265
Views
3
CrossRef citations to date
0
Altmetric
Research Articles

Virtual screening and structure–activity relationship study of novel BTK inhibitors in Traditional Chinese Medicine for the treatment of rheumatoid arthritis

, , , &
Pages 15219-15233 | Received 31 Oct 2022, Accepted 26 Feb 2023, Published online: 13 Mar 2023

References

  • Amin, S. A., Banerjee, S., Ghosh, K., Gayen, S., & Jha, T. (2021). Protease targeted COVID-19 drug discovery and its challenges: Insight into viral main protease (Mpro) and papain-like protease (PLpro) inhibitors. Bioorganic and Medicinal Chemistry, 29, 115860. https://doi.org/10.1016/j.bmc.2020.115860
  • Arneson, L. C., Carroll, K. J., & Ruderman, E. M. (2021). Bruton’s Tyrosine kinase inhibition for the treatment of rheumatoid arthritis. ImmunoTargets and Therapy, 10, 333–342. https://doi.org/10.2147/itt.S288550
  • Baker, D. D., Chu, M., Oza, U., & Rajgarhia, V. (2007). The value of natural products to future pharmaceutical discovery. Natural Product Reports, 24(6), 1225–1244. https://doi.org/10.1039/b602241n
  • Boyle, P., Boniol, M., Koechlin, A., Robertson, C., Valentini, F., Coppens, K., Fairley, L.-L., Boniol, M., Zheng, T., Zhang, Y., Pasterk, M., Smans, M., Curado, M. P., Mullie, P., Gandini, S., Bota, M., Bolli, G. B., Rosenstock, J., & Autier, P. (2012). Diabetes and breast cancer risk: a meta-analysis. British Journal of Cancer, 107(9), 1608–1617. https://doi.org/10.1038/bjc.2012.414
  • Burmester, G. R., & Pope, J. E. (2017). Novel treatment strategies in rheumatoid arthritis. Lancet (London, England), 389(10086), 2338–2348. https://doi.org/10.1016/s0140-6736(17)31491-5
  • Caldwell, R. D., Qiu, H., Askew, B. C., Bender, A. T., Brugger, N., Camps, M., Dhanabal, M., Dutt, V., Eichhorn, T., Gardberg, A. S., Goutopoulos, A., Grenningloh, R., Head, J., Healey, B., Hodous, B. L., Huck, B. R., Johnson, T. L., Jones, C., Jones, R. C., … Liu-Bujalski, L. (2019). Discovery of evobrutinib: An oral, potent, and highly selective, covalent Bruton’s Tyrosine Kinase (BTK) inhibitor for the treatment of immunological diseases. Journal of Medicinal Chemistry, 62(17), 7643–7655. https://doi.org/10.1021/acs.jmedchem.9b00794
  • Chen, I. J., & Foloppe, N. (2008). Conformational sampling of druglike molecules with MOE and catalyst: implications for pharmacophore modeling and virtual screening. Journal of Chemical Information and Modeling, 48(9), 1773–1791. https://doi.org/10.1021/ci800130k
  • Elseginy, S. A., Oliveira, A. S. F., Shoemark, D. K., & Sessions, R. B. (2022). Identification and validation of novel microtubule suppressors with an imidazopyridine scaffold through structure-based virtual screening and docking. RSC Medicinal Chemistry, 13(8), 929–943. https://doi.org/10.1039/D1MD00392E
  • Gao, H. (2018). Predicting tyrosinase inhibition by 3D QSAR pharmacophore models and designing potential tyrosinase inhibitors from Traditional Chinese medicine database. Phytomedicine, 38, 145–157. https://doi.org/10.1016/j.phymed.2017.11.012
  • Han, W., Shi, Y., Su, J., Zhao, Z., Wang, X., Li, J., & Liu, H. (2020). Virtual screening and bioactivity evaluation of novel androgen receptor antagonists from Anti-PCa Traditional Chinese Medicine prescriptions. Frontiers in Chemistry, 8, 582861. https://doi.org/10.3389/fchem.2020.582861
  • Haselmayer, P., Camps, M., Liu-Bujalski, L., Nguyen, N., Morandi, F., Head, J., O'Mahony, A., Zimmerli, S. C., Bruns, L., Bender, A. T., Schroeder, P., & Grenningloh, R. (2019). Efficacy and pharmacodynamic modeling of the BTK inhibitor evobrutinib in autoimmune disease models. Journal of Immunology (Baltimore, Md. : 1950), 202(10), 2888–2906. https://doi.org/10.4049/jimmunol.1800583
  • Huang, Y., Li, M., Zhou, L., Xu, D., Qian, F., Zhang, J., & Zhou, X. (2019). Effects of Qingluo Tongbi decoction on gut flora of rats with adjuvant-induced arthritis and the underlying mechanism. Evidence-Based Complementary and Alternative Medicine : eCAM, 2019, 6308021. https://doi.org/10.1155/2019/6308021
  • Huang, D. N., Wu, F. F., Zhang, A. H., Sun, H., & Wang, X. J. (2021). Efficacy of berberine in treatment of rheumatoid arthritis: From multiple targets to therapeutic potential. Pharmacological Research, 169, 105667. https://doi.org/10.1016/j.phrs.2021.105667
  • Krishnan, E., Lingala, B., Bruce, B., & Fries, J. F. (2012). Disability in rheumatoid arthritis in the era of biological treatments. Annals of the Rheumatic Diseases, 71(2), 213–218. https://doi.org/10.1136/annrheumdis-2011-200354
  • Kumar, V., Parate, S., Zeb, A., Singh, P., Lee, G., Jung, T. S., Lee, K. W., Ha., & M. W., Danishuddin. (2022). 3D-QSAR-based pharmacophore modeling, virtual screening, and molecular dynamics simulations for the identification of spleen tyrosine kinase inhibitors. Frontiers in Cellular and Infection Microbiology, 12, 909111. https://doi.org/10.3389/fcimb.2022.909111
  • Li, W., Wang, K., Liu, Y., Wu, H., He, Y., Li, C., Wang, Q., Su, X., Yan, S., Su, W., Zhang, Y., & Lin, N. (2022). A novel drug combination of mangiferin and cinnamic acid alleviates rheumatoid arthritis by inhibiting TLR4/NFκB/NLRP3 activation-induced pyroptosis. Frontiers in Immunology, 13, 912933. https://doi.org/10.3389/fimmu.2022.912933
  • Lipinski, C. A., Lombardo, F., Dominy, B. W., & Feeney, P. J. (2001). Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Advanced Drug Delivery Reviews, 46(1–3), 3–26. https://doi.org/10.1016/s0169-409x(00)00129-0
  • Liu, J., Zhu, Y., He, Y., Zhu, H., Gao, Y., Li, Z., Zhu, J., Sun, X., Fang, F., Wen, H., & Li, W. (2020). Combined pharmacophore modeling, 3D-QSAR and docking studies to identify novel HDAC inhibitors using drug repurposing. Journal of Biomolecular Structure & Dynamics, 38(2), 533–547. https://doi.org/10.1080/07391102.2019.1590241
  • Lou, Y., Owens, T. D., Kuglstatter, A., Kondru, R. K., & Goldstein, D. M. (2012). Bruton’s tyrosine kinase inhibitors: Approaches to potent and selective inhibition, preclinical and clinical evaluation for inflammatory diseases and B cell malignancies. Journal of Medicinal Chemistry, 55(10), 4539–4550. https://doi.org/10.1021/jm300035p
  • Lu, T., & Chen, F. (2012). Multiwfn: a multifunctional wavefunction analyzer. Journal of Computational Chemistry, 33(5), 580–592. https://doi.org/10.1002/jcc.22885
  • Lu, X., Smaill, J. B., Patterson, A. V., & Ding, K. (2022). Discovery of cysteine-targeting covalent protein kinase inhibitors. Journal of Medicinal Chemistry, 65(1), 58–83. https://doi.org/10.1021/acs.jmedchem.1c01719
  • Lv, J., Wu, J., He, F., Qu, Y., Zhang, Q., & Yu, C. (2018). Development of Bruton’s tyrosine kinase inhibitors for rheumatoid arthritis. Current Medicinal Chemistry, 25(42), 5847–5859. https://doi.org/10.2174/0929867325666180316121951
  • Ma, C., Li, Q., Zhao, M., Fan, G., Zhao, J., Zhang, D., Yang, S., Zhang, S., Gao, D., Mao, L., Zhu, L., Li, W., Xu, G., Jiang, Y., & Ding, Q. (2021). Discovery of 1-amino-1H-imidazole-5-carboxamide derivatives as highly selective, covalent Bruton’s Tyrosine Kinase (BTK) inhibitors. Journal of Medicinal Chemistry, 64(21), 16242–16270. https://doi.org/10.1021/acs.jmedchem.1c01559
  • Marcotte, D. J., Liu, Y.-T., Arduini, R. M., Hession, C. A., Miatkowski, K., Wildes, C. P., Cullen, P. F., Hong, V., Hopkins, B. T., Mertsching, E., Jenkins, T. J., Romanowski, M. J., Baker, D. P., & Silvian, L. F. (2010). Structures of human Bruton’s tyrosine kinase in active and inactive conformations suggest a mechanism of activation for TEC family kinases. Protein Science, 19(3), 429–439. https://doi.org/10.1002/pro.321
  • Neese, F. (2022). Software update: The ORCA program system—Version 5.0. WIREs Computational Molecular Science, 12(5), e1606. https://doi.org/10.1002/wcms.1606
  • Neys, S. F. H., Rip, J., Hendriks, R. W., & Corneth, O. B. J. (2021). Bruton’s tyrosine kinase inhibition as an emerging therapy in systemic autoimmune disease. Drugs, 81(14), 1605–1626. https://doi.org/10.1007/s40265-021-01592-0
  • Parate, S., Kumar, V., Chan Hong, J., & Lee, K. W. (2022). Investigating natural compounds against oncogenic RET tyrosine kinase using pharmacoinformatic approaches for cancer therapeutics. RSC Advances, 12(2), 1194–1207. https://doi.org/10.1039/D1RA07328A
  • Prakash, P., Vijayasarathi, D., Selvam, K., Karthi, S., & Manivasagaperumal, R. (2021). Pharmacore maping based on docking, ADME/toxicity, virtual screening on 3,5-dimethyl-1,3,4-hexanetriol and dodecanoic acid derivates for anticancer inhibitors. Journal of Biomolecular Structure & Dynamics, 39(12), 4490–4500. https://doi.org/10.1080/07391102.2020.1778533
  • Punkvang, A., Saparpakorn, P., Hannongbua, S., Wolschann, P., & Pungpo, P. (2010). Elucidating drug-enzyme interactions and their structural basis for improving the affinity and potency of isoniazid and its derivatives based on computer modeling approaches. Molecules (Basel, Switzerland), 15(4), 2791–2813. https://doi.org/10.3390/molecules15042791
  • Radu, A. F., & Bungau, S. G. (2021). Management of rheumatoid arthritis: An overview. Cells, 10(11), 2857. https://doi.org/10.3390/cells10112857
  • Sakthivel, S., & Habeeb, S. K. M. (2018). Combined pharmacophore, virtual screening and molecular dynamics studies to identify Bruton’s tyrosine kinase inhibitors. Journal of Biomolecular Structure & Dynamics, 36(16), 4320–4337. https://doi.org/10.1080/07391102.2017.1415821
  • Salahinejad, M., & Ghasemi, J. B. (2014). 3D-QSAR studies on the toxicity of substituted benzenes to Tetrahymena pyriformis: CoMFA, CoMSIA and VolSurf approaches. Ecotoxicology and Environmental Safety, 105, 128–134. https://doi.org/10.1016/j.ecoenv.2013.11.019
  • Scott, D. L., Wolfe, F., & Huizinga, T. W. (2010). Rheumatoid arthritis. Lancet (London, England), 376(9746), 1094–1108. https://doi.org/10.1016/s0140-6736(10)60826-4
  • Sharma, A., & Thelma, B. K. (2019). Pharmacophore modeling and virtual screening in search of novel Bruton’s tyrosine kinase inhibitors. Journal of Molecular Modeling, 25(7), 179. https://doi.org/10.1007/s00894-019-4047-y
  • Smolen, J. S., Aletaha, D., & McInnes, I. B. (2016). Rheumatoid arthritis. Lancet (London, England), 388(10055), 2023–2038. https://doi.org/10.1016/s0140-6736(16)30173-8
  • Sparks, J. A. (2019). Rheumatoid arthritis. Annals of Internal Medicine, 170(1), Itc1–itc16. https://doi.org/10.7326/aitc201901010
  • Takagi, S., Naito, Y., Sano, C., & Ohta, R. (2022). Secondary failure of tocilizumab in treating elderly-onset rheumatoid arthritis with systemic symptoms complicated by diverticulum perforation. Cureus, 14(8), e28357. https://doi.org/10.7759/cureus.28357
  • Tasneem, S., Liu, B., Li, B., Choudhary, M. I., & Wang, W. (2019). Molecular pharmacology of inflammation: Medicinal plants as anti-inflammatory agents. Pharmacological Research, 139, 126–140. https://doi.org/10.1016/j.phrs.2018.11.001
  • Wu, N., Yuan, T., Yin, Z., Yuan, X., Sun, J., Wu, Z., Zhang, Q., Redshaw, C., Yang, S., & Dai, X. (2022). Network pharmacology and molecular docking study of the Chinese Miao medicine sidaxue in the treatment of rheumatoid arthritis. Drug Design, Development and Therapy, 16, 435–466. https://doi.org/10.2147/dddt.S330947
  • Ye, J., Xu, J., Li, Y., Huang, Q., Huang, J., Wang, J., Zhong, W., Lin, X., Chen, W., & Lin, X. (2017). DDAH1 mediates gastric cancer cell invasion and metastasis via Wnt/β-catenin signaling pathway. Molecular Oncology, 11(9), 1208–1224. https://doi.org/10.1002/1878-0261.12089
  • Zhao, Y., Yang, H., Wu, F., Luo, X., Sun, Q., Feng, W., Ju, X., & Liu, G. (2022). Exploration of N-arylsulfonyl-indole-2-carboxamide derivatives as novel fructose-1,6-bisphosphatase inhibitors by molecular simulation. International Journal of Molecular Sciences, 23(18), 10259. https://doi.org/10.3390/ijms231810259

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.