190
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Virtual screening and multilevel precision-based prioritisation of natural inhibitors targeting the ATPase domain of human DNA topoisomerase II alpha

, , &
Pages 15177-15195 | Received 15 Nov 2022, Accepted 25 Feb 2023, Published online: 10 Mar 2023

References

  • Akimitsu, N., Adachi, N., Hirai, H., Hossain, M. S., Hamamoto, H., Kobayashi, M., Aratani, Y., Koyama, H., & Sekimizu, K. (2003). Enforced cytokinesis without complete nuclear division in embryonic cells depleting the activity of DNA topoisomerase IIα. Genes to Cells: Devoted to Molecular & Cellular Mechanisms, 8(4), 393–402. https://doi.org/10.1046/j.1365-2443.2003.00643.x
  • Alonso, H., Bliznyuk, A. A., & Gready, J. E. (2006). Combining docking and molecular dynamic simulations in drug design. Medicinal Research Reviews, 26(5), 531–568. https://doi.org/10.1002/med.20067
  • Atanasov, A. G., Waltenberger, B., Pferschy-Wenzig, E.-M., Linder, T., Wawrosch, C., Uhrin, P., Temml, V., Wang, L., Schwaiger, S., Heiss, E. H., Rollinger, J. M., Schuster, D., Breuss, J. M., Bochkov, V., Mihovilovic, M. D., Kopp, B., Bauer, R., Dirsch, V. M., & Stuppner, H. (2015). Discovery and resupply of pharmacologically active plant-derived natural products: A review. Biotechnology Advances, 33(8), 1582–1614. https://doi.org/10.1016/j.biotechadv.2015.08.001
  • Atanasov, A. G., Zotchev, S. B., Dirsch, V. M., & Supuran, C. T., the International Natural Product Sciences Taskforce. (2021). Natural products in drug discovery: Advances and opportunities. Nature Reviews Drug Discovery, 20(3), 200–216. https://doi.org/10.1038/s41573-020-00114-z
  • Austin, C. A., Lee, K. C., Swan, R. L., Khazeem, M. M., Manville, C. M., Cridland, P., Treumann, A., Porter, A., Morris, N. J., & Cowell, I. G. (2018). TOP2B: The first thirty years. International Journal of Molecular Sciences, 19(9), 2765. https://doi.org/10.3390/ijms19092765
  • Azarova, A. M., Lyu, Y. L., Lin, C.-P., Tsai, Y.-C., Lau, J. Y.-N., Wang, J. C., & Liu, L. F. (2007). Roles of DNA topoisomerase II isozymes in chemotherapy and secondary malignancies. Proceedings of the National Academy of Sciences of the United States of America, 104(26), 11014–11019. https://doi.org/10.1073/pnas.0704002104
  • Banerjee, P., Eckert, A. O., Schrey, A. K., & Preissner, R. (2018). ProTox-II: A webserver for the prediction of toxicity of chemicals. Nucleic Acids Research, 46(W1), W257–W263. https://doi.org/10.1093/nar/gky318
  • Bax, B. D., Chan, P. F., Eggleston, D. S., Fosberry, A., Gentry, D. R., Gorrec, F., Giordano, I., Hann, M. M., Hennessy, A., Hibbs, M., Huang, J., Jones, E., Jones, J., Brown, K. K., Lewis, C. J., May, E. W., Saunders, M. R., Singh, O., Spitzfaden, C. E., … Gwynn, M. N. (2010). Type IIA topoisomerase inhibition by a new class of antibacterial agents. Nature, 466(7309), 935–940. https://doi.org/10.1038/nature09197
  • Bendsen, S., Oestergaard, V. H., Skouboe, C., Brinch, M., Knudsen, B. R., & Andersen, A. H. (2009). The QTK loop is essential for the communication between the N-terminal ATPase domain and the central cleavage − ligation region in human topoisomerase IIα. Biochemistry, 48(27), 6508–6515. https://doi.org/10.1021/bi9005978
  • Bergant, K., Janezic, M., & Perdih, A. (2018). Bioassays and in silico methods in the identification of human DNA topoisomerase IIα inhibitors. Current Medicinal Chemistry, 25(28), 3286–3318. https://doi.org/10.2174/0929867325666180306165725
  • Bergerat, A., De Massy, B., Gadelle, D., Varoutas, P. C., Nicolas, A., & Forterre, P. (1997). An atypical topoisomerase II from archaea with implications for meiotic recombination. Nature, 386(6623), 414–417. https://doi.org/10.1038/386414a0
  • Bollimpelli, V. S., Dholaniya, P. S., & Kondapi, A. K. (2017). Topoisomerase IIβ and its role in different biological contexts. Archives of Biochemistry and Biophysics, 633, 78–84. https://doi.org/10.1016/j.abb.2017.06.021
  • Bowers, K. J., Chow, D. E., Xu, H., Dror, R. O., Eastwood, M. P., Gregersen, B. A., Klepeis, J. L., Kolossvary, I., Moraes, M. A., Sacerdoti, F. D., Salmon, J. K., Shan, Y., & Shaw, D. E. (2006). Scalable algorithms for molecular dynamics simulations on commodity clusters. ACM/IEEE SC 2006 Conference (SC’06), 43–43. https://doi.org/10.1109/SC.2006.54
  • Budzianowski, J. (1990). Caffeoylmalic and two pyrrole acids from Parietaria officinalis. Phytochemistry, 29(10), 3299–3301. https://doi.org/10.1016/0031-9422(90)80203-S
  • Capranico, G., Tinelli, S., Austin, C. A., Fisher, M. L., & Zunino, F. (1992). Different patterns of gene expression of topoisomerase II isoforms in differentiated tissues during murine development. Biochimica et Biophysica Acta, 1132(1), 43–48. https://doi.org/10.1016/0167-4781(92)90050-A
  • Caron, G., Kihlberg, J., Goetz, G., Ratkova, E., Poongavanam, V., & Ermondi, G. (2021). Steering new drug discovery campaigns: Permeability, solubility, and physicochemical properties in the bRo5 chemical space. ACS Medicinal Chemistry Letters, 12(1), 13–23. https://doi.org/10.1021/acsmedchemlett.0c00581
  • Champoux, J. J. (2001). DNA topoisomerases: Structure, function, and mechanism. Annual Review of Biochemistry, 70(1), 369–413. https://doi.org/10.1146/annurev.biochem.70.1.369
  • Chen, Z., Zheng, Z., Huang, H., Song, Y., Zhang, X., Ma, J., Wang, B., Zhang, C., & Ju, J. (2012). Penicacids A-C, three new mycophenolic acid derivatives and immunosuppressive activities from the marine-derived fungus Penicillium sp. SOF07. Bioorganic & Medicinal Chemistry Letters, 22(9), 3332–3335. https://doi.org/10.1016/j.bmcl.2012.02.106
  • Chikhale, R. V., Gupta, V. K., Eldesoky, G. E., Wabaidur, S. M., Patil, S. A., & Islam, M. A. (2021). Identification of potential anti-TMPRSS2 natural products through homology modelling, virtual screening and molecular dynamics simulation studies. Journal of Biomolecular Structure and Dynamics, 39(17), 6660–6675. https://doi.org/10.1080/07391102.2020.1798813
  • Coss, A., Tosetto, M., Fox, E. J., Sapetto-Rebow, B., Gorman, S., Kennedy, B. N., Lloyd, A. T., Hyland, J. M., O'Donoghue, D. P., Sheahan, K., Leahy, D. T., Mulcahy, H. E., & O'Sullivan, J. N. (2009). Increased topoisomerase IIα expression in colorectal cancer is associated with advanced disease and chemotherapeutic resistance via inhibition of apoptosis. Cancer Letters, 276(2), 228–238. https://doi.org/10.1016/j.canlet.2008.11.018
  • Daina, A., Michielin, O., & Zoete, V. (2017). SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Scientific Reports, 7(1), 42717. https://doi.org/10.1038/srep42717
  • Delgado, J. L., Hsieh, C.-M., Chan, N.-L., & Hiasa, H. (2018). Topoisomerases as anticancer targets. The Biochemical Journal, 475(2), 373–398. https://doi.org/10.1042/BCJ20160583
  • Deng, Z., Chuaqui, C., & Singh, J. (2004). Structural Interaction Fingerprint (SIFt): A novel method for analyzing three-dimensional protein − ligand binding interactions. Journal of Medicinal Chemistry, 47(2), 337–344. https://doi.org/10.1021/jm030331x
  • Depowski, P. L., Rosenthal, S. I., Brien, T. P., Stylos, S., Johnson, R. L., & Ross, J. S. (2000). Topoisomerase IIα expression in breast cancer: Correlation with outcome variables. Modern Pathology, 13(5), 542–547. https://doi.org/10.1038/modpathol.3880094
  • Deweese, J. E., & Osheroff, N. (2010). The use of divalent metal ions by type II topoisomerases. Metallomics: Integrated Biometal Science, 2(7), 450–459. https://doi.org/10.1039/c003759a
  • Djoumbou Feunang, Y., Eisner, R., Knox, C., Chepelev, L., Hastings, J., Owen, G., Fahy, E., Steinbeck, C., Subramanian, S., Bolton, E., Greiner, R., & Wishart, D. S. (2016). ClassyFire: Automated chemical classification with a comprehensive, computable taxonomy. Journal of Cheminformatics, 8(1), 61. https://doi.org/10.1186/s13321-016-0174-y
  • Doak, B. C., Over, B., Giordanetto, F., & Kihlberg, J. (2014). Oral druggable space beyond the rule of 5: Insights from drugs and clinical candidates. Chemistry & Biology, 21(9), 1115–1142. https://doi.org/10.1016/j.chembiol.2014.08.013
  • Gao, H., Huang, K.-C., Yamasaki, E. F., Chan, K. K., Chohan, L., & Snapka, R. M. (1999). XK469, a selective topoisomerase IIβ poison. Proceedings of the National Academy of Sciences of the United States of America, 96(21), 12168–12173. https://doi.org/10.1073/pnas.96.21.12168
  • Gout, E., Rébeillé, F., Douce, R., & Bligny, R. (2014). Interplay of Mg 2+, ADP, and ATP in the cytosol and mitochondria: Unravelling the role of Mg 2+ in cell respiration. Proceedings of the National Academy of Sciences of the United States of America, 111(43), E4560–E4567. https://doi.org/10.1073/pnas.1406251111
  • Halgren, T. A., Murphy, R. B., Friesner, R. A., Beard, H. S., Frye, L. L., Pollard, W. T., & Banks, J. L. (2004). Glide: A new approach for rapid, accurate docking and scoring. 2. Enrichment factors in database screening. Journal of Medicinal Chemistry, 47(7), 1750–1759. https://doi.org/10.1021/jm030644s
  • Hevener, K., Verstak, T. A., Lutat, K. E., Riggsbee, D. L., & Mooney, J. W. (2018). Recent developments in topoisomerase-targeted cancer chemotherapy. Acta Pharmaceutica Sinica. B, 8(6), 844–861. https://doi.org/10.1016/j.apsb.2018.07.008
  • Hou, G.-X., Liu, P., Yang, J., & Wen, S. (2017). Mining expression and prognosis of topoisomerase isoforms in non-small-cell lung cancer by using Oncomine and Kaplan–Meier plotter. PLoS One, 12(3), e0174515. https://doi.org/10.1371/journal.pone.0174515
  • Hu, C.-X., Zuo, Z.-L., Xiong, B., Ma, J.-G., Geng, M.-Y., Lin, L.-P., Jiang, H.-L., & Ding, J. (2006). Salvicine functions as novel topoisomerase II poison by binding to ATP pocket. Molecular Pharmacology, 70(5), 1593–1601. https://doi.org/10.1124/mol.106.027714
  • Janežič, M., Pogorelčnik, B., Brvar, M., Solmajer, T., & Perdih, A. (2017). 3-substituted-1 H-indazoles as catalytic inhibitors of the human DNA topoisomerase IIα. ChemistrySelect, 2(1), 480–488. https://doi.org/10.1002/slct.201601554
  • Jiang, Z.-Y., Liu, W.-F., Zhang, X.-M., Luo, J., Ma, Y.-B., & Chen, J.-J. (2013). Anti-HBV active constituents from Piper longum. Bioorganic & Medicinal Chemistry Letters, 23(7), 2123–2127. https://doi.org/10.1016/j.bmcl.2013.01.118
  • Kenig, S., Faoro, V., Bourkoula, E., Podergajs, N., Ius, T., Vindigni, M., Skrap, M., Lah, T., Cesselli, D., Storici, P., & Vindigni, A. (2016). Topoisomerase IIβ mediates the resistance of glioblastoma stem cells to replication stress-inducing drugs. Cancer Cell International, 16(1), 58. https://doi.org/10.1186/s12935-016-0339-9
  • Klosterman, H. J., & Muggli, R. Z. (1959). The glucosides of flaxseed. Journal of the American Chemical Society, 81(9), 2188–2191. https://doi.org/10.1021/JA01518A043/ASSET/JA01518A043.FP.PNG_V03
  • Lee, J. H., & Berger, J. M. (2019). Cell cycle-dependent control and roles of DNA topoisomerase II. Genes, 10(11), 859. https://doi.org/10.3390/genes10110859
  • Liang, X., Wu, Q., Luan, S., Yin, Z., He, C., Yin, L., Zou, Y., Yuan, Z., Li, L., Song, X., He, M., Lv, C., & Zhang, W. (2019). A comprehensive review of topoisomerase inhibitors as anticancer agents in the past decade. European Journal of Medicinal Chemistry, 171, 129–168. https://doi.org/10.1016/j.ejmech.2019.03.034
  • Maia, E. H. B., Assis, L. C., de Oliveira, T. A., da Silva, A. M., & Taranto, A. G. (2020). Structure-based virtual screening: From classical to artificial intelligence. Frontiers in Chemistry, 8, 343. https://doi.org/10.3389/fchem.2020.00343
  • Martyna, G. J., Tobias, D. J., & Klein, M. L. (1994). Constant pressure molecular dynamics algorithms. The Journal of Chemical Physics, 101(5), 4177–4189. https://doi.org/10.1063/1.467468
  • McClendon, A. K., & Osheroff, N. (2007). DNA topoisomerase II, genotoxicity, and cancer. Mutation Research, 623(1–2), 83–97. https://doi.org/10.1016/j.mrfmmm.2007.06.009
  • Naik, B., Gupta, N., Ojha, R., Singh, S., Prajapati, V. K., & Prusty, D. (2020). High throughput virtual screening reveals SARS-CoV-2 multi-target binding natural compounds to lead instant therapy for COVID-19 treatment. International Journal of Biological Macromolecules, 160, 1–17. https://doi.org/10.1016/j.ijbiomac.2020.05.184
  • Newman, D. J., & Cragg, G. M. (2020). Natural products as sources of new drugs over the nearly four decades from 01/1981 to 09/2019. Journal of Natural Products, 83(3), 770–803. https://doi.org/10.1021/acs.jnatprod.9b01285
  • Nitiss, J. L. (2009a). DNA topoisomerase II and its growing repertoire of biological functions. Nature Reviews. Cancer, 9(5), 327–337. https://doi.org/10.1038/nrc2608
  • Nitiss, J. L. (2009b). Targeting DNA topoisomerase II in cancer chemotherapy. Nature Reviews. Cancer, 9(5), 338–350. https://doi.org/10.1038/nrc2607
  • Osheroff, N. (1987). Role of the divalent cation in topoisomerase II mediated reactions. Biochemistry, 26(20), 6402–6406. https://doi.org/10.1021/bi00394a015
  • Pogorelčnik, B., Brvar, M., Žegura, B., Filipič, M., Solmajer, T., & Perdih, A. (2015). Discovery of mono- and disubstituted 1 H-pyrazolo[3,4]pyrimidines and 9 H-purines as catalytic inhibitors of human DNA topoisomerase IIα. ChemMedChem. 10(2), 345–359. https://doi.org/10.1002/cmdc.201402459
  • Pommier, Y., Leo, E., Zhang, H., & Marchand, C. (2010). DNA topoisomerases and their poisoning by anticancer and antibacterial drugs. Chemistry & Biology, 17(5), 421–433. https://doi.org/10.1016/j.chembiol.2010.04.012
  • Pommier, Y., Sun, Y., Huang, S. N., & Nitiss, J. L. (2016). Roles of eukaryotic topoisomerases in transcription, replication and genomic stability. Nature Reviews. Molecular Cell Biology, 17(11), 703–721. https://doi.org/10.1038/nrm.2016.111
  • Radaeva, M., Dong, X., & Cherkasov, A. (2020). The use of methods of computer-aided drug discovery in the development of topoisomerase II inhibitors: Applications and future directions. Journal of Chemical Information and Modeling, 60(8), 3703–3721. https://doi.org/10.1021/acs.jcim.0c00325
  • Salentin, S., Schreiber, S., Haupt, V. J., Adasme, M. F., & Schroeder, M. (2015). PLIP: Fully automated protein–ligand interaction profiler. Nucleic Acids Research, 43(W1), W443–W447. https://doi.org/10.1093/nar/gkv315
  • Schaefer-Klein, J. L., Murphy, S. J., Johnson, S. H., Vasmatzis, G., & Kovtun, I. V. (2015). Topoisomerase 2 alpha cooperates with androgen receptor to contribute to prostate cancer progression. PLoS One, 10(11), e0142327. https://doi.org/10.1371/journal.pone.0142327
  • Schoeffler, A. J., & Berger, J. M. (2008). DNA topoisomerases: Harnessing and constraining energy to govern chromosome topology. Quarterly Reviews of Biophysics, 41(1), 41–101. https://doi.org/10.1017/S003358350800468X
  • Schrödinger LLC. (2019). Schrödinger Suite 2019-3: MacroModel, Glide, SiteMap, Maestro.
  • Shelley, J. C., Cholleti, A., Frye, L. L., Greenwood, J. R., Timlin, M. R., & Uchimaya, M. (2007). Epik: A software program for pK a prediction and protonation state generation for drug-like molecules. Journal of Computer-Aided Molecular Design, 21(12), 681–691. https://doi.org/10.1007/s10822-007-9133-z
  • Skouboe, C., Bjergbaek, L., Oestergaard, V. H., Larsen, M. K., Knudsen, B. R., & Andersen, A. H. (2003). A human topoisomerase IIα heterodimer with only one ATP binding site can go through successive catalytic cycles. The Journal of Biological Chemistry, 278(8), 5768–5774. https://doi.org/10.1074/jbc.M210332200
  • Tuckerman, M., Berne, B. J., & Martyna, G. J. (1992). Reversible multiple time scale molecular dynamics. The Journal of Chemical Physics, 97(3), 1990–2001. https://doi.org/10.1063/1.463137
  • Turley, H., Comley, M., Houlbrook, S., Nozaki, N., Kikuchi, A., Hickson, I., Gatter, K., & Harris, A. (1997). The distribution and expression of the two isoforms of DNA topoisomerase II in normal and neoplastic human tissues. British Journal of Cancer, 75(9), 1340–1346. https://doi.org/10.1038/bjc.1997.227
  • Umashankar, V., Deshpande, S. H., Hegde, H. V., Singh, I., & Chattopadhyay, D. (2021). Phytochemical moieties from Indian traditional medicine for targeting dual hotspots on SARS-CoV-2 spike protein: An integrative in-silico approach. Frontiers in Medicine, 8, 672629. https://doi.org/10.3389/fmed.2021.672629
  • van der Zee, A. G. J., de Vries, E. G. E., Hollema, H., Kaye, S. B., Brown, R., & Keith, W. N. (1994). Molecular analysis of the topoisomerase II α gene and its expression in human ovarian cancer. Annals of Oncology, 5(1), 75–81. https://doi.org/10.1093/oxfordjournals.annonc.a058700
  • Vávrová, A., & Šimůnek, T. (2012). DNA topoisomerase IIβ: A player in regulation of gene expression and cell differentiation. The International Journal of Biochemistry & Cell Biology, 44(6), 834–837. https://doi.org/10.1016/j.biocel.2012.03.005
  • Wang, E., Sun, H., Wang, J., Wang, Z., Liu, H., Zhang, J. Z. H., & Hou, T. (2019). End-point binding free energy calculation with MM/PBSA and MM/GBSA: Strategies and applications in drug design. Chemical Reviews, 119(16), 9478–9508. https://doi.org/10.1021/acs.chemrev.9b00055
  • Wang, J. C. (2002). Cellular roles of DNA topoisomerases: A molecular perspective. Nature Reviews. Molecular Cell Biology, 3(6), 430–440. https://doi.org/10.1038/nrm831
  • Wang, L., & Ma, Q. (2018). Clinical benefits and pharmacology of scutellarin: A comprehensive review. Pharmacology & Therapeutics, 190, 105–127. https://doi.org/10.1016/j.pharmthera.2018.05.006
  • Wei, H., Ruthenburg, A. J., Bechis, S. K., & Verdine, G. L. (2005). Nucleotide-dependent domain movement in the ATPase domain of a human type IIA DNA topoisomerase. The Journal of Biological Chemistry, 280(44), 37041–37047. https://doi.org/10.1074/jbc.M506520200
  • Weston, J. (2009). Biochemistry of magnesium. In PATAI’S chemistry of functional groups. John Wiley & Sons, Ltd. https://doi.org/10.1002/9780470682531.pat0407
  • Woessner, R. D., Mattern, M. R., Mirabelli, C. K., Johnson, R. K., & Drake, F. H. (1991). Proliferation- and cell cycle-dependent differences in expression of the 170 kilodalton and 180 kilodalton forms of topoisomerase II in NIH-3T3 cells. Cell Growth & Differentiation : The Molecular Biology Journal of the American Association for Cancer Research, 2(4), 209–214. http://www.ncbi.nlm.nih.gov/pubmed/1651102
  • Wolf, F. I., & Cittadini, A. (2003). Chemistry and biochemistry of magnesium. Molecular Aspects of Medicine, 24(1–3), 3–9. https://doi.org/10.1016/S0098-2997(02)00087-0
  • Xu, B., Ding, J., Chen, K.-X., Miao, Z.-H., Huang, H., Liu, H., & Luo, X.-M. (2012). Advances in cancer chemotherapeutic drug research in china. In Recent advances in cancer research and therapy (1st ed., Vol. 54920515, pp. 287–350). Elsevier. https://doi.org/10.1016/B978-0-12-397833-2.00012-1
  • Zeng, X., Zhang, P., He, W., Qin, C., Chen, S., Tao, L., Wang, Y., Tan, Y., Gao, D., Wang, B., Chen, Z., Chen, W., Jiang, Y. Y., & Chen, Y. Z. (2018). NPASS: Natural product activity and species source database for natural product research, discovery and tool development. Nucleic Acids Research, 46(D1), D1217–D1222. https://doi.org/10.1093/nar/gkx1026
  • Zhang, J. S., Ding, J., Tang, Q. M., Li, M., Zhao, M., Lu, L. J., Chen, L. J., & Yuan, S. T. (1999). Synthesis and antitumour activity of novel diterpenequinone salvicine and the analogs. Bioorganic and Medicinal Chemistry Letters, 9(18), 2731–2736. https://doi.org/10.1016/S0960-894X(99)00472-2
  • Zhao, Q., Li, H., Zhu, L., Hu, S., Xi, X., Liu, Y., Liu, J., & Zhong, T. (2020). Bioinformatics analysis shows that TOP2A functions as a key candidate gene in the progression of cervical cancer. Biomedical Reports, 13(4), 1–10. https://doi.org/10.3892/br.2020.1328

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.