147
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Probing the interaction between niobium pentoxide nanoparticles and serum albumin proteins by Spectroscopic approaches

, &
Pages 15435-15445 | Received 05 Jul 2022, Accepted 01 Mar 2023, Published online: 17 Mar 2023

References

  • Al-Shabib, N. A., Khan, J. M., Alsenaidy, M. A., Alsenaidy, A. M., Khan, M. S., Husain, F. M., Khan, M. R., Naseem, M., Sen, P., Alam, P., & Khan, R. H. (2018). Unveiling the stimulatory effects of tartrazine on human and bovine serum albumin fibrillogenesis: Spectroscopic and microscopic study. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 191, 116–124. https://doi.org/10.1016/j.saa.2017.09.062
  • Amaravathy, P., Sowndarya, S., Sathyanarayanan, S., & Rajendran, N. (2014). Novel sol gel coating ofNb2O5 on magnesium alloy for biomedical applications. Surface and Coatings Technology, 244, 131–141. https://doi.org/10.1016/j.surfcoat.2014.01.050
  • Anandhi, S., Keerthika, D., Leo Edward, M., & Jaisankar, V. (2020). Synthesis and characterization of niobium oxide nanoparticles, polyindole and Nb2O5/polyindole nanocomposite. Asian Journal of Chemistry, 32, 653–658. https://doi.org/10.14233/ajchem.2020.22397
  • Banerjee, V., & Das, K. P. (2013). Interaction of silver nanoparticles with proteins : A characteristic protein concentration dependent profile of SPR signal. Colloids and Surfaces B: Biointerfaces, 111, 71–79. https://doi.org/10.1016/j.colsurfb.2013.04.052
  • Baral, A., Satish, L., Das, D. P., Sahoo, H., & Ghosh, M. K. (2017). Construing the interactions between MnO2 nanoparticle and bovine serum albumin: Insight into the structure and stability of a protein-nanoparticle complex. New Journal of Chemistry, 41, 8130–8139. https://doi.org/10.1039/C7NJ01227F
  • Baral, A., Satish, L., Das, D. P., Sahoo, H., & Ghosh, M. K. (2020). Molecular interactions of MnO2@RGO (manganese dioxide-reduced graphene oxide) nanocomposites with bovine serum albumin. Journal of Biomolecular Structure and Dynamics, 38, 2038–2046. https://doi.org/10.1080/07391102.2019.1640131
  • Basu, A., & Suresh Kumar, G. (2017). Binding and inhibitory effect of the dyes amaranth and tartrazine on amyloid fibrillation in lysozyme. The Journal of Physical Chemistry B, 121, 1222–1239. https://doi.org/10.1021/acs.jpcb.6b10465
  • Chakraborti, S., Chatterjee, T., Joshi, P., Poddar, A., Bhattacharyya, B., Singh, S. P., Gupta, V., & Chakrabarti, P. (2010). Structure and activity of lysozyme on binding to ZnO nanoparticles. Langmuir, 26, 3506–3513. https://doi.org/10.1021/la903118c
  • Chatterjee, S., & Mukherjee, T. K. (2014). Spectroscopic investigation of interaction between bovine serum albumin and amine-functionalized silicon quantum dots. Physical Chemistry Chemical Physics, 16, 8400–8408. https://doi.org/10.1039/c4cp00372a
  • Chen, Y. H., Yang, J. T., & Martinez, H. M. (1972). Determination of the secondary structures of proteins by circular dichroism and optical rotatory dispersion. Biochemistry, 11, 4120–4131. https://doi.org/10.1021/bi00772a015
  • Cristian, R. E., Mohammad, I. J., Mernea, M., Sbarcea, B. G., Trica, B., Stan, M. S., & Dinischiotu, A. (2019). Analyzing the interaction between two different types of nanoparticles and serum albumin. Materials, 12, 3183. https://doi.org/10.3390/ma12193183
  • De Paoli Lacerda, S. H., Park, J. J., Meuse, C., Pristinski, D., Becker, M. L., Karim, A., & Douglas, J. F. (2010). Interaction of gold nanoparticles with common human blood proteins. ACS Nano. 4, 365–379. https://doi.org/10.1021/nn9011187
  • Esfandfar, P., Falahati, M., & Saboury, A. A. (2016). Spectroscopic studies of interaction between CuO nanoparticles and bovine serum albumin. Journal of Biomolecular Structure and Dynamics, 34, 1962–1968. https://doi.org/10.1080/07391102.2015.1096213
  • Eskandari, N., Babadaei, M. M. N., Nikpur, S., Ghasrahmad, G., Attar, F., Heshmati, M., Akhtari, K., Sorkhabadi, S. M. R., Mousavi, S. E., & Falahati, M. (2018). Biophysical, docking, and cellular studies on the effects of cerium oxide nanoparticles on blood components: In vitro. International Journal of Nanomedicine, 13, 4575–4589. https://doi.org/10.2147/IJN.S172162
  • Fei, L., & Perrett, S. (2009). Effect of nanoparticles on protein folding and fibrillogenesis. International Journal of Molecular Sciences, 10, 646–655. https://doi.org/10.3390/ijms10020646
  • Fuchigami, T., & Kakimoto, K. I. (2016). Synthesis of niobium pentoxide nanoparticles in single-flow supercritical water. Japanese Journal of Applied Physics, 55, 10TB06. https://doi.org/10.7567/JJAP.55.10TB06
  • Greenfield, N., & Fasman, G. D. (1969). Computed circular dichroism spectra for the evaluation of protein conformation. Biochemistry, 8, 4108–4116. https://doi.org/10.1021/bi00838a031
  • Iranfar, H., Rajabi, O., Salari, R., & Chamani, J. (2012). Probing the interaction of human serum albumin with ciprofloxacin in the presence of silver nanoparticles of three sizes: Multispectroscopic and ζ potential investigation. The Journal of Physical Chemistry B, 116, 1951–1964. https://doi.org/10.1021/jp210685q
  • Jahanban-Esfahlan, A., & Panahi-Azar, V. (2016). Interaction of glutathione with bovine serum albumin: Spectroscopy and molecular docking. Food Chemistry, 202, 426–431. https://doi.org/10.1016/j.foodchem.2016.02.026
  • Jash, C., Basu, P., Payghan, P. V., Ghoshal, N., & Kumar, G. S. (2015). Chelerythrine-lysozyme interaction: Spectroscopic studies, thermodynamics and molecular modeling exploration. Physical Chemistry Chemical Physics, 17, 16630–16645. https://doi.org/10.1039/C5CP00424A
  • Karlinsey, R. L., Hara, A. T., Yi, K., & Duhn, C. W. (2006). Bioactivity of novel self-assembled crystalline Nb2O5 microstructures in simulated and human salivas. Biomedical Materials, 1, 16–23. https://doi.org/10.1088/1748-6041/1/1/003
  • Kim, Y., Ko, S. M., & Nam, J. M. (2016). Protein–nanoparticle interaction-induced changes in protein structure and aggregation. Chemistry - An Asian Journal, 11, 1869–1877. https://doi.org/10.1002/asia.201600236
  • Kopp, M., Kollenda, S., & Epple, M. (2017). Nanoparticle-protein interactions: Therapeutic approaches and supramolecular chemistry. Accounts of Chemical Research, 50, 1383–1390. https://doi.org/10.1021/acs.accounts.7b00051
  • Lakowicz, J. R. (1999). Principles of fluorescence spectroscopy. Springer US. https://doi.org/10.1007/978-1-4757-3061-6
  • Lakowicz, J. R. (2006). Principles of fluorescence spectroscopy (3rd ed.). Springer US. https://doi.org/10.1007/978-0-387-46312-4
  • Lakowicz, J. R., & Weber, G. (1973). Quenching of fluorescence by oxygen. A probe for structural fluctuations in macromolecules. Biochemistry, 12, 4161–4170. https://doi.org/10.1021/bi00745a020
  • Leitune, V. C. B., Collares, F. M., Takimi, A., Lima, G. B., de, Petzhold, C. L., Bergmann, C. P., & Samuel, S. M. W. (2013). Niobium pentoxide as a novel filler for dental adhesive resin. Journal of Dentistry, 41, 106–113. https://doi.org/10.1016/j.jdent.2012.04.022
  • Lloyd, J. B. F. (1971). Synchronized excitation of fluorescence emission spectra. Nature Physical Science, 231, 64–65. https://doi.org/10.1038/physci231064a0
  • Long, M., & Rack, H. (1998). Titanium alloys in total joint replacement—a materials science perspective. Biomaterials, 19, 1621–1639. https://doi.org/10.1016/S0142-9612(97)00146-4
  • Lopes, O. F., Paris, E. C., & Ribeiro, C. (2014). Synthesis of Nb2O5 nanoparticles through the oxidant peroxide method applied to organic pollutant photodegradation: A mechanistic study. Applied Catalysis B: Environmental, 144, 800–808. https://doi.org/10.1016/j.apcatb.2013.08.031
  • Lynch, I., & Dawson, K. A. (2008). Protein-nanoparticle interactions. Nano Today. 3, 40–47. https://doi.org/10.1016/S1748-0132(08)70014-8
  • Marins, N. H., Silva, R. M., Ferrua, C. P., Łukowiec, D., Barbosa, A. M., Ribeiro, J. S., Nedel, F., Zavareze, E. R., Tański, T., & Carreño, N. L. V. (2020). Fabrication of electrospun poly(lactic acid) nanoporous membrane loaded with niobium pentoxide nanoparticles as a potential scaffold for biomaterial applications. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 108, 1559–1567. https://doi.org/10.1002/jbm.b.34503
  • Millan, S., Kumar, A., Satish, L., Susrisweta, B., Dash, P., & Sahoo, H. (2018). Insights into the binding interaction between copper ferrite nanoparticles and bovine serum albumin: An effect on protein conformation and activity. Luminescence, 33, 990–998. https://doi.org/10.1002/bio.3499
  • Millan, S., Satish, L., Bera, K., & Sahoo, H. (2019). Binding and inhibitory effect of the food colorants Sunset Yellow and Ponceau 4R on amyloid fibrillation of lysozyme. New Journal of Chemistry, 43, 3956–3968. https://doi.org/10.1039/C8NJ05827J
  • Millan, S., Satish, L., Bera, K., Susrisweta, B., Singh, D. V., & Sahoo, H. (2017). A spectroscopic and molecular simulation approach toward the binding affinity between lysozyme and phenazinium dyes: An effect on protein conformation. The Journal of Physical Chemistry B, 121, 1475–1484. https://doi.org/10.1021/acs.jpcb.6b10991
  • Miller, J. N. (1979). Recent advances in molecular luminescence analysis. Proceedings of the Analytical Division of the Chemical Society, 16, 203–208.
  • Mishra, N. P., Lakoji, S., Mohapatra, S., Nayak, S., & Sahoo, H. (2021). A spectroscopic insight into the interaction of chromene 1,2,4-oxadiazole-based compounds with bovine serum albumin. Research on Chemical Intermediates, 47, 1181–1195. https://doi.org/10.1007/s11164-020-04323-4
  • Munishkina, L. A., & Fink, A. L. (2007). Fluorescence as a method to reveal structures and membrane-interactions of amyloidogenic proteins. Biochimica et Biophysica Acta (BBA) - Biomembranes, 1768, 1862–1885. https://doi.org/10.1016/j.bbamem.2007.03.015
  • Okazaki, Y., Nishimura, E., Nakada, H., & Kobayashi, K. (2001). Surface analysis of Ti–15Zr–4Nb–4Ta alloy after implantation in rat tibia. Biomaterials, 22, 599–607. https://doi.org/10.1016/S0142-9612(00)00221-0
  • Pace, C. N., Vajdos, F., Fee, L., Grimsley, G., & Gray, T. (1995). How to measure and predict the molar absorption coefficient of a protein. Protein Science, 4, 2411–2423. https://doi.org/10.1002/pro.5560041120
  • Patel, R., Maurya, N., Parray, M., Ud Din, Farooq, N., Siddique, A., Verma, K. L., & Dohare, N. (2018). Esterase activity and conformational changes of bovine serum albumin toward interaction with mephedrone: Spectroscopic and computational studies. Journal of Molecular Recognition, 31, e2734. https://doi.org/10.1002/jmr.2734
  • Peng, X., Wang, X., Qi, W., Su, R., & He, Z. (2016). Affinity of rosmarinic acid to human serum albumin and its effect on protein conformation stability. Food Chemistry, 192, 178–187. https://doi.org/10.1016/j.foodchem.2015.06.109
  • Peters, T. J. (1995). All about albumin: Biochemistry, genetics, and medical applications (1st ed.). Elsevier. https://doi.org/10.1016/B978-0-12-552110-9.X5000-4
  • Ramírez, G., Rodil, S. E., Arzate, H., Muhl, S., & Olaya, J. J. (2011). Niobium based coatings for dental implants. Applied Surface Science, 257, 2555–2559. https://doi.org/10.1016/j.apsusc.2010.10.021
  • Ranjbar, S., Shokoohinia, Y., Ghobadi, S., Bijari, N., Gholamzadeh, S., Moradi, N., Ashrafi-Kooshk, M. R., Aghaei, A., & Khodarahmi, R. (2013). Studies of the interaction between isoimperatorin and human serum albumin by multispectroscopic method : Identification of possible binding site of the compound using esterase activity of the protein. The Scientific World Journal, 2013, 1–13. https://doi.org/10.1155/2013/305081
  • Russo Krauss, I., Picariello, A., Vitiello, G., De Santis, A., Koutsioubas, A., Houston, J. E., Fragneto, G., & Paduano, L. (2020). Interaction with human serum proteins reveals biocompatibility of phosphocholine-functionalized SPIONs and formation of albumin-decorated nanoparticles. Langmuir, 36, 8777–8791. https://doi.org/10.1021/acs.langmuir.0c01083
  • Saha, B., Chowdhury, S., Sanyal, D., Chattopadhyay, K., & Suresh Kumar, G. (2018). Comparative study of toluidine blue O and methylene blue binding to lysozyme and their inhibitory effects on protein aggregation. ACS Omega, 3, 2588–2601. https://doi.org/10.1021/acsomega.7b01991
  • Sahoo, H., Roccatano, D., Zacharias, M., & Nau, W. M. (2006). Distance distributions of short polypeptides recovered by fluorescence resonance energy transfer in the 10 Å domain. Journal of the American Chemical Society, 128(25), 8118–8119. https://doi.org/10.1021/ja062293n
  • Satish, L., Millan, S., & Sahoo, H. (2017). Spectroscopic insight into the interaction of bovine serum albumin with imidazolium-based ionic liquids in aqueous solution. Luminescence, 32, 695–705. https://doi.org/10.1002/bio.3239
  • Satish, L., Millan, S., Bera, K., Mohapatra, S., & Sahoo, H. (2017). A spectroscopic and molecular dynamics simulation approach towards the stabilizing effect of ammonium-based ionic liquids on bovine serum albumin. New Journal of Chemistry, 41, 10712–10722. https://doi.org/10.1039/C7NJ02900D
  • Sehrawat, H., Kumar, N., Sood, D., Kumar, L., Tomar, R., Dass, S. K., & Chandra, R. (2020). Mechanistic interaction of triflate based noscapine ionic liquid with BSA: Spectroscopic and chemoinformatics approaches. Journal of Molecular Liquids, 315, 113695. https://doi.org/10.1016/j.molliq.2020.113695
  • Shikita, M., Fahey, J. W., Golden, T. R., Holtzclaw, W. D., & Talalay, P. (1999). An unusual case of “uncompetitive activation” by ascorbic acid: Purification and kinetic properties of a myrosinase from Raphanus sativus seedlings. Biochemical Journal, 341, 725–732. https://doi.org/10.1042/0264-6021:3410725
  • Sood, D., Kumar, N., Singh, A., Tomar, V., Dass, S. K., & Chandra, R. (2019). Deciphering the binding mechanism of noscapine with lysozyme: Biophysical and chemoinformatic approaches. ACS Omega, 4, 16233–16241. https://doi.org/10.1021/acsomega.9b02578
  • Stryer, L., & Haugland, R. P. (1967). Energy transfer: A spectroscopic ruler. Proceedings of the National Academy of Sciences of the United States of America, 58, 719–726. https://doi.org/10.1073/pnas.58.2.719
  • VandeVondele, S., Vörös, J., & Hubbell, J. A. (2003). RGD-grafted poly-l-lysine-graft-(polyethylene glycol) copolymers block non-specific protein adsorption while promoting cell adhesion. Biotechnology and Bioengineering, 82, 784–790. https://doi.org/10.1002/bit.10625
  • Velten, D., Eisenbarth, E., Schanne, N., & Breme, J. (2004). Biocompatible Nb2O5 thin films prepared by means of the sol–gel process. Journal of Materials Science: Materials in Medicine, 15, 457–461. https://doi.org/10.1023/B:JMSM.0000021120.86985.f7
  • Wang, Y. Q., Zhang, H. M., Zhou, Q. H., & Xu, H. L. (2009). A study of the binding of colloidal Fe3O4 with bovine hemoglobin using optical spectroscopy. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 337, 102–108. https://doi.org/10.1016/j.colsurfa.2008.12.003
  • Xu, X., Tian, B., Zhang, S., Kong, J., Zhao, D., & Liu, B. (2004). Electrochemistry and biosensing reactivity of heme proteins adsorbed on the structure-tailored mesoporous Nb2O5 matrix. Analytica Chimica Acta, 519, 31–38. https://doi.org/10.1016/j.aca.2004.05.061
  • Yang, Q., Liang, J., & Han, H. (2009). Probing the interaction of magnetic iron oxide nanoparticles with bovine serum albumin by spectroscopic techniques. The Journal of Physical Chemistry B, 113, 10454–10458. https://doi.org/10.1021/jp904004w
  • Zhang, Y. Z., Xiang, X., Mei, P., Dai, J., Zhang, L. L., & Liu, Y. (2009). Spectroscopic studies on the interaction of Congo Red with bovine serum albumin. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 72, 907–914. https://doi.org/10.1016/j.saa.2008.12.007

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.