302
Views
2
CrossRef citations to date
0
Altmetric
Research Articles

Novel multi-epitope vaccine against bovine brucellosis: approach from immunoinformatics to expression

, &
Pages 15460-15484 | Received 03 Nov 2022, Accepted 02 Mar 2023, Published online: 16 Mar 2023

References

  • Adams, L. G., Khare, S., Lawhon, S. D., Rossetti, C. A., Lewin, H. A., Lipton, M. S., et al. (2011). Enhancing the role of veterinary vaccines reducing zoonotic diseases of humans: Linking systems biology with vaccine development. Vaccine, 29(41), 7197–7206.
  • Amet, N., Lee, H. F., & Shen, W. C. (2009). Insertion of the designed helical linker led to increased expression of tf-based fusion proteins. Pharmaceutical Research, 26(3), 523–528.
  • Benítez-Serrano, J. C., Palomares-Resendiz, G., Díaz-Aparicio, E., Hernández-Castro, R., Martínez-Pérez, L., Suárez-Güemes, F., et al. (2022). Survival of Brucella abortus RB51 and S19 vaccine strains in fresh and ripened cheeses.
  • Bowden, R. A., Estein, S. M., Zygmunt, M. S., Dubray, G., & Cloeckaert, A. (2000). Identification of protective outer membrane antigens of Brucella ovis by passive immunization of mice with monoclonal antibodies. Microbes and Infection, 2(5), 481–488.
  • Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72(1), 248–254.
  • Cassataro, J., Estein, S. M., Pasquevich, K. A., Velikovsky, C. A., de la Barrera, S., Bowden, R., Fossati, C. A., & Giambartolomei, G. H. (2005). Vaccination with the recombinant Brucella outer membrane protein 31 or a derived 27-amino-acid synthetic peptide elicits a CD4+ T helper 1 response that protects against Brucella melitensis infection. Infection and Immunity, 73(12), 8079–8088. https://doi.org/10.1128/IAI.73.12.8079-8088.2005
  • Cassataro, J., Velikovsky, C. A., Bruno, L., Estein, S. M., de la Barrera, S., Bowden, R., et al. (2007). Improved immunogenicity of a vaccination regimen combining a DNA vaccine encoding Brucella melitensis outer membrane protein 31 (Omp31) and recombinant Omp31 boosting. Clinical and Vaccine Immunology: CVI, 14(7), 869–874.
  • Cassataro, J., Velikovsky, C. A., de la Barrera, S., Estein, S. M., Bruno, L., & Bowden, R. (2005). A DNA vaccine coding for the Brucella outer membrane protein 31 confers protection against B. melitensis and B. ovis infection by eliciting a specific cytotoxic response. Infection and Immunity, 73(10), 6537–6546.
  • Chen, X., Zaro, J. L., & Shen, W.-C. (2013). Fusion protein linkers: Property, design and functionality. Advanced Drug Delivery Reviews, 65(10), 1357–1369.
  • de Figueiredo, P., Ficht, T. A., Rice-Ficht, A., Rossetti, C. A., & Adams, L. G. (2015). Pathogenesis and immunobiology of Brucellosis: Review of Brucella–host interactions. The American Journal of Pathology, 185(6), 1505–1517. https://doi.org/10.1016/j.ajpath.2015.03.003
  • Dean, A. S., Crump, L., Greter, H., Hattendorf, J., Schelling, E., & Zinsstag, J. (2012). Clinical manifestations of human brucellosis: A systematic review and meta-analysis. PLoS Neglected Tropical Diseases, 6(12), e1929. https://doi.org/10.1371/journal.pntd.0001929
  • Estein, S. M., Cheves, P. C., Fiorentino, M. A., Cassataro, J., Paolicchi, F. A., & Bowden, R. A. (2004). Immunogenicity of recombinant Omp31 from Brucella melitensis in rams and serum bactericidal activity against B. ovis. Veterinary Microbiology, 102(3-4), 203–213.
  • Franco, M. P., Mulder, M., Gilman, R. H., & Smits, H. L. (2007). Human brucellosis. The Lancet Infectious Diseases, 7(12), 775–786.
  • Gheibi Hayat, S.-M., Mousavi Gargari, S.-L., & Nazarian, S. (2016). Construction and immunogenic properties of a chimeric protein comprising CfaE, CfaB and LTB against Enterotoxigenic Escherichia coli. Biologicals, 44(6), 503–510.
  • Golshani, M., Amani, M., Siadat, S. D., Nejati-Moheimani, M., Arsang, A., & Bouzari, S. (2018). Comparison of the protective immunity elicited by a Brucella cocktail protein vaccine (rL7/L12 + rTOmp31 + rSOmp2b) in two different adjuvant formulations in BALB/c mice. Molecular Immunology, 103, 306–311.
  • Gomes, M. T., Campos, P. C., Pereira, G. d S., Bartholomeu, D. C., Splitter, G., & Oliveira, S. C. (2016). TLR9 is required for MAPK/NF-κB activation but does not cooperate with TLR2 or TLR6 to induce host resistance to Brucella abortus. Journal of Leukocyte Biology, 99(5), 771–780.
  • He, C. Y., Yang, J. H., Ye, Y. B., Zhao, H. L., Liu, M. Z., Yang, Q. L., et al. (2022). Proteomic and antibody profiles reveal antigenic composition and signatures of bacterial ghost vaccine of Brucella abortus A19. Frontiers in Immunology, 13, 874871.
  • Kar, T., Narsaria, U., Basak, S., Deb, D., Castiglione, F., Mueller, D. M., et al. (2020). A candidate multi-epitope vaccine against SARS-CoV-2. Scientific Reports, 10(1), 10895.
  • Ke, Y., Wang, Y., Li, W., & Chen, Z. (2015). Type IV secretion system of Brucella spp. and its effectors. Frontiers in Cellular and Infection Microbiology, 5, 72.
  • Khurana, S. K., Sehrawat, A., Tiwari, R., Prasad, M., Gulati, B., Shabbir, M. Z., et al. (2021). Bovine brucellosis – a comprehensive review. Veterinary Quarterly, 41(1), 61–88.
  • Kurar, E., & Splitter, G. A. (1997). Nucleic acid vaccination of Brucella abortus ribosomal L7/L12 gene elicits immune response. Vaccine, 15(17–18), 1851–1857.
  • Li, J., Hu, F., Chen, S., Luo, P., He, Z., Wang, W., et al. (2017). Characterization of novel Omp31 antigenic epitopes of Brucella melitensis by monoclonal antibodies. BMC Microbiology, 17(1), 115.
  • Li, M., Zhu, Y., Niu, C., Xie, X., Haimiti, G., Guo, W., et al. (2022). Design of a multi-epitope vaccine candidate against Brucella melitensis. Scientific Reports, 12(1), 10146.
  • Li, Z., Wang, S., Wei, S., Yang, G., Zhang, C., Xi, L., et al. (2022). Immunization with a combination of recombinant Brucella abortus proteins induces T helper immune response and confers protection against wild-type challenge in BALB/c mice. Microbial Biotechnology, 15(6), 1811–1823.
  • Livingston, B., Crimi, C., Newman, M., Higashimoto, Y., Appella, E., & Sidney, J. (2002). A rational strategy to design multiepitope immunogens based on multiple Th lymphocyte epitopes. The Journal of Immunology, 168(11), 5499.
  • Low, H. H., Gubellini, F., Rivera-Calzada, A., Braun, N., Connery, S., Dujeancourt, A., et al. (2014). Structure of a type IV secretion system. Nature, 508(7497), 550–553.
  • Luo, D., Ni, B., Li, P., Shi, W., Zhang, S., Han, Y., Mao, L., He, Y., Wu, Y., & Wang, X. (2006). Protective immunity elicited by a divalent DNA vaccine encoding both the L7/L12 and Omp16 genes of Brucella abortus in BALB/c mice. Infection and Immunity, 74(5), 2734–2741.
  • Ma, X., Liu, Y., Li, Q., Liu, L., Yi, L., Ma, L., et al. (2016). Expression, purification and identification of a thermolysin-like protease, neutral protease I, from Aspergillus oryzae with the Pichia pastoris expression system. Protein Expression and Purification, 128, 52–59.
  • Mahdevar, E., Kefayat, A., Safavi, A., Behnia, A., Hejazi, S. H., Javid, A., et al. (2021). Immunoprotective effect of an in silico designed multiepitope cancer vaccine with BORIS cancer-testis antigen target in a murine mammary carcinoma model. Scientific Reports, 11(1), 23121.
  • Mahdevar, E., Safavi, A., Abiri, A., Kefayat, A., Hejazi, S. H., Miresmaeili, S. M., et al. (2022). Exploring the cancer-testis antigen BORIS to design a novel multi-epitope vaccine against breast cancer based on immunoinformatics approaches. Journal of Biomolecular Structure and Dynamics, 40(14), 6363–6380.
  • Maisonneuve, C., Bertholet, S., Philpott, D. J., De., & Gregorio, E. (2014). Unleashing the potential of NOD- and Toll-like agonists as vaccine adjuvants. Proceedings of the National Academy of Sciences, 111(34), 12294.
  • Mansour, A. A., Mousavi, S. L., Rasooli, I., Nazarian, S., Amani, J., & Farhadi, N. (2010). Cloning, high level expression and immunogenicity of 1163-1256 residues of C-terminal heavy chain of C. botulinum neurotoxin type E. Biologicals, 38(2), 260–264.
  • Masjedian, Jezi, F., Razavi, S., Mirnejad, R., & Zamani, K. (2019). Immunogenic and protective antigens of Brucella as vaccine candidates. Comparative Immunology, Microbiology and Infectious Diseases, 65, 29–36.
  • Mohammadzadeh Hosseini Moghri, S. A. H., Ranjbar, M., Hassannia, H., & Khakdan, F. (2022). In silico analysis of the conserved surface-exposed epitopes to design novel multiepitope peptide vaccine for all variants of the SARS-CoV-2. Journal of Biomolecular Structure and Dynamics, 42, 1–13.
  • Moyle, P. M. (2017). Biotechnology approaches to produce potent, self-adjuvanting antigen-adjuvant fusion protein subunit vaccines. Biotechnology Advances, 35(3), 375–389.
  • Moyle, P. M., & Toth, I. (2013). Modern subunit vaccines: Development, components, and research opportunities. ChemMedChem. 8(3), 360–376.
  • Nezafat, N., Ghasemi, Y., Javadi, G., Khoshnoud, M. J., & Omidinia, E. (2014). A novel multi-epitope peptide vaccine against cancer: An in silico approach. Journal of Theoretical Biology, 349, 121–134.
  • Nezafat, N., Karimi, Z., Eslami, M., Mohkam, M., Zandian, S., & Ghasemi, Y. (2016). Designing an efficient multi-epitope peptide vaccine against Vibrio cholerae via combined immunoinformatics and protein interaction based approaches. Computational Biology and Chemistry, 62, 82–95.
  • Nazifi, N., Tahmoorespur, M., Sekhavati, M. H., Haghparast, A., & Behroozikhah, A. M. (2019). In vivo immunogenicity assessment and vaccine efficacy evaluation of a chimeric tandem repeat of epitopic region of OMP31 antigen fused to interleukin 2 (IL-2) against Brucella melitensis in BALB/c mice. BMC Veterinary Research, 15(1), 402.
  • Oliveira, S. C., Giambartolomei, G. H., & Cassataro, J. (2011). Confronting the barriers to develop novel vaccines against brucellosis. Expert Review of Vaccines, 10(9), 1291–1305. https://doi.org/10.1586/erv.11.110
  • Oliveira, S. C., & Splitter, G. A. (1996). Immunization of mice with recombinant L7/L12 ribosomal protein confers protection against Brucella abortus infection. Vaccine, 14(10), 959–962.
  • Olsen, S. C., & Stoffregen, W. S. (2005). Essential role of vaccines in brucellosis control and eradication programs for livestock. Expert Review of Vaccines, 4(6), 915–928. https://doi.org/10.1586/14760584.4.6.915
  • Oliveira, S. C., Zhu, Y., & Splitter, G. A. (1994). Recombinant L7/L12 ribosomal protein and gamma-irradiated Brucella abortus induce a T-helper 1 subset response from murine CD4+ T cells. Immunology, 83(4), 659–664.
  • Paul, S., Peddayelachagiri, B. V., Nagaraj, S., Kingston, J. J., & Batra, H. V. (2018). Recombinant outer membrane protein 25c from Brucella abortus induces Th1 and Th2 mediated protection against Brucella abortus infection in mouse model. Molecular Immunology, 99, 9–18.
  • Petersen, T. N., Brunak, S., von Heijne, G., & Nielsen, H. (2011). SignalP 4.0: Discriminating signal peptides from transmembrane regions. Nature Methods, 8(10), 785–786.
  • Rahmani, A., Baee, M., Rostamtabar, M., Karkhah, A., Alizadeh, S., Tourani, M., et al. (2019). Development of a conserved chimeric vaccine based on helper T-cell and CTL epitopes for induction of strong immune response against Schistosoma mansoni using immunoinformatics approaches. International Journal of Biological Macromolecules, 141, 125–136.
  • Rajendhran, J. (2021). Genomic insights into Brucella. Infection, Genetics and Evolution, 87, 104635. https://doi.org/10.1016/j.meegid.2020.104635
  • Rhyner, C., Kündig, T., Akdis, C. A., & Crameri, R. (2007). Targeting the MHC II presentation pathway in allergy vaccine development. Biochemical Society Transactions, 35(4), 833–834.
  • Rolán, H. G., den Hartigh, A. B., Kahl-McDonagh, M., Ficht, T., Adams, L. G., & Tsolis, R. M. (2008). VirB12 is a serological marker of Brucella infection in experimental and natural hosts. Clinical and Vaccine Immunology, 15(2), 208–214.
  • Rossi, A. H., Farias, A., Fernández, J. E., Bonomi, H. R., Goldbaum, F. A., Berguer, P. M., & Brucella, s (2015). Lumazine synthase induces a TLR4-mediated protective response against B16 melanoma in mice. PLoS One, 10(5), e0126827.
  • Safavi, A., Kefayat, A., Abiri, A., Mahdevar, E., Behnia, A. H., & Ghahremani, F. (2019). In silico analysis of transmembrane protein 31 (TMEM31) antigen to design novel multiepitope peptide and DNA cancer vaccines against melanoma. Molecular Immunology, 112, 93–102.
  • Safavi, A., Kefayat, A., Mahdevar, E., Abiri, A., & Ghahremani, F. (2020). Exploring the out of sight antigens of SARS-CoV-2 to design a candidate multi-epitope vaccine by utilizing immunoinformatics approaches. Vaccine, 38(48), 7612–7628.
  • Safavi, A., Kefayat, A., Mahdevar, E., Ghahremani, F., Nezafat, N., & Modarressi, M. H. (2021). Efficacy of co-immunization with the DNA and peptide vaccines containing SYCP1 and ACRBP epitopes in a murine triple-negative breast cancer model. Human Vaccines & Immunotherapeutics, 17(1), 22–34.
  • Safavi, A., Kefayat, A., Sotoodehnejadnematalahi, F., Salehi, M., & Modarressi, M. H. (2019a). In silico analysis of synaptonemal complex protein 1 (SYCP1) and acrosin binding protein (ACRBP) antigens to design novel multiepitope peptide cancer vaccine against breast cancer. International Journal of Peptide Research and Therapeutics, 25(4), 1343–1359.
  • Safavi, A., Kefayat, A., Sotoodehnejadnematalahi, F., Salehi, M., & Modarressi, M. H. (2019b). Production, purification, and in vivo evaluation of a novel multiepitope peptide vaccine consisted of immunodominant epitopes of SYCP1 and ACRBP antigens as a prophylactic melanoma vaccine. International Immunopharmacology, 76, 105872.
  • Sarmadi, M., & Gheibi, A. (2022). Design and characterization of a recombinant Brucella abortus RB51 vaccine that elicits enhanced T cell-mediated immune response. Vaccines, 10(3), 388.
  • Schmidt, A. F., Joshi, R., Gordillo-Marañón, M., Drenos, F., Charoen, P., Giambartolomei, C., Bis, J. C., Gaunt, T. R., Hughes, A. D., Lawlor, D. A., Wong, A., Price, J. F., Chaturvedi, N., Wannamethee, G., Franceschini, N., Kivimaki, M., Hingorani, A. D., & Finan, C. (2023). Lipoproteins, not lipopolysaccharide, are the key mediators of the proinflammatory response elicited by heat-killed Brucella abortus. Communications Medicine, 3(1), 9–42. https://doi.org/10.1038/s43856-022-00234-0
  • Sebt, M. V., Jafari, S., Khavaninzadeh, M., & Shavandi, A. (2022). Diagnosis of brucellosis disease using data mining: A case study on patients of a hospital in Tehran. Journal of Microbiological Methods, 199, 106530. https://doi.org/10.1016/j.mimet.2022.106530
  • Shey, R. A., Ghogomu, S. M., Esoh, K. K., Nebangwa, N. D., Shintouo, C. M., Nongley, N. F., et al. (2019). In-silico design of a multi-epitope vaccine candidate against onchocerciasis and related filarial diseases. Scientific Reports, 9(1), 4409.
  • Shojaei, M., Tahmoorespur, M., Soltani, M., & Sekhavati, M. H. (2018). Immunogenicity evaluation of plasmids encoding Brucella melitensis Omp25 and Omp31 antigens in BALB/c mice. Iranian Journal of Basic Medical Sciences, 21(9), 957–964.
  • Solanki, V., Tiwari, M., & Tiwari, V. (2019). Prioritization of potential vaccine targets using comparative proteomics and designing of the chimeric multi-epitope vaccine against Pseudomonas aeruginosa. Scientific Reports, 9(1), 5240.
  • Stavnezer, J., & Schrader, C. E. (2014). IgH chain class switch recombination: Mechanism and regulation. The Journal of Immunology, 193(11), 5370–5378.
  • Suárez-Esquivel, M., Ruiz-Villalobos, N., Castillo-Zeledón, A., Jiménez-Rojas, C., Roop Ii, R. M., Comerci, D. J., Barquero-Calvo, E., Chacón-Díaz, C., Caswell, C. C., Baker, K. S., Chaves-Olarte, E., Thomson, N. R., Moreno, E., Letesson, J. J., De Bolle, X., & Guzmán-Verri, C. (2016). Brucella abortus strain 2308 wisconsin genome: Importance of the definition of reference strains. Frontiers in Microbiology, 7, 1557. https://doi.org/10.3389/fmicb.2016.01557
  • Tabynov, K., Yespembetov, B., & Sansyzbay, A. (2014). Novel vector vaccine against Brucella abortus based on influenza A viruses expressing Brucella L7/L12 or Omp16 proteins: Evaluation of protection in pregnant heifers. Vaccine, 32(45), 5889–5892. https://doi.org/10.1016/j.vaccine.2014.08.073
  • Tan, S. Y., & Davis, C. (2011). David Bruce (1855-1931): Discoverer of brucellosis. Singapore Medical Journal, 52(3), 138–139.
  • Thompson, J. D., Higgins, D. G., & Gibson, T. J. (1994). CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Research, 22(22), 4673–4680.
  • Tibor, A., Decelle, B., & Letesson, J. J. (1999). Outer membrane proteins Omp10. Infection and Immunity, 67(9), 4960–4962.
  • Tibor, A., Weynants, V., Denoel, P., Lichtfouse, B., De, Bolle, X., Saman, E., et al. (1994). Molecular cloning, nucleotide sequence, and occurrence of a 16.5-kilodalton outer membrane protein of Brucella abortus with similarity to pal lipoproteins. Infection and Immunity, 62(9), 3633–3639.
  • Tubiana, T., Carvaillo, J. C., Boulard, Y., & Bressanelli, S. (2018). TTClust: A versatile molecular simulation trajectory clustering program with graphical summaries. Journal of Chemical Information and Modeling, 58(11), 2178–2182.
  • Verma, S., Sugadev, R., Kumar, A., Chandna, S., Ganju, L., & Bansal, A. (2018). Multi-epitope DnaK peptide vaccine against S.Typhi: An in silico approach. Vaccine, 36(28), 4014–4022.
  • Vizcaino, N., Cloeckaert, A., Zygmunt, M. S., & Dubray, G. (1996). Cloning, nucleotide sequence, and expression of the Brucella melitensis omp31 gene coding for an immunogenic major outer membrane protein. Infection and Immunity, 64(9), 3744–3751.
  • Vizcaino, N., Kittelberger, R., Cloeckaert, A., Marin, C. M., & Fernandez-Lago, L. (2001). Minor nucleotide substitutions in the omp31 gene of Brucella ovis result in antigenic differences in the major outer membrane protein that it encodes compared to those of the other Brucella species. Infection and Immunity, 69(11), 7020–7028.
  • Wang, Q. M., Sun, S. H., Hu, Z. L., Zhou, F. J., Yin, M., Xiao, C. J., et al. (2004). Epitope DNA vaccines against tuberculosis: spacers and ubiquitin modulates cellular immune responses elicited by epitope DNA vaccine. Scandinavian Journal of Immunology, 60(3), 219–225.
  • Wang, S., Zhao, X., Sun, K., Bateer, H., & Wang, W. (2022). The genome sequence of Brucella abortus vaccine strain A19 provides insights on its virulence attenuation compared to Brucella abortus strain 9-941. Gene, 830, 146521.
  • Yang, X., Skyberg, J. A., Cao, L., Clapp, B., Thornburg, T., & Pascual, D. W. (2013). Progress in Brucella vaccine development. Frontiers in Biology, 8(1), 60–77. https://doi.org/10.1007/s11515-012-1196-0
  • Yazdani, Z., Rafiei, A., Irannejad, H., Yazdani, M., & Valadan, R. (2022). Designing a novel multiepitope peptide vaccine against melanoma using immunoinformatics approach. Journal of Biomolecular Structure and Dynamics, 40(7), 3312–3324.
  • Yin, D., Li, L., Song, D., Liu, Y., Ju, W., Song, X., Wang, J., Pang, B., Xu, K., & Li, J. (2016). A novel recombinant multi-epitope protein against Brucella melitensis infection. Immunology Letters, 175, 1–7.
  • Zhu, L., Wang, Q., Wang, Y., Xu, Y., Peng, D., Huang, H., et al. (2020). Comparison of immune effects between Brucella recombinant Omp10-Omp28-L7/L12 proteins expressed in eukaryotic and Prokaryotic Systems. Frontiers in Veterinary Science, 7, 576.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.