150
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Immunoinformatics aided approach for predicting potent cytotoxic T cell epitopes of respiratory syncytial virus

, , &
Pages 12093-12105 | Received 18 Oct 2022, Accepted 27 Dec 2022, Published online: 19 Mar 2023

References

  • Altschul, S. F., Gish, W., Miller, W., Myers, E. W., & Lipman, D. J. (1990). Basic local alignment search tool. Journal of Molecular Biology, 215(3), 403–410. https://doi.org/10.1016/S0022-2836(05)80360-2
  • Bashir, U., Nisar, N., Mahmood, N., Alam, M. M., Sadia, H., & Zaidi, S. S. Z. (2017). Molecular detection and characterization of respiratory syncytial virus B genotypes circulating in Pakistani children. Infection, Genetics and Evolution : Journal of Molecular Epidemiology and Evolutionary Genetics in Infectious Diseases, 47, 125–131. https://doi.org/10.1016/j.meegid.2016.11.024
  • Battles, M. B., & McLellan, J. S. (2019). Respiratory syncytial virus entry and how to block it. Nature Reviews Microbiology, 17(4), 233–245.
  • Berendsen, H. J. C., Postma, J. P. M., van, Van Gunsteren, W. F., DiNola, A., & Haak, J. R. (1984). Molecular dynamics with coupling to an external bath. The Journal of Chemical Physics, 81(8), 3684–3690.
  • Bockova, J., O’Brien, K. L., Oski, J., Croll, J., Reid, R., Weatherholtz, R. C., Santosham, M., & Karron, R. A. (2002). Respiratory syncytial virus infection in Navajo and White Mountain Apache children. Pediatrics, 110(2 Pt 1), e20-e20. https://doi.org/10.1542/peds.110.2.e20
  • Calis, J. J. A., Maybeno, M., Greenbaum, J. A., Weiskopf, D., De Silva, A. D., Sette, A., Keşmir, C., & Peters, B. (2013). Properties of MHC class I presented peptides that enhance immunogenicity. PLoS Computational Biology, 9(10), e1003266.
  • Chang, J., Srikiatkhachorn, A., & Braciale, T. J. (2001). Visualization and characterization of respiratory syncytial virus F-specific CD8 + T cells during experimental virus infection. The Journal of Immunology, 167(8), 4254–4260. https://doi.org/10.4049/jimmunol.167.8.4254
  • Chauhan, V., Rungta, T., Goyal, K., & Singh, M. P. (2019). Designing a multi-epitope based vaccine to combat Kaposi Sarcoma utilizing immunoinformatics approach. Scientific Reports, 9(1), 1–15.
  • Dey, J., Mahapatra, S. R., Lata, S., Patro, S., Misra, N., & Suar, M. (2022). Exploring Klebsiella pneumoniae capsule polysaccharide proteins to design multiepitope subunit vaccine to fight against pneumonia. Expert Review of Vaccines, 21(4), 569–587.
  • Dey, J., Mahapatra, S. R., Patnaik, S., Lata, S., Kushwaha, G. S., Panda, R. K., Misra, N., & Suar, M. (2022). Molecular characterization and designing of a novel multiepitope vaccine construct against Pseudomonas aeruginosa. International Journal of Peptide Research and Therapeutics, 28(2), 1–19.
  • Dey, J., Mahapatra, S. R., Raj, T. K., Kaur, T., Jain, P., Tiwari, A., Patro, S., Misra, N., & Suar, M. (2022). Designing a novel multi-epitope vaccine to evoke a robust immune response against pathogenic multidrug-resistant Enterococcus faecium bacterium. Gut Pathogens, 14(1), 1–20.
  • Dey, J., Mahapatra, S. R., Singh, P., Patro, S., Kushwaha, G. S., Misra, N., & Suar, M. (2021). B and T cell epitope-based peptides predicted from clumping factor protein of Staphylococcus aureus as vaccine targets. Microbial Pathogenesis, 160, 105171.
  • Dimitrov, I., Flower, D. R., & Doytchinova, I. (2013). AllerTOP-a server for in silico prediction of allergens. BMC Bioinformatics, 14(6), 1–9.
  • Doytchinova, I. A., & Flower, D. R. (2007). VaxiJen: A server for prediction of protective antigens, tumour antigens and subunit vaccines. BMC Bioinformatics, 8(1), 1–7.
  • Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Petersson, G. A., & Nakatsuji, H. (2016). Gaussian 16 Revision A. 03. Gaussian Inc. 2(3), 4.
  • Gotz, A. W., Williamson, M. J., Xu, D., Poole, D., Le Grand, S., & Walker, R. C. (2012). Routine microsecond molecular dynamics simulations with AMBER on GPUs. 1. Generalized born. Journal of Chemical Theory and Computation, 8(5), 1542–1555.
  • Gupta, S., Kapoor, P., Chaudhary, K., Gautam, A., Kumar, R., & Raghava, G. P. S. (2013). In silico approach for predicting toxicity of peptides and proteins. PLoS One, 8(9), e73957.
  • Hornak, V., Abel, R., Okur, A., Strockbine, B., Roitberg, A., & Simmerling, C. (2006). Comparison of multiple Amber force fields and development of improved protein backbone parameters. Proteins: Structure, Function, and Bioinformatics, 65(3), 712–725.
  • Hurwitz, J. L. (2011). Respiratory syncytial virus vaccine development. Expert Review of Vaccines, 10(10), 1415–1433. https://doi.org/10.1586/erv.11.120
  • Jaberolansar, N., Toth, I., Young, P. R., & Skwarczynski, M. (2016). Recent advances in the development of subunit-based RSV vaccines. Expert Review of Vaccines, 15(1), 53–68.
  • Jha, A., Jarvis, H., Fraser, C., & Openshaw, P. J. M. (2016). Respiratory syncytial virus. ERS Monograph, 2016(9781849840705), 84–109. https://doi.org/10.1183/2312508X.10010315
  • Johnson, T. R., & Graham, B. S. (1999). Secreted respiratory syncytial virus G glycoprotein induces interleukin-5 (IL-5), IL-13, and eosinophilia by an IL-4-independent mechanism. Journal of Virology, 73(10), 8485–8495. https://doi.org/10.1128/jvi.73.10.8485-8495.1999
  • Kar, T., Narsaria, U., Basak, S., Deb, D., Castiglione, F., Mueller, D. M., & Srivastava, A. P. (2020). A candidate multi-epitope vaccine against SARS-CoV-2. Scientific Reports, 10(1), 1–24.
  • Khan, A., Junaid, M., Kaushik, A. C., Ali, A., Ali, S. S., Mehmood, A., & Wei, D.-Q. (2018). Computational identification, characterization and validation of potential antigenic peptide vaccines from hrHPVs E6 proteins using immunoinformatics and computational systems biology approaches. PLoS One, 13(5), e0196484.
  • Kim, Y., Ponomarenko, J., Zhu, Z., Tamang, D., Wang, P., Greenbaum, J., Lundegaard, C., Sette, A., Lund, O., Bourne, P. E., Nielsen, M., & Peters, B. (2012). Immune epitope database analysis resource. Nucleic Acids Research, 40(W1), 525–530. https://doi.org/10.1093/nar/gks438
  • Kneyber, M. C., & Kimpen, J. L. (2004). Advances in respiratory syncytial virus vaccine development. Current Opinion in Investigational Drugs (London, England: 2000), 5(2), 163–170.
  • Larsen, M. V., Lundegaard, C., Lamberth, K., Buus, S., Lund, O., & Nielsen, M. (2007). Large-scale validation of methods for cytotoxic T-lymphocyte epitope prediction. BMC Bioinformatics, 8(1), 1–12.
  • Lewis, F. A., Rae, M. L., Lehmann, N. I., & Ferris, A. A. (1961). A syncytial virus associated with epidemic disease of the lower respiratory tract in infants and young children. Medical Journal of Australia, 2(24), 932–933.
  • Mahapatra, S. R., Dey, J., Jaiswal, A., Roy, R., Misra, N., & Suar, M. (2022). Immunoinformatics-guided designing of epitope-based subunit vaccine from Pilus assembly protein of Acinetobacter baumannii bacteria. Journal of Immunological Methods, 508, 113325. https://doi.org/10.1016/j.jim.2022.113325
  • Mahapatra, S. R., Dey, J., Kaur, T., Sarangi, R., Bajoria, A. A., Kushwaha, G. S., Misra, N., & Suar, M. (2021). Immunoinformatics and molecular docking studies reveal a novel Multi-Epitope peptide vaccine against pneumonia infection. Vaccine, 39(42), 6221–6237.
  • Mahapatra, S. R., Dey, J., Kushwaha, G. S., Puhan, P., Mohakud, N. K., Panda, S. K., Lata, S., Misra, N., & Suar, M. (2021). Immunoinformatic approach employing modeling and simulation to design a novel vaccine construct targeting MDR efflux pumps to confer wide protection against typhoidal Salmonella serovars. Journal of Biomolecular Structure and Dynamics, 40(22), 11809–11821.
  • Maier, J. A., Martinez, C., Kasavajhala, K., Wickstrom, L., Hauser, K. E., & Simmerling, C. (2015). ff14SB: Improving the accuracy of protein side chain and backbone parameters from ff99SB. Journal of Chemical Theory and Computation, 11(8), 3696–3713.
  • Maleki, A., Russo, G., Parasiliti Palumbo, G. A., & Pappalardo, F. (2021). In silico design of recombinant multi-epitope vaccine against influenza A virus. BMC Bioinformatics, 22(14), 1–19.
  • Mbawuike, I. N., Wells, J., Byrd, R., Cron, S. G., Glezen, W. P., & Piedra, P. A. (2001). HLA-restricted CD8+ cytotoxic T lymphocyte, interferon-γ, and interleukin-4 responses to respiratory syncytial virus infection in infants and children. Journal of Infectious Diseases, 183(5), 687–696. https://doi.org/10.1086/318815
  • McLellan, J. S., Yang, Y., Graham, B. S., & Kwong, P. D. (2011). Structure of respiratory syncytial virus fusion glycoprotein in the postfusion conformation reveals preservation of neutralizing epitopes. Journal of Virology, 85(15), 7788.
  • McMurry, J., Sbai, H., Gennaro, M. L., Carter, E. J., Martin, W., & De Groot, A. S. (2005). Analyzing Mycobacterium tuberculosis proteomes for candidate vaccine epitopes. Tuberculosis (Edinburgh, Scotland), 85(1–2), 95–105. https://doi.org/10.1016/j.tube.2004.09.005
  • Mohan, M., Haribalaganesh, R., Coico, R., & Sundar, K. (2018). HLA-directed bioinformatics approach for genome-wide mapping of dengue CTL epitopes. Future Virology, 13(5), 331–342. https://doi.org/10.2217/fvl-2017-0157
  • Mora, M., Veggi, D., Santini, L., Pizza, M., & Rappuoli, R. (2003). Reverse vaccinology. Drug Discovery Today, 8(10), 459–464.
  • Morris, G. M., Huey, R., Lindstrom, W., Sanner, M. F., Belew, R. K., Goodsell, D. S., & Olson, A. J. (2009). AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. Journal of Computational Chemistry, 30(16), 2785–2791.
  • Negahdaripour, M., Nezafat, N., Eslami, M., Ghoshoon, M. B., Shoolian, E., Najafipour, S., Morowvat, M. H., Dehshahri, A., Erfani, N., & Ghasemi, Y. (2018). Structural vaccinology considerations for in silico designing of a multi-epitope vaccine. Infection, Genetics and Evolution : Journal of Molecular Epidemiology and Evolutionary Genetics in Infectious Diseases, 58, 96–109. https://doi.org/10.1016/j.meegid.2017.12.008
  • Nicholas, J. A., Rubino, K. L., Levely, M. E., Adams, E. G., & Collins, P. L. (1990). Cytolytic T-lymphocyte responses to respiratory syncytial virus: Effector cell phenotype and target proteins. Journal of Virology, 64(9), 4232–4241. https://doi.org/10.1128/jvi.64.9.4232-4241.1990
  • Otieno, J. R., Kamau, E. M., Agoti, C. N., Lewa, C., Otieno, G., Bett, A., Ngama, M., Cane, P. A., & Nokes, D. J. (2017). Spread and evolution of respiratory syncytial virus A genotype ON1, Coastal Kenya, 2010–2015. Emerging Infectious Diseases, 23(2), 264.
  • Peters, B., Bulik, S., Tampe, R., van Endert, P. M., & Holzhütter, H.-G. (2003). Identifying MHC class I epitopes by predicting the TAP transport efficiency of epitope precursors. The Journal of Immunology, 171(4), 1741–1749. https://doi.org/10.4049/jimmunol.171.4.1741
  • Prince, G. A., Capiau, C., Deschamps, M., Fabry, L., Garçon, N., Gheysen, D., Prieels, J.-P., Thiry, G., Van Opstal, O., & Porter, D. D. (2000). Efficacy and safety studies of a recombinant chimeric respiratory syncytial virus FG glycoprotein vaccine in cotton rats. Journal of Virology, 74(22), 10287–10292.
  • Qamar, M. T. U., Shokat, Z., Muneer, I., Ashfaq, U. A., Javed, H., Anwar, F., Bari, A., Zahid, B., & Saari, N. (2020). Multiepitope-based subunit vaccine design and evaluation against respiratory syncytial virus using reverse vaccinology approach. Vaccines, 8(2), 1–27. https://doi.org/10.3390/vaccines8020288
  • Rappuoli, R., Bottomley, M. J., D’Oro, U., Finco, O., & De Gregorio, E. (2016). Reverse vaccinology 2.0: Human immunology instructs vaccine antigen design. Journal of Experimental Medicine, 213(4), 469–481.
  • Rock, M. T., McKinney, B. A., Yoder, S. M., Prudom, C. E., Wright, D. W., & Crowe, J. E. (2011). Identification of potential human respiratory syncytial virus and metapneumovirus T cell epitopes using computational prediction and MHC binding assays. Journal of Immunological Methods, 374(1–2), 13–17. https://doi.org/10.1016/j.jim.2011.08.004
  • Rosendahl Huber, S., van Beek, J., de Jonge, J., Luytjes, W., & van Baarle, D. (2014). T cell responses to viral infections–opportunities for peptide vaccination. Frontiers in Immunology, 5, 171.
  • Russell, C. D., Unger, S. A., Walton, M., & Schwarze, J. (2017). The human immune response to respiratory syncytial virus infection. Clinical Microbiology Reviews, 30(2), 481–502. https://doi.org/10.1128/CMR.00090-16
  • Rutigliano, J. A., & Graham, B. S. (2004). Prolonged production of TNF-α exacerbates illness during respiratory syncytial virus infection. The Journal of Immunology, 173(5), 3408–3417.
  • Salomon-Ferrer, R., Gotz, A. W., Poole, D., Le Grand, S., & Walker, R. C. (2013). Routine microsecond molecular dynamics simulations with AMBER on GPUs. 2. Explicit solvent particle mesh Ewald. Journal of Chemical Theory and Computation, 9(9), 3878–3888.
  • Shao, H. Y., Lin, Y. W., Yu, S. L., Lin, H. Y., Chitra, E., Chang, Y. C., Sia, C., Chong, P., Hsu, M. T., Wei, O. L., & Chow, Y. H. (2011). Immunoprotectivity of HLA-A2 CTL peptides derived from respiratory syncytial virus fusion protein in HLA-A2 transgenic mouse. PLoS One, 6(9), e25500. https://doi.org/10.1371/journal.pone.0025500
  • Simmons, C. P., Hussell, T., Sparer, T., Walzl, G., Openshaw, P., & Dougan, G. (2001). Mucosal delivery of a respiratory syncytial virus CTL peptide with enterotoxin-based adjuvants elicits protective, immunopathogenic, and immunoregulatory antiviral CD8+ T cell responses. The Journal of Immunology, 166(2), 1106–1113.
  • Simoes, E. A. F., Tan, D. H. S., Ohlsson, A., Sales, V., & Wang, E. E. L. (2001). Respiratory syncytial virus vaccine: A systematic overview with emphasis on respiratory syncytial virus subunit vaccines. Vaccine, 20(5–6), 954–960.
  • Srikiatkhachorn, A., & Braciale, T. J. (1997). Virus-specific CD8+ T lymphocytes downregulate T helper cell type 2 cytokine secretion and pulmonary eosinophilia during experimental murine respiratory syncytial virus infection. The Journal of Experimental Medicine, 186(3), 421–432.
  • Tenzer, S., Peters, B., Bulik, S., Schoor, O., Lemmel, C., Schatz, M. M., Kloetzel, P.-M., Rammensee, H.-G., Schild, H., & Holzhütter, H.-G. (2005). Modeling the MHC class I pathway by combining predictions of proteasomal cleavage, TAP transport and MHC class I binding. Cellular and Molecular Life Sciences CMLS, 62(9), 1025–1037.
  • Trott, O., & Olson, A. J. (2009). Software news and update AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function. Efficient Optimization, and Multithreading. Journal of Computational Chemistry, 32, 174–182. https://doi.org/10.1002/jcc
  • Vivekanandam, R., Rajagopalan, K., Jeevanandam, M., Ganesan, H., Jagannathan, V., Selvan Christyraj, J. D., Kalimuthu, K., Selvan Christyraj, J. R. S., & Mohan, M. (2021). Designing of cytotoxic T lymphocyte-based multi-epitope vaccine against SARS-CoV2: A reverse vaccinology approach. Journal of Biomolecular Structure and Dynamics, 40(24), 1–16.
  • Wang, J., Wang, W., Kollman, P. A., & Case, D. A. (2006). Automatic atom type and bond type perception in molecular mechanical calculations. Journal of Molecular Graphics and Modelling, 25(2), 247–260.
  • Yang, X., & Yu, X. (2009). An introduction to epitope prediction methods and software. Reviews in Medical Virology, 19(2), 77–96.
  • Yao, Y., Huang, W., Yang, X., Sun, W., Liu, X., Cun, W., & Ma, Y. (2013). HPV-16 E6 and E7 protein T cell epitopes prediction analysis based on distributions of HLA-A loci across populations: An in silico approach. Vaccine, 31(18), 2289–2294. https://doi.org/10.1016/j.vaccine.2013.02.065

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.