role in rational drug design. Current Pharmaceutical Design, 12(2), 217–225. https://doi.org/10.2174/138161206775193127
  • Karami, K., Jamshidian, N., Bagheri, A., Hajiaghasi, A., Momtazi-Borojeni, A. A., Abdollahi, E., Shahpiri, A., Azizi, N., & Lipkowski, J. (2020). Novel fluorescence palladium-alkoxime complexes: Synthesis, characterization, DNA/BSA spectroscopic and docking studies, evaluation of cytotoxicity and DNA cleavage mechanism. Journal of Molecular Structure, 1206, 127595. https://doi.org/10.1016/j.molstruc.2019.127595
  • Kumar, N., Lal, N., Nemaysh, V., & Luthra, P. M. (2020). Design, synthesis, DNA binding studies and evaluation of anticancer potential of novel substituted biscarbazole derivatives against human glioma U87 MG cell line. Bioorganic Chemistry, 100, 103911. https://doi.org/10.1016/j.bioorg.2020.103911
  • Langmaier, J., Pižl, M., Samec, Z., & Záliš, S. (2016). Extreme basicity of biguanide drugs in aqueous solutions: ıon transfer voltammetry and DFT calculations. The Journal of Physical Chemistry. A, 120(37), 7344–7350. https://doi.org/10.1021/acs.jpca.6b04786
  • Lee, M., Rhodes, A. L., Wyatt, M. D., Forrow, S., & Hartley, J. A. (1993). GC base sequence recognition by Oligo(imidazolecarboxamide) and C-terminus-modified analogues of distamycin deduced from circular dichroism, proton nuclear magnetic resonance, and methidiumpropylethylenediaminetetraacetate-ıron(II) footprinting studies. Biochemistry, 32(16), 4237–4245. https://doi.org/10.1021/bi00067a011
  • Liu, D., Guo, Y., Wu, P., Wang, Y., Kwaku Golly, M., & Ma, H. (2020). The necessity of walnut proteolysis based on evaluation after in vitro simulated digestion: ACE inhibition and DPPH radical-scavenging activities. Food Chemistry, 311, 125960. https://doi.org/10.1016/j.foodchem.2019.125960
  • Luo, W., Chen, Y., Wang, T., Hong, C., Chang, L. P., Chang, C. C., Yang, Y. C., Xie, S. Q., & Wang, C. J. (2016). Design, synthesis and evaluation of novel 7-aminoalkyl-substituted flavonoid derivatives with improved cholinesterase inhibitory activities. Bioorganic & Medicinal Chemistry, 24(4), 672–680. https://doi.org/10.1016/j.bmc.2015.12.031
  • Majorek, K. A., Porebski, P. J., Dayal, A., Zimmerman, M. D., Jablonska, K., Stewart, A. J., Chruszcz, M., & Minor, W. (2012). Structural and immunologic characterization of bovine, horse, and rabbit serum albumins. Molecular İmmunology, 52(3-4), 174–182. https://doi.org/10.1016/j.molimm.2012.05.011
  • Markowicz-Piasecka, M., Sikora, J., Zajda, A., & Huttunen, K. M. (2020). Novel halogenated sulfonamide biguanides with anti-coagulation properties. Bioorganic Chemistry, 94, 103444. https://doi.org/10.1016/j.bioorg.2019.103444
  • Parveen, M., Malla, A. M., Yaseen, Z., Ali, A., & Alam, M. (2014). Synthesis, characterization, DNA-binding studies and acetylcholinesterase inhibition activity of new 3-formyl chromone derivatives. Journal of Photochemistry and Photobiology. B, Biology, 130, 179–187. https://doi.org/10.1016/j.jphotobiol.2013.11.019
  • Ponkarpagam, S., Mahalakshmi, G., Vennila, K. N., & Elango, K. P. (2020). Multi-spectroscopic, voltammetric and molecular docking studies on binding of anti-diabetic drug rosigiltazone with DNA. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy, 234, 118268. https://doi.org/10.1016/j.saa.2020.118268
  • Rakesh, K. P., Kumara, H. K., Manukumar, H. M., & Channe Gowda, D. (2019). Anticancer and DNA binding studies of potential amino acids based quinazolinone analogs: Synthesis, SAR and molecular docking. Bioorganic Chemistry, 87, 252–264. https://doi.org/10.1016/j.bioorg.2019.03.038
  • Romero, A., Cacabelos, R., Oset-Gasque, M. J., Samadi, A., & Marco-Contelles, J. (2013). Novel tacrine-related drugs as potential candidates for the treatment of Alzheimer’s disease. Bioorganic & Medicinal Chemistry Letters, 23(7), 1916–1922. https://doi.org/10.1016/j.bmcl.2013.02.017
  • Ross, P. D., & Subramanian, S. (1981). Thermodynamics of protein association reactions: Forces contributing to stability. Biochemistry, 20(11), 3096–3102. https://doi.org/10.1021/bi00514a017
  • Şahin, İ., Bingöl, Z., Onur, S., Güngör, S. A., Köse, M., Gülçin, İ., & Tümer, F. (2022). Enzyme ınhibition properties and molecular docking studies of 4‐sulfonate containing aryl α‐hydroxyphosphonates based hybrid molecules. Chemistry & Biodiversity, 19(5), e202100787. https://doi.org/10.1002/cbdv.202100787
  • Sajid Ali, M., Muthukumaran, J., Jain, M., Saad, S., Al-Sanea, A., & Al-Lohedan, H. A. (2021). Experimental and in silico investigation on the interaction of indomethacin with bovine serum albumin: Effect of sodium dodecyl sulfate surfactant monomers on the binding. Journal of Molecular Liquids. 336, 116858. https://doi.org/10.1016/j.molliq.2021.116858
  • Sever, B., Altıntop, M. D., Demir, Y., Yılmaz, N., Akalın Çiftçi, G., Beydemir, Ş., & Özdemir, A. (2021). Identification of a new class of potent aldose reductase inhibitors: Design, microwave-assisted synthesis, in vitro and in silico evaluation of 2-pyrazolines. Chemico-Biological Interactions. 345, 109576. https://doi.org/10.1016/j.cbi.2021.109576
  • Shaalan, H. A., & Nahi, R. J. (2021). Synthesis and ın vitro antioxidant activity study of some new azoles synthesis and ın vitro antioxidant activity study of some new azoles derivatives as sulfa drugs. International Journal of Drug Discovery Technology, 11(3), 1107–1111.
  • Stern, O., & Volmer, M. (1919). DNA polyintercalating drugs: DNA binding of diacridine derivatives. Uber die Abklingungszeit der Fluoreszenz, 20, 183–188.
  • Turgut, E., Gungor, O., Kirpik, H., Kose, A., Gungor, S. A., & Kose, M. (2021). Benzimidazole ligands with allyl, propargyl or allene groups, DNA binding properties, and molecular docking studies. Applied Organometallic Chemistry, 35(9), 1–14. https://doi.org/10.1002/aoc.6323
  • Wang, J., Gallagher, D., Devito, L. M., Cancino, G. I., Tsui, D., He, L., Keller, G. M., Frankland, P. W., Kaplan, D. R., & Miller, F. D. (2012). Metformin activates an atypical PKC-CBP pathway to promote neurogenesis and enhance spatial memory formation. Cell Stem Cell, 11(1), 23–35. https://doi.org/10.1016/j.stem.2012.03.016
  • Wright, A. K., & Thompson, M. R. (1975). Hydrodynamic structure of bovine serum albumin determined by transient electric birefringence. Biophysical Journal, 15(2 Pt 1), 137–141. https://doi.org/10.1016/s0006-3495(75)85797-3
  • Xu, L., Hu, Y. X., Li, J., Liu, Y. F., Zhang, L., Ai, H. X., & Liu, H. S. (2017). Probing the binding reaction of cytarabine to human serum albumin using multispectroscopic techniques with the aid of molecular docking. Journal of Photochemistry and Photobiology. B, Biology, 173, 187–195. https://doi.org/10.1016/j.jphotobiol.2017.05.039

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.