271
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Artificial intelligence based virtual screening study for competitive and allosteric inhibitors of the SARS-CoV-2 main protease

, & ORCID Icon
Pages 15286-15304 | Received 07 Dec 2022, Accepted 27 Feb 2023, Published online: 21 Mar 2023

References

  • Ahmed, W., Angel, N., Edson, J., Bibby, K., Bivins, A., O'Brien, J. W., Choi, P. M., Kitajima, M., Simpson, S. L., Li, J., Tscharke, B., Verhagen, R., Smith, W. J. M., Zaugg, J., Dierens, L., Hugenholtz, P., Thomas, K. V., & Mueller, J. F. (2020). First confirmed detection of SARS-CoV-2 in untreated wastewater in Australia: A proof of concept for the wastewater surveillance of COVID-19 in the community. The Science of the Total Environment, 728, 138764. https://doi.org/10.1016/j.scitotenv.2020.138764
  • Anand, K., Ziebuhr, J., Wadhwani, P., Mesters, J. R., & Hilgenfeld, R. (2003). Coronavirus main proteinase (3CLpro) Structure: Basis for design of anti-SARS drugs. Science, 300(5626), 1763–1767. https://doi.org/10.1126/SCIENCE.1085658/SUPPL_FILE/ANAND.SOM.PDF
  • Bauer, P., Hess, B., & Lindahl, E. (2022). GROMACS 2022.1 Manual. https://doi.org/10.5281/ZENODO.6451567
  • Beard, H., Cholleti, A., Pearlman, D., Sherman, W., & Loving, K. A. (2013). Applying physics-based scoring to calculate free energies of binding for single amino acid mutations in protein-protein complexes. PLoS One, 8(12), e82849. https://doi.org/10.1371/JOURNAL.PONE.0082849
  • Chen, S., Chen, L., Tan, J., Chen, J., Du, L., Sun, T., Shen, J., Chen, K., Jiang, H., & Shen, X. (2005). Severe acute respiratory syndrome coronavirus 3C-like proteinase N terminus is indispensable for proteolytic activity but not for enzyme dimerization. Biochemical and thermodynamic investigation in conjunction with molecular dynamics simulations. The Journal of Biological Chemistry, 280(1), 164–173. https://doi.org/10.1074/JBC.M408211200
  • Chen, S., Jonas, F., Shen, C., & Hilgenfeld, R. (2010). Liberation of SARS-CoV main protease from the viral polyprotein: N-terminal autocleavage does not depend on the mature dimerization mode. Protein & Cell, 1(1), 59–74. https://doi.org/10.1007/s13238-010-0011-4
  • Chen, S., Zhang, J., Hu, T., Chen, K., Jiang, H., & Shen, X. (2008). Residues on the dimer interface of SARS coronavirus 3C-like protease: Dimer stability characterization and enzyme catalytic activity analysis. Journal of Biochemistry, 143(4), 525–536. https://doi.org/10.1093/jb/mvm246
  • Chou, C. Y., Chang, H. C., Hsu, W. C., Lin, T. Z., Lin, C. H., & Chang, G. G. (2004). Quaternary structure of the severe acute respiratory syndrome (SARS) coronavirus main protease. Biochemistry, 43(47), 14958–14970. https://doi.org/10.1021/BI0490237
  • COVID Live - Coronavirus Statistics – Worldometer. (2022). https://www.worldometers.info/coronavirus/.
  • Current ICTV Taxonomy Release | ICTV. (2022). https://ictv.global/taxonomy.
  • Dai, W., Zhang, B., Jiang, X.-M., Su, H., Li, J., Zhao, Y., Xie, X., Jin, Z., Peng, J., Liu, F., Li, C., Li, Y., Bai, F., Wang, H., Cheng, X., Cen, X., Hu, S., Yang, X., Wang, J., … Liu, H. (2020). Structure-based design of antiviral drug candidates targeting the SARS-CoV-2 main protease. Science (New York, N.Y.), 368(6497), 1331–1335. https://doi.org/10.1126/science.abb4489
  • Deodato, D., Asad, N., & Dore, T. M. (2022). Discovery of 2-thiobenzimidazoles as noncovalent inhibitors of SARS-CoV-2 main protease. Bioorganic and Medicinal Chemistry Letters. 72, 128867. https://doi.org/10.1016/j.bmcl.2022.128867
  • Douguet, D. (2010). e-LEA3D: A computational-aided drug design web server. Nucleic Acids Research. 38(Web Server), W615–W621. https://doi.org/10.1093/nar/gkq322
  • Douguet, D., Munier-Lehmann, H., Labesse, G., & Pochet, S. (2005). LEA3D: A computer-aided ligand design for structure-based drug design. Journal of Medicinal Chemistry, 48(7), 2457–2468. https://doi.org/10.1021/jm0492296
  • Du, Q.-S., Wang, S.-Q., Zhu, Y., Wei, D.-Q., Guo, H., Sirois, S., & Chou, K.-C. (2004). Polyprotein cleavage mechanism of SARS CoV Mpro and chemical modification of the octapeptide. Peptides (N.Y), 25(11), 1857–1864. https://doi.org/10.1016/J.PEPTIDES.2004.06.018
  • El-Baba, T. J., Lutomski, C. A., Kantsadi, A. L., Malla, T. R., John, T., Mikhailov, V., Bolla, J. R., Schofield, C. J., Zitzmann, N., Vakonakis, I., & Robinson, C. V. (2020). Allosteric inhibition of the SARS-CoV-2 main protease: Insights from mass spectrometry based assays**. Angewandte Chemie, 132, 23750-23754. https://doi.org/10.1101/2020.07.29.226761
  • Estrada, E. (2020). Topological analysis of SARS CoV-2 main protease. Chaos (Woodbury, N.Y.), 30(6), 061102. https://doi.org/10.1063/5.0013029
  • Fan, K., Wei, P., Feng, Q., Chen, S., Huang, C., Ma, L., Lai, B., Pei, J., Liu, Y., Chen, J., & Lai, L. (2004). Biosynthesis, purification, and substrate specificity of severe acute respiratory syndrome coronavirus 3C-like proteinase *. The Journal of Biological Chemistry, 279(3), 1637–1642. https://doi.org/10.1074/JBC.M310875200
  • Friesner, R. A., Banks, J. L., Murphy, R. B., Halgren, T. A., Klicic, J. J., Mainz, D. T., Repasky, M. P., Knoll, E. H., Shelley, M., Perry, J. K., Shaw, D. E., Francis, P., & Shenkin, P. S. (2004). Glide: A new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. Journal of Medicinal Chemistry, 47(7), 1739–1749. https://doi.org/10.1021/JM0306430
  • Ge, R., Shen, Z., Yin, J., Chen, W., Zhang, Q., An, Y., Tang, D., Satz, A. L., Su, W., & Kuai, L. (2022). Discovery of SARS-CoV-2 main protease covalent inhibitors from a DNA-encoded library selection. SLAS Discovery : Advancing Life Sciences R & D, 27(2), 79–85. https://doi.org/10.1016/j.slasd.2022.01.001
  • Gentile, F., Yaacoub, J. C., Gleave, J., Fernandez, M., Ton, A.-T., Ban, F., Stern, A., & Cherkasov, A. (2022). Artificial intelligence–enabled virtual screening of ultra-large chemical libraries with deep docking. Nature Protocols, 17(3), 672–697. https://doi.org/10.1038/s41596-021-00659-2
  • Gordon, D. E., Jang, G. M., Bouhaddou, M., Xu, J., Obernier, K., White, K. M., O'Meara, M. J., Rezelj, V. V., Guo, J. Z., Swaney, D. L., Tummino, T. A., Hüttenhain, R., Kaake, R. M., Richards, A. L., Tutuncuoglu, B., Foussard, H., Batra, J., Haas, K., Modak, M., … Krogan, N. J. (2020). A SARS-CoV-2 protein interaction map reveals targets for drug repurposing. Nature, 583(7816), 459–468. https://doi.org/10.1038/s41586-020-2286-9
  • Greenwood, J. R., Calkins, D., Sullivan, A. P., & Shelley, J. C. (2010). Towards the comprehensive, rapid, and accurate prediction of the favorable tautomeric states of drug-like molecules in aqueous solution. Journal of Computer-Aided Molecular Design, 24(6–7), 591–604. Jun https://doi.org/10.1007/s10822-010-9349-1
  • Grottesi, A., Bešker, N., Emerson, A., Manelfi, C., Beccari, A. R., Frigerio, F., Lindahl, E., Cerchia, C., & Talarico, C. (2022). Computational studies of SARS-CoV-2 3CLpro: Insights from MD simulations. https://www.mdpi.com/781406
  • Günther, S., Reinke, P.Y., Fernández-García, Y., Lieske, J., Lane, T.J., Ginn, H.M., Koua, F.H., Ehrt, C., Ewert, W., Oberthuer, D., & Yefanov, O. (2021) X-ray screening identifies active site and allosteric inhibitors of SARS-CoV-2 main protease. Science, 372, 642–646.
  • Hakami, A. R., Bakheit, A. H., Almehizia, A. A., & Ghazwani, M. Y. (2022). Selection of SARS-CoV-2 main protease inhibitor using structure-based virtual screening. Future Medicinal Chemistry, 14(2), 61–79. https://doi.org/10.4155/fmc-2020-0380
  • Harder, E., Damm, W., Maple, J., Wu, C., Reboul, M., Xiang, J. Y., Wang, L., Lupyan, D., Dahlgren, M. K., Knight, J. L., Kaus, J. W., Cerutti, D. S., Krilov, G., Jorgensen, W. L., Abel, R., & Friesner, R. A. (2016). OPLS3: A force field providing broad coverage of drug-like small molecules and proteins. Journal of Chemical Theory and Computation, 12(1), 281–296. https://doi.org/10.1021/ACS.JCTC.5B00864/SUPPL_FILE/CT5B00864_SI_001.ZIP
  • Hariyono, P., Dwiastuti, R., Yusuf, M., Salin, N. H., & Hariono, M. (2022). 2-Phenoxyacetamide derivatives as SARS-CoV-2 main protease inhibitor: In silico studies. Results Chem, 4, 100263. https://doi.org/10.1016/j.rechem.2021.100263
  • Hemmati, S. A., & Tabein, S. (2022). Insect protease inhibitors; promising inhibitory compounds against SARS-CoV-2 main protease. Computers in Biology and Medicine. 142, 105228. Mar https://doi.org/10.1016/j.compbiomed.2022.105228
  • Hsu, W. C., Chang, H. C., Chou, C. Y., Tsai, P. J., Lin, P. I., & Chang, G. G. (2005). Critical assessment of important regions in the subunit association and catalytic action of the severe acute respiratory syndrome coronavirus main protease. The Journal of Biological Chemistry, 280(24), 22741–22748. https://doi.org/10.1074/JBC.M502556200
  • Huff, S., Kummetha, I. R., Tiwari, S. K., Huante, M. B., Clark, A. E., Wang, S., Bray, W., Smith, D., Carlin, A. F., Endsley, M., & Rana, T. M. (2022). Discovery and mechanism of SARS-CoV-2 main protease inhibitors. Journal of Medicinal Chemistry, 65(4), 2866–2879. https://doi.org/10.1021/acs.jmedchem.1c00566
  • Iftikhar, H., Ali, H. N., Farooq, S., Naveed, H., & Shahzad-Ul-Hussan, S. (2020). Identification of potential inhibitors of three key enzymes of SARS-CoV2 using computational approach. Computers in Biology and Medicine, 122, 103848. https://doi.org/10.1016/J.COMPBIOMED.2020.103848
  • Jiménez, J., Sabbadin, D., Cuzzolin, A., Martínez-Rosell, G., Gora, J., Manchester, J., Duca, J., & De Fabritiis, G. (2019). PathwayMap: Molecular pathway association with self-normalizing neural networks. Journal of Chemical Information and Modeling, 59(3), 1172–1181. https://doi.org/10.1021/acs.jcim.8b00711
  • Jin, Z., Du, X., Xu, Y., Deng, Y., Liu, M., Zhao, Y., Zhang, B., Li, X., Zhang, L., Peng, C., Duan, Y., Yu, J., Wang, L., Yang, K., Liu, F., Jiang, R., Yang, X., You, T., Liu, X., … Yang, H. (2020). Structure of Mpro from SARS-CoV-2 and discovery of its inhibitors. Nature, 582(7811), 289–293. https://doi.org/10.1038/s41586-020-2223-y
  • Jones, G., Willett, P., Glen, R. C., Leach, A. R., & Taylor, R. (1997). Development and validation of a genetic algorithm for flexible docking. Journal of Molecular Biology, 267(3), 727–748. https://doi.org/10.1006/jmbi.1996.0897
  • Jorgensen, W. L., Maxwell, D. S., & Tirado-Rives, J. (1996). Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids. Journal of the American Chemical Society, 118(45), 11225–11236. https://doi.org/10.1021/JA9621760/SUPPL_FILE/JA11225.PDF
  • Keillor, J. W., & Brown, R. S. (1992). Attack of Zwitterionic Ammonium Thiolates on a distorted anilide as a model for the acylation of papain by amides. A simple demonstration of a bell-shaped pH/rate profile. Journal of the American Chemical Society, 114(21), 7983–7989. https://doi.org/10.1021/JA00047A004/SUPPL_FILE/JA00047A004_SI_001.PDF
  • Kesari, P., Deshmukh, A., Pahelkar, N., Suryawanshi, A. B., Rathore, I., Mishra, V., Dupuis, J. H., Xiao, H., Gustchina, A., Abendroth, J., Labaied, M., Yada, R. Y., Wlodawer, A., Edwards, T. E., Lorimer, D. D., & Bhaumik, P. (2022). Structures of plasmepsin X from Plasmodium falciparum reveal a novel inactivation mechanism of the zymogen and molecular basis for binding of inhibitors in mature enzyme. Protein Science, 31(4), 882–899. https://doi.org/10.1002/pro.4279
  • Kitamura, N., Sacco, M. D., Ma, C., Hu, Y., Townsend, J. A., Meng, X., Zhang, F., Zhang, X., Ba, M., Szeto, T., Kukuljac, A., Marty, M. T., Schultz, D., Cherry, S., Xiang, Y., Chen, Y., & Wang, J. (2022). Expedited approach toward the rational design of noncovalent SARS-CoV-2 main protease inhibitors. Journal of Medicinal Chemistry, 65(4), 2848–2865. https://doi.org/10.1021/acs.jmedchem.1c00509
  • Kneller, D. W., Li, H., Phillips, G., Weiss, K. L., Zhang, Q., Arnould, M. A., Jonsson, C. B., Surendranathan, S., Parvathareddy, J., Blakeley, M. P., Coates, L., Louis, J. M., Bonnesen, P. V., & Kovalevsky, A. (2022). Covalent narlaprevir- and boceprevir-derived hybrid inhibitors of SARS-CoV-2 main protease. Nature Communications, 13(1), 11. https://doi.org/10.1038/s41467-022-29915-z
  • Korb, O., Stützle, T., & Exner, T. E. (2009). Empirical scoring functions for advanced protein-ligand docking with PLANTS. Journal of Chemical Information and Modeling, 49(1), 84–96. https://doi.org/10.1021/CI800298Z
  • Kozakov, D., Brenke, R., Comeau, S. R., & Vajda, S. (2006). PIPER: An FFT-based protein docking program with pairwise potentials. Proteins, 65(2), 392–406. https://doi.org/10.1002/PROT.21117
  • Kuzikov, M., Costanzi, E., Reinshagen, J., Esposito, F., Vangeel, L., Wolf, M., Ellinger, B., Claussen, C., Geisslinger, G., Corona, A., Iaconis, D., Talarico, C., Manelfi, C., Cannalire, R., Rossetti, G., Gossen, J., Albani, S., Musiani, F., Herzog, K., … Zaliani, A. (2021). Identification of inhibitors of SARS-CoV-2 3CL-Pro enzymatic activity using a small molecule in vitro repurposing screen. ACS Pharmacology & Translational Science, 4(3), 1096–1110. https://doi.org/10.1021/acsptsci.0c00216
  • Li, C., Qi, Y., Teng, X., Yang, Z., Wei, P., Zhang, C., Tan, L., Zhou, L., Liu, Y., & Lai, L. (2010). Maturation mechanism of severe acute respiratory syndrome (SARS) coronavirus 3C-like proteinase. The Journal of Biological Chemistry, 285(36), 28134–28140. https://doi.org/10.1074/jbc.M109.095851
  • Lu, C., Wu, C., Ghoreishi, D., Chen, W., Wang, L., Damm, W., Ross, G. A., Dahlgren, M. K., Russell, E., Von Bargen, C. D., Abel, R., Friesner, R. A., & Harder, E. D. (2021). OPLS4: Improving force field accuracy on challenging regimes of chemical space. Journal of Chemical Theory and Computation, 17(7), 4291–4300. https://doi.org/10.1021/ACS.JCTC.1C00302
  • Luttens, A., Gullberg, H., Abdurakhmanov, E., Vo, D. D., Akaberi, D., Talibov, V. O., Nekhotiaeva, N., Vangeel, L., De Jonghe, S., Jochmans, D., Krambrich, J., Tas, A., Lundgren, B., Gravenfors, Y., Craig, A. J., Atilaw, Y., Sandström, A., Moodie, L. W. K., Lundkvist, Å., … Carlsson, J. (2022). Ultralarge virtual screening identifies SARS-CoV-2 main protease inhibitors with broad-spectrum activity against coronaviruses. Journal of the American Chemical Society, 144(7), 2905–2920. https://doi.org/10.1021/jacs.1c08402
  • Ma, C., Sacco, M. D., Hurst, B., Townsend, J. A., Hu, Y., Szeto, T., Zhang, X., Tarbet, B., Marty, M. T., Chen, Y., & Wang, J. (2020). Boceprevir, GC-376, and calpain inhibitors II, XII inhibit SARS-CoV-2 viral replication by targeting the viral main protease. Cell Research, 30(8), 678–692. https://doi.org/10.1038/s41422-020-0356-z
  • Ma, X. R., Alugubelli, Y. R., Ma, Y., Vatansever, E. C., Scott, D. A., Qiao, Y., Yu, G., Xu, S., & Liu, W. R. (2022). MPI8 is potent against SARS-CoV-2 by inhibiting dually and selectively the SARS-CoV-2 main protease and the host Cathepsin L**. ChemMedChem. 17(1), e202100456. https://doi.org/10.1002/cmdc.202100456
  • Mengist, H. M., Fan, X., & Jin, T. (2020). Designing of improved drugs for COVID-19: Crystal structure of SARS-CoV-2 main protease Mpro. Signal Transduction and Targeted Therapy, 5(1), 1–2. https://doi.org/10.1038/s41392-020-0178-y
  • Morgan, H. L. (1965). The generation of a unique machine description for chemical structures—A technique developed at chemical abstracts service. Journal of Chemical Documentation, 5(2), 107–113. https://doi.org/10.1021/C160017A018/ASSET/C160017A018.FP.PNG_V03
  • Muramatsu, T., Kim, Y. T., Nishii, W., Terada, T., Shirouzu, M., & Yokoyama, S. (May 2013). Autoprocessing mechanism of severe acute respiratory syndrome coronavirus 3C-like protease (SARS-CoV 3CLpro) from its polyproteins. The FEBS Journal, 280(9), 2002–2013. https://doi.org/10.1111/FEBS.12222
  • Naqvi, A. A. T., Fatima, K., Mohammad, T., Fatima, U., Singh, I. K., Singh, A., Atif, S. M., Hariprasad, G., Hasan, G. M., & Hassan, M. I. (2020). Insights into SARS-CoV-2 genome, structure, evolution, pathogenesis and therapies: Structural genomics approach. Biochimica et Biophysica Acta - Molecular Basis of Disease, 1866(10), 165878. https://doi.org/10.1016/j.bbadis.2020.165878
  • Noske, G. D., Nakamura, A. M., Gawriljuk, V. O., Fernandes, R. S., Lima, G. M. A., Rosa, H. V. D., Pereira, H. D., Zeri, A. C. M., Nascimento, A. F. Z., Freire, M., Fearon, D., Douangamath, A., von Delft, F., Oliva, G., & Godoy, A. S. (2021). A crystallographic snapshot of SARS-CoV-2 main protease maturation process: SARS-CoV-2 Mpro maturation. Journal of Molecular Biology, 433(18), 167118. https://doi.org/10.1016/j.jmb.2021.167118
  • O'Boyle, N. M., Banck, M., James, C. A., Morley, C., Vandermeersch, T., & Hutchison, G. R. (2011). Open Babel: An open chemical toolbox. Journal of Cheminformatics, 3(1), 1–14. https://doi.org/10.1186/1758-2946-3-33/TABLES/2
  • Pathak, N., Chen, Y.-T., Hsu, Y.-C., Hsu, N.-Y., Kuo, C.-J., Tsai, H. P., Kang, J.-J., Huang, C.-H., Chang, S.-Y., Chang, Y.-H., Liang, P.-H., & Yang, J.-M. (2021). Uncovering flexible active site conformations of SARS-CoV-2 3CL proteases through protease pharmacophore clusters and COVID-19 drug repurposing. ACS Nano, 15(1), 857–872. https://doi.org/10.1021/acsnano.0c07383
  • Payne, S. (2017). Family coronaviridae. In Viruses (p. 149). Academic press. https://doi.org/10.1016/B978-0-12-803109-4.00017-9
  • Pillaiyar, T., Flury, P., Krüger, N., Su, H., Schäkel, L., Barbosa Da Silva, E., Eppler, O., Kronenberger, T., Nie, T., Luedtke, S., Rocha, C., Sylvester, K., Petry, M. R., McKerrow, J. H., Poso, A., Pöhlmann, S., Gütschow, M., O’Donoghue, A. J., Xu, Y., Müller, C. E., & Laufer, S. A. (2022). Small-molecule thioesters as SARS-CoV-2 main protease inhibitors: Enzyme inhibition, structure–activity relationships, antiviral activity, and X-ray structure determination. Journal of Medicinal Chemistry, 65(13), 9376–9395. https://doi.org/10.1021/acs.jmedchem.2c00636
  • Pillaiyar, T., Manickam, M., Namasivayam, V., Hayashi, Y., & Jung, S. H. (2016). An Overview of Severe Acute Respiratory Syndrome-Coronavirus (SARS-CoV) 3CL protease inhibitors: peptidomimetics and small molecule chemotherapy. Journal of Medicinal Chemistry, 59(14), 6595–6628. https://doi.org/10.1021/ACS.JMEDCHEM.5B01461
  • qpld manual - Google Search https://www.google.com/search?client=firefox-b-d&q=qpld+manual+.
  • Samrat, S. K., Xu, J., Xie, X., Gianti, E., Chen, H., Zou, J., Pattis, J. G., Elokely, K., Lee, H., Li, Z., Klein, M. L., Shi, P.-Y., Zhou, J., & Li, H. (2022). Allosteric inhibitors of the main protease of SARS-CoV-2. Antiviral Research, 205, 105381. https://doi.org/10.1016/j.antiviral.2022.105381
  • Sapundzhi, F., Prodanova, K., & Lazarova, M. (2019). Survey of the scoring functions for protein-ligand docking [Paper presentation]. In AIP Conference Proceedings, vol. 2172. https://doi.org/10.1063/1.5133601
  • Schrodinger. (2015). Schrödinger Press Glide User Manual Glide 6.7 User Manual Glide User Manual.
  • Schüttelkopf, A. W., & van Aalten, D. M. F. (2004). PRODRG: A tool for high-throughput crystallography of protein-ligand complexes. Acta Crystallographica. Section D, Biological Crystallography, 60(Pt 8), 1355–1363. https://doi.org/10.1107/S0907444904011679
  • Sencanski, M., Perovic, V., Pajovic, S. B., Adzic, M., Paessler, S., & Glisic, S. (2020). Drug repurposing for candidate SARS-CoV-2 main protease inhibitors by a novel in silico method. Molecules, 25(17), 3830. https://doi.org/10.3390/molecules25173830
  • Shelley, J. C., Cholleti, A., Frye, L. L., Greenwood, J. R., Timlin, M. R., & Uchimaya, M. (2007). Epik: A software program for pKa prediction and protonation state generation for drug-like molecules. Journal of Computer-Aided Molecular Design, 21(12), 681–691. https://doi.org/10.1007/s10822-007-9133-z
  • Shie, J.-J., Fang, J.-M., Kuo, T.-H., Kuo, C.-J., Liang, P.-H., Huang, H.-J., Wu, Y.-T., Jan, J.-T., Cheng, Y.-S E., & Wong, C.-H. (2005). Inhibition of the severe acute respiratory syndrome 3CL protease by peptidomimetic alpha,beta-unsaturated esters. Bioorganic & Medicinal Chemistry, 13(17), 5240–5252. https://doi.org/10.1016/J.BMC.2005.05.065
  • Shree, P., Mishra, P., Selvaraj, C., Singh, S. K., Chaube, R., Garg, N., & Tripathi, Y. B. (2022). Targeting COVID-19 (SARS-CoV-2) main protease through active phytochemicals of ayurvedic medicinal plants–Withania somnifera (Ashwagandha), Tinospora cordifolia (Giloy) and Ocimum sanctum (Tulsi)–a molecular docking study. Journal of Biomolecular Structure & Dynamics, 40(1), 190–203. https://doi.org/10.1080/07391102.2020.1810778
  • Tahir Ul Qamar, M., Alqahtani, S. M., Alamri, M. A., & Chen, L. L. (2020). Structural basis of SARS-CoV-2 3CL pro and anti-COVID-19 drug discovery from medicinal plants. Journal of Pharmaceutical Analysis, 10(4), 313–319. https://doi.org/10.1016/J.JPHA.2020.03.009
  • Tong, X., Liu, X., Tan, X., Li, X., Jiang, J., Xiong, Z., Xu, T., Jiang, H., Qiao, N., & Zheng, M. (2021). Generative models for de novo drug design. Journal of Medicinal Chemistry, 64(19), 14011–14027. https://doi.org/10.1021/acs.jmedchem.1c00927
  • Trott, O., & Olson, A. J. (2009). AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal of Computational Chemistry, 31(2), 455–461. https://doi.org/10.1002/jcc.21334
  • Ullrich, S., & Nitsche, C. (2020). The SARS-CoV-2 main protease as drug target. Bioorganic & Medicinal Chemistry Letters, 30(17), 127377. https://doi.org/10.1016/J.BMCL.2020.127377
  • Verma, S., & Pandey, A. K. (2021). Factual insights of the allosteric inhibition mechanism of SARS-CoV-2 main protease by quercetin: an in silico analysis. 3 Biotech, 11(2), 10. https://doi.org/10.1007/s13205-020-02630-6
  • Vuong, W., Khan, M. B., Fischer, C., Arutyunova, E., Lamer, T., Shields, J., Saffran, H. A., McKay, R. T., van Belkum, M. J., Joyce, M. A., Young, H. S., Tyrrell, D. L., Vederas, J. C., & Lemieux, M. J. (2020). Feline coronavirus drug inhibits the main protease of SARS-CoV-2 and blocks virus replication. Nature Communications, 11(1), 8. https://doi.org/10.1038/s41467-020-18096-2
  • Wang, Z., Sun, H., Yao, X., Li, D., Xu, L., Li, Y., Tian, S., & Hou, T. (2016). Comprehensive evaluation of ten docking programs on a diverse set of protein–ligand complexes: The prediction accuracy of sampling power and scoring power. Physical Chemistry Chemical Physics : PCCP, 18(18), 12964–12975. https://doi.org/10.1039/C6CP01555G
  • Xue, X., Yu, H., Yang, H., Xue, F., Wu, Z., Shen, W., Li, J., Zhou, Z., Ding, Y., Zhao, Q., Zhang, X. C., Liao, M., Bartlam, M., & Rao, Z. (2008). Structures of two coronavirus main proteases: Implications for substrate binding and antiviral drug design. Journal of Virology, 82(5), 2515–2527. https://doi.org/10.1128/JVI.02114-07
  • Yamamoto, N., Yang, R., Yoshinaka, Y., Amari, S., Nakano, T., Cinatl, J., Rabenau, H., Doerr, H. W., Hunsmann, G., Otaka, A., Tamamura, H., Fujii, N., & Yamamoto, N. (2004). HIV protease inhibitor nelfinavir inhibits replication of SARS-associated coronavirus. Available: https://www.sciencedirect.com/science/article/pii/S0006291X04008150?casa_token=GM70WnQOukUAAAAA:zB1V2tTIuiObkEqcppGNjlS0z4TZFNJO8AWPaENBLDRPZqa70oXvTJjKCOSHnyspDrnDKIQZY6PR
  • Yang, H., Yang, M., Ding, Y., Liu, Y., Lou, Z., Zhou, Z., Sun, L., Mo, L., Ye, S., Pang, H., Gao, G. F., Anand, K., Bartlam, M., Hilgenfeld, R., & Rao, Z. (2003). The crystal structures of severe acute respiratory syndrome virus main protease and its complex with an inhibitor. Proceedings of the National Academy of Sciences of the United States of America, 100(23), 13190–13195. https://doi.org/10.1073/PNAS.1835675100
  • Yoshino, R., Yasuo, N., & Sekijima, M. (2020). Identification of key interactions between SARS-CoV-2 main protease and inhibitor drug candidates. Scientific Reports, 10(1), 1–8. https://doi.org/10.1038/s41598-020-69337-9
  • Zhang, Y. Z., & Holmes, E. C. (2020). A genomic perspective on the origin and emergence of SARS-CoV-2. Cell, 181(2), 223–227. https://doi.org/10.1016/j.cell.2020.03.035
  • Zhang, L., Lin, D., Kusov, Y., Nian, Y., Ma, Q., Wang, J., von Brunn, A., Leyssen, P., Lanko, K., Neyts, J., de Wilde, A., Snijder, E. J., Liu, H., & Hilgenfeld, R. (2020). α-Ketoamides as broad-spectrum inhibitors of coronavirus and enterovirus replication: Structure-based design, synthesis, and activity assessment. Journal of Medicinal Chemistry, 63(9), 4562–4578. https://doi.org/10.1021/acs.jmedchem.9b01828
  • Zhang, L., Lin, D., Sun, X., Curth, U., Drosten, C., Sauerhering, L., Becker, S., Rox, K., & Hilgenfeld, R. (2020). Crystal structure of SARS-CoV-2 main protease provides a basis for design of improved a-ketoamide inhibitors. Science (New York, N.Y.), 368(6489), 409–412. https://doi.org/10.1126/SCIENCE.ABB3405/SUPPL_FILE/PAPV2.PDF
  • Zhang, X. W., & Yap, Y. L. (2004). Old drugs as lead compounds for a new disease? Binding analysis of SARS coronavirus main proteinase with HIV, psychotic and parasite drugs. https://www.sciencedirect.com/science/article/pii/S0968089604002214
  • Zhao, Y., Fang, C., Zhang, Q., Zhang, R., Zhao, X., Duan, Y., Wang, H., Zhu, Y., Feng, L., Zhao, J., Shao, M., Yang, X., Zhang, L., Peng, C., Yang, K., Ma, D., Rao, Z., & Yang, H. (2022). Crystal structure of SARS-CoV-2 main protease in complex with protease inhibitor PF-07321332. Protein & Cell, 13(9), 689–693. https://doi.org/10.1007/s13238-021-00883-2
  • Zhong, N., Zhang, S., Zou, P., Chen, J., Kang, X., Li, Z., Liang, C., Jin, C., & Xia, B. (2008). Without its N-finger, the main protease of severe acute respiratory syndrome coronavirus can form a novel dimer through its C-terminal domain. Journal of Virology, 82(9), 4227–4234. https://doi.org/10.1128/jvi.02612-07

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.