460
Views
3
CrossRef citations to date
0
Altmetric
Research Articles

MERS virus spike protein HTL-epitopes selection and multi-epitope vaccine design using computational biology

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 12464-12479 | Received 04 Jul 2022, Accepted 03 Jan 2023, Published online: 19 Mar 2023

References

  • Kuriata, A., Gierut, A. M., Oleniecki, T., Ciemny, M. P., Kolinski, A., Kurcinski, M., & Kmiecik, S. (2018). CABS-flex 2.0: A web server for fast simulations of flexibility of protein structures. Nucleic Acids Research, 46(W1), W338–W343. https://doi.org/10.1093/nar/gky356
  • Abraham Peele, K., Srihansa, T., Krupanidhi, S., Ayyagari, V. S., & Venkateswarulu, T. C. (2021). Design of multi-epitope vaccine candidate against SARS-CoV-2: a in-silico study. Journal of Biomolecular Structure and Dynamics, 39(10), 3793–3801. https://doi.org/10.1080/07391102.2020.1770127
  • Adam, K. M. (2021). Immunoinformatics approach for multi-epitope vaccine design against structural proteins and ORF1a polyprotein of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). Tropical Diseases, Travel Medicine and Vaccines, 7(1), 22. https://doi.org/10.1186/s40794-021-00147-1
  • Akhtar, N., Joshi, A., Singh, J., & Kaushik, V. (2021). Design of a novel and potent multivalent epitope based human cytomegalovirus peptide vaccine: An immunoinformatics approach. Journal of Molecular Liquids, 335, 116586. https://doi.org/10.1016/j.molliq.2021.116586
  • Al Johani, S., & Hajeer, A. H. (2016). MERS-CoV diagnosis: An update. Journal of Infection and Public Health, 9(3), 216–219. https://doi.org/10.1016/j.jiph.2016.04.005
  • Alenazi, T. H., & Arabi, Y. M. (2022). Severe Middle East respiratory syndrome (MERS) pneumonia. Encyclopedia of Respiratory Medicine, 362–372.
  • Alhabbab, R. Y., Algaissi, A., Mahmoud, A. B., Alkayyal, A. A., Al-Amri, S., Alfaleh, M. A., Basabrain, M., Alsubki, R. A., Almarshad, I. S., Alhudaithi, A. M., Gafari, O. A. A., Alshamlan, Y. A., Aldossari, H. M., Alsafi, M. M., Bukhari, A., Bajhmom, W., Memish, Z. A., Alsalem, W., & Hashem, A. M. (2022). MERS-CoV infection elicits long-lasting specific antibody, T and B cell immune responses in recovered individuals. Clinical Infectious Diseases,76(3), e308–e318. https://doi.org/10.1093/cid/ciac456
  • Alsolamy, S., & Arabi, Y. M. (2015). Infection with Middle East respiratory syndrome coronavirus. Canadian Journal of Respiratory Therapy, 51(4), 102. https://www.ncbi.nlm.nih.gov/pubmed/26566382
  • Bibi, S., Ullah, I., Zhu, B., Adnan, M., Liaqat, R., Kong, W.-B., & Niu, S. (2021). In silico analysis of epitope-based vaccine candidate against tuberculosis using reverse vaccinology. Scientific Reports, 11(1), 1249. https://doi.org/10.1038/s41598-020-80899-6
  • Borkotoky, S., Banerjee, M., Modi, G. P., & Dubey, V. K. (2021). Identification of high affinity and low molecular alternatives of boceprevir against SARS-CoV-2 main protease: A virtual screening approach. Chemical Physics Letters, 770, 138446. https://doi.org/10.1016/j.cplett.2021.138446
  • Bosaeed, M., Balkhy, H. H., Almaziad, S., Aljami, H. A., Alhatmi, H., Alanazi, H., Alahmadi, M., Jawhary, A., Alenazi, M. W., Almasoud, A., Alanazi, R., Bittaye, M., Aboagye, J., Albaalharith, N., Batawi, S., Folegatti, P., Ramos Lopez, F., Ewer, K., Almoaikel, K., … Khalaf Alharbi, N. (2022). Safety and immunogenicity of ChAdOx1 MERS vaccine candidate in healthy Middle Eastern adults (MERS002): An open-label, non-randomised, dose-escalation, phase 1b trial. Lancet Microbe, 3(1), e11–e20. https://doi.org/10.1016/S2666-5247(21)00193-2
  • Buchan, D. W. A., & Jones, D. T. (2019). The PSIPRED Protein Analysis Workbench: 20 years on. Nucleic Acids Research, 47(W1), W402–W407. https://doi.org/10.1093/nar/gkz297
  • Castiglione, F., Mantile, F., De Berardinis, P., & Prisco, A. (2012). How the interval between prime and boost injection affects the immune response in a computational model of the immune system. Computational and Mathematical Methods in Medicine, 2012, 842329. https://doi.org/10.1155/2012/842329
  • Cauchemez, S., Nouvellet, P., Cori, A., Jombart, T., Garske, T., Clapham, H., Moore, S., Mills, H. L., Salje, H., Collins, C., Rodriquez-Barraquer, I., Riley, S., Truelove, S., Algarni, H., Alhakeem, R., AlHarbi, K., Turkistani, A., Aguas, R. J., Cummings, D. A., … Ferguson, N. M. (2016). Unraveling the drivers of MERS-CoV transmission. Proceedings of the National Academy of Sciences of United States of America, 113(32), 9081–9086. https://doi.org/10.1073/pnas.1519235113
  • Choi, J. A., Goo, J., Yang, E., Jung, D. I., Lee, S., Rho, S., Jeong, Y., Park, Y. S., Park, H., Moon, Y. H., Park, U., Seo, S. H., Lee, H., Lee, J. M., Cho, N. H., Song, M., & Kim, J. O. (2020). Cross-protection against MERS-CoV by prime-boost vaccination using viral spike DNA and protein. Journal of Virology, 94(24), e01176-20. https://doi.org/10.1128/JVI.01176-20
  • Deng, Y., Lan, J., Bao, L., Huang, B., Ye, F., Chen, Y., Yao, Y., Wang, W., Qin, C., & Tan, W. (2018). Enhanced protection in mice induced by immunization with inactivated whole viruses compare to spike protein of middle east respiratory syndrome coronavirus. Emerging Microbes & Infections, 7(1), 1–10. https://doi.org/10.1038/s41426-018-0056-7
  • Dey, J., Mahapatra, S. R., Lata, S., Patro, S., Misra, N., & Suar, M. (2022a). Exploring Klebsiella pneumoniae capsule polysaccharide proteins to design multiepitope subunit vaccine to fight against pneumonia. Expert Review of Vaccines, 21(4), 569–587. https://doi.org/10.1080/14760584.2022.2021882
  • Dey, J., Mahapatra, S. R., Patnaik, S., Lata, S., Kushwaha, G. S., Panda, R. K., Misra, N., & Suar, M. (2022b). Molecular characterization and designing of a novel multiepitope vaccine construct against Pseudomonas aeruginosa. International Journal of Peptide Research and Therapeutics, 28(2), 49. https://doi.org/10.1007/s10989-021-10356-z
  • Dey, J., Mahapatra, S. R., Raj, T. K., Kaur, T., Jain, P., Tiwari, A., Patro, S., Misra, N., & Suar, M. (2022c). Designing a novel multi-epitope vaccine to evoke a robust immune response against pathogenic multidrug-resistant Enterococcus faecium bacterium. Gut Pathogens, 14(1), 21. https://doi.org/10.1186/s13099-022-00495-z
  • Dey, J., Mahapatra, S. R., Singh, P., Patro, S., Kushwaha, G. S., Misra, N., & Suar, M. (2021). B and T cell epitope-based peptides predicted from clumping factor protein of Staphylococcus aureus as vaccine targets. Microbial Pathogenesis, 160, 105171. https://doi.org/10.1016/j.micpath.2021.105171
  • Dhanda, S. K., Gupta, S., Vir, P., & Raghava, G. P. S. (2013a). Prediction of IL4 inducing peptides. Clinical & Developmental Immunology, 2013, 263952. https://doi.org/10.1155/2013/263952
  • Dhanda, S. K., Vir, P., & Raghava, G. P. S. (2013b). Designing of interferon-gamma inducing MHC class-II binders. Biology Direct, 8(1), 30. https://doi.org/10.1186/1745-6150-8-30
  • Dimitrov, I., Naneva, L., Doytchinova, I., & Bangov, I. (2014). AllergenFP: Allergenicity prediction by descriptor fingerprints. Bioinformatics, 30(6), 846–851. https://doi.org/10.1093/bioinformatics/btt619
  • Doytchinova, I. A., & Flower, D. R. (2007). VaxiJen: A server for prediction of protective antigens, tumour antigens and subunit vaccines. BMC Bioinformatics, 8(1), 4. https://doi.org/10.1186/1471-2105-8-4
  • Folegatti, P. M., Bittaye, M., Flaxman, A., Lopez, F. R., Bellamy, D., Kupke, A., Mair, C., Makinson, R., Sheridan, J., Rohde, C., Halwe, S., Jeong, Y., Park, Y.-S., Kim, J.-O., Song, M., Boyd, A., Tran, N., Silman, D., Poulton, I., … Gilbert, S. (2020). Safety and immunogenicity of a candidate Middle East respiratory syndrome coronavirus viral-vectored vaccine: A dose-escalation, open-label, non-randomised, uncontrolled, phase 1 trial. The Lancet Infectious Diseases, 20(7), 816–826. https://doi.org/10.1016/S1473-3099(20)30160-2
  • Gasteiger, E., Hoogland, C., Gattiker, A., Duvaud, S. e., Wilkins, M. R., Appel, R. D., & Bairoch, A. (2005). Protein identification and analysis tools on the ExPASy server. In J. M. Walker (Ed.), The proteomics protocols handbook (pp. 571–607). Humana Press. https://doi.org/10.1385/1-59259-890-0:571
  • Ghaffari-Nazari, H., Tavakkol-Afshari, J., Jaafari, M. R., Tahaghoghi-Hajghorbani, S., Masoumi, E., & Jalali, S. A. (2015). Improving multi-epitope long peptide vaccine potency by using a strategy that enhances CD4+ T help in BALB/c mice. PLoS One, 10(11), e0142563. https://doi.org/10.1371/journal.pone.0142563
  • Grote, A., Hiller, K., Scheer, M., Munch, R., Nortemann, B., Hempel, D. C., & Jahn, D. (2005). JCat: a novel tool to adapt codon usage of a target gene to its potential expression host. Nucleic Acids Research. 33(Web Server), W526–W531. https://doi.org/10.1093/nar/gki376
  • Gupta, S., Kapoor, P., Chaudhary, K., Gautam, A., Kumar, R., Open Source Drug Discovery, C., & Raghava, G. P. (2013). In silico approach for predicting toxicity of peptides and proteins. PLoS One, 8(9), e73957. https://doi.org/10.1371/journal.pone.0073957
  • Huang, W., Lin, Z., & van Gunsteren, W. F. (2011). Validation of the GROMOS 54A7 force field with respect to beta-peptide folding. Journal of Chemical Theory and Computation, 7(5), 1237–1243. https://doi.org/10.1021/ct100747y
  • Jain, P., Joshi, A., Akhtar, N., Krishnan, S., & Kaushik, V. (2021). An immunoinformatics study: Designing multivalent T-cell epitope vaccine against canine circovirus. Journal of Genetic Engineering and Biotechnology, 19(1), 121. https://doi.org/10.1186/s43141-021-00220-4
  • Joshi, A., Joshi, B. C., Mannan, M. A., & Kaushik, V. (2020). Epitope based vaccine prediction for SARS-COV-2 by deploying immuno-informatics approach. Informatics in Medicine Unlocked, 19, 100338. https://doi.org/10.1016/j.imu.2020.100338
  • Kar, T., Narsaria, U., Basak, S., Deb, D., Castiglione, F., Mueller, D. M., & Srivastava, A. P. (2020). A candidate multi-epitope vaccine against SARS-CoV-2. Scientific Reports, 10(1), 10895. https://doi.org/10.1038/s41598-020-67749-1
  • Keshavarz-Fathi, M., & Rezaei, N. (2019). Chapter 3 - vaccines, adjuvants, and delivery systems. In N. Rezaei & M. Keshavarz-Fathi (Eds.), Vaccines for cancer immunotherapy (pp. 45–59). Academic Press. https://doi.org/10.1016/B978-0-12-814039-0.00003-5
  • Kneller, D. W., Phillips, G., O’Neill, H. M., Jedrzejczak, R., Stols, L., Langan, P., Joachimiak, A., Coates, L., & Kovalevsky, A. (2020). Structural plasticity of SARS-CoV-2 3CL M(pro) active site cavity revealed by room temperature X-ray crystallography. Nature Communications, 11(1), 3202. https://doi.org/10.1038/s41467-020-16954-7
  • Knowlden, Z. A. G., Richards, K. A., Moritzky, S. A., & Sant, A. J. (2019). Peptide epitope hot spots of CD4 T cell recognition within influenza hemagglutinin during the primary response to infection. Pathogens, 8(4), 220. https://www.mdpi.com/2076-0817/8/4/220 https://doi.org/10.3390/pathogens8040220
  • Krishnan, G. S., Joshi, A., Akhtar, N., & Kaushik, V. (2021). Immunoinformatics designed T cell multi epitope dengue peptide vaccine derived from non structural proteome. Microbial Pathogenesis, 150, 104728. https://doi.org/10.1016/j.micpath.2020.104728
  • Krissinel, E., & Henrick, K. (2007). Inference of macromolecular assemblies from crystalline state. Journal of Molecular Biology, 372(3), 774–797. https://doi.org/10.1016/j.jmb.2007.05.022
  • Lathwal, A., Kumar, R., Kaur, D., & Raghava, G. P. S. (2021). In silico model for predicting IL-2 inducing peptides in human. bioRxiv. https://doi.org/10.1101/2021.06.20.449146
  • Magnan, C. N., Randall, A., & Baldi, P. (2009). SOLpro: Accurate sequence-based prediction of protein solubility. Bioinformatics, 25(17), 2200–2207. https://doi.org/10.1093/bioinformatics/btp386
  • Mahapatra, S. R., Dey, J., Raj, T. K., Kumar, V., Ghosh, M., Verma, K. K., Kaur, T., Kesawat, M. S., Misra, N., & Suar, M. (2022). The potential of plant-derived secondary metabolites as novel drug candidate against Klebsiella pneumoniae: Molecular docking and simulation investigation. South African Journal of Botany, 149, 789–797. https://doi.org/10.1016/j.sajb.2022.04.043
  • Mahmud, S., Rafi, M. O., Paul, G. K., Promi, M. M., Shimu, M. S. S., Biswas, S., Emran, T. B., Dhama, K., Alyami, S. A., Moni, M. A., & Saleh, M. A. (2021). Designing a multi-epitope vaccine candidate to combat MERS-CoV by employing an immunoinformatics approach. Scientific Reports, 11(1), 15431. https://doi.org/10.1038/s41598-021-92176-1
  • María, R., Arturo, C., Alicia, J. A., Paulina, M., & Gerardo, A. O. (2017). The impact of bioinformatics on vaccine design and development. Vaccines, 2, 3–6. https://doi.org/10.5772/intechopen.69273
  • Martonak, R., Laio, A., & Parrinello, M. (2003). Predicting crystal structures: The Parrinello-Rahman method revisited. Physical Review Letters, 90(7), 075503. https://doi.org/10.1103/PhysRevLett.90.075503
  • Memish, Z. A., Perlman, S., Van Kerkhove, M. D., & Zumla, A. (2020). Middle East respiratory syndrome. The Lancet, 395(10229), 1063–1077. https://doi.org/10.1016/S0140-6736(19)33221-0
  • Molaei, S., Dadkhah, M., Asghariazar, V., Karami, C., & Safarzadeh, E. (2021). The immune response and immune evasion characteristics in SARS-CoV, MERS-CoV, and SARS-CoV-2: Vaccine design strategies. International Immunopharmacology, 92, 107051. https://doi.org/10.1016/j.intimp.2020.107051
  • Nguyen, M. N., Krutz, N. L., Limviphuvadh, V., Lopata, A. L., Gerberick, G. F., & Maurer-Stroh, S. (2022a). AllerCatPro 2.0: A web server for predicting protein allergenicity potential. Nucleic Acids Research, 50(W1), W36–W43. https://doi.org/10.1093/nar/gkac446
  • Nguyen, T. L., Lee, Y., & Kim, H. (2022b). Immunogenic epitope-based vaccine prediction from surface glycoprotein of MERS-CoV by deploying immunoinformatics approach. International Journal of Peptide Research and Therapeutics, 28(3), 77. https://doi.org/10.1007/s10989-022-10382-5
  • Nosrati, M., Behbahani, M., & Mohabatkar, H. (2019). Towards the first multi-epitope recombinant vaccine against Crimean-Congo hemorrhagic fever virus: A computer-aided vaccine design approach. Journal of Biomedical Informatics, 93, 103160. https://doi.org/10.1016/j.jbi.2019.103160
  • Pettersen, E. F., Goddard, T. D., Huang, C. C., Couch, G. S., Greenblatt, D. M., Meng, E. C., & Ferrin, T. E. (2004). UCSF Chimera–a visualization system for exploratory research and analysis. Journal of Computational Chemistry, 25(13), 1605–1612. https://doi.org/10.1002/jcc.20084
  • Pierce, B. G., Wiehe, K., Hwang, H., Kim, B. H., Vreven, T., & Weng, Z. (2014). ZDOCK server: interactive docking prediction of protein-protein complexes and symmetric multimers. Bioinformatics, 30(12), 1771–1773. https://doi.org/10.1093/bioinformatics/btu097
  • Pitaloka, D. A. E., Izzati, A., Amirah, S. R., & Syakuran, L. A. (2022). Multi epitope-based vaccine design for protection against Mycobacterium tuberculosis and SARS-CoV-2 coinfection. Advances and Applications in Bioinformatics and Chemistry, 15, 43–57. https://doi.org/10.2147/AABC.S366431
  • Rapin, N., Lund, O., Bernaschi, M., & Castiglione, F. (2010). Computational immunology meets bioinformatics: The use of prediction tools for molecular binding in the simulation of the immune system. PLoS One, 5(4), e9862. https://doi.org/10.1371/journal.pone.0009862
  • Reynisson, B., Alvarez, B., Paul, S., Peters, B., & Nielsen, M. (2020). NetMHCpan-4.1 and NetMHCIIpan-4.0: improved predictions of MHC antigen presentation by concurrent motif deconvolution and integration of MS MHC eluted ligand data. Nucleic Acids Research, 48(W1), W449–W454. https://doi.org/10.1093/nar/gkaa379
  • Robinson, C. L., Romero, J. R., Kempe, A., & Pellegrini, C. (2017). Advisory Committee on Immunization Practices recommended immunization schedule for children and adolescents aged 18 years or younger—United States, 2017. MMWR. Morbidity and Mortality Weekly Report, 66(5), 134–135. https://doi.org/10.15585/mmwr.mm6605e1
  • Rouzbahani, A. K., Kheirandish, F., & Hosseini, S. Z. (2022). Design of a multi-epitope-based peptide vaccine against the S and N proteins of SARS-COV-2 using immunoinformatics approach. Egyptian Journal of Medical Human Genetics, 23(1), 16. https://doi.org/10.1186/s43042-022-00224-w
  • Safavi, A., Kefayat, A., Mahdevar, E., Abiri, A., & Ghahremani, F. (2020). Exploring the out of sight antigens of SARS-CoV-2 to design a candidate multi-epitope vaccine by utilizing immunoinformatics approaches. Vaccine, 38(48), 7612–7628. https://doi.org/10.1016/j.vaccine.2020.10.016
  • Saha, S., & Raghava, G. P. (2006). Prediction of continuous B-cell epitopes in an antigen using recurrent neural network. Proteins: Structure, Function, and Bioinformatics, 65(1), 40–48. https://doi.org/10.1002/prot.21078
  • Sanchez-Trincado, J. L., Gomez-Perosanz, M., & Reche, P. A. (2017). Fundamentals and methods for T- and B-Cell epitope prediction. Journal of Immunology Research, 2017, 2680160. https://doi.org/10.1155/2017/2680160
  • Sievers, F., & Higgins, D. G. (2014). Clustal omega. Current Protocols in Bioinformatics, 48(1), 3 13 11–16. https://doi.org/10.1002/0471250953.bi0313s48
  • Skwarczynski, M., & Toth, I. (2016). Peptide-based synthetic vaccines. Chemical Science, 7(2), 842–854. https://doi.org/10.1039/C5SC03892H
  • Srivastava, S., Kamthania, M., Singh, S., Saxena, A. K., & Sharma, N. (2018). Structural basis of development of multi-epitope vaccine against Middle East respiratory syndrome using in silico approach. Infection and Drug Resistance, 11, 2377–2391. https://doi.org/10.2147/IDR.S175114
  • Tahir Ul Qamar, M., Saleem, S., Ashfaq, U. A., Bari, A., Anwar, F., & Alqahtani, S. (2019). Epitope-based peptide vaccine design and target site depiction against Middle East Respiratory Syndrome Coronavirus: an immune-informatics study. Journal of Translational Medicine, 17(1), 362. https://doi.org/10.1186/s12967-019-2116-8
  • Van Der Spoel, D., Lindahl, E., Hess, B., Groenhof, G., Mark, A. E., & Berendsen, H. J. (2005). GROMACS: Fast, flexible, and free. Journal of Computational Chemistry, 26(16), 1701–1718. https://doi.org/10.1002/jcc.20291
  • Varadi, M., Anyango, S., Deshpande, M., Nair, S., Natassia, C., Yordanova, G., Yuan, D., Stroe, O., Wood, G., Laydon, A., Zidek, A., Green, T., Tunyasuvunakool, K., Petersen, S., Jumper, J., Clancy, E., Green, R., Vora, A., Lutfi, M., … Velankar, S. (2022). AlphaFold Protein Structure Database: Massively expanding the structural coverage of protein-sequence space with high-accuracy models. Nucleic Acids Research, 50(D1), D439–D444. https://doi.org/10.1093/nar/gkab1061
  • WHO. (2019). Middle East respiratory syndrome coronavirus (MERS-CoV). https://www.who.int/news-room/fact-sheets/detail/middle-east-respiratory-syndrome-coronavirus-(mers-cov)
  • WHO. (2022). MERS outbreaks. World Health Organization - Regional Office for the Eastern Mediterranean. http://www.emro.who.int/health-topics/mers-cov/mers-outbreaks.html
  • Widagdo, W., Sooksawasdi Na Ayudhya, S., Hundie, G. B., & Haagmans, B. L. (2019). Host determinants of MERS-CoV transmission and pathogenesis. Viruses, 11(3), 280. https://doi.org/10.3390/v11030280
  • Wiederstein, M., & Sippl, M. J. (2007). ProSA-web: Interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic Acids Research, 35(Web Server), W407–W410. https://doi.org/10.1093/nar/gkm290
  • Yang, Z., Bogdan, P., & Nazarian, S. (2021). An in silico deep learning approach to multi-epitope vaccine design: A SARS-CoV-2 case study. Scientific Reports, 11(1), 3238. https://doi.org/10.1038/s41598-021-81749-9
  • Yang, J., Yan, R., Roy, A., Xu, D., Poisson, J., & Zhang, Y. (2015). The I-TASSER Suite: Protein structure and function prediction. Nature Methods, 12(1), 7–8. https://doi.org/10.1038/nmeth.3213
  • Zhang, N., Tang, J., Lu, L., Jiang, S., & Du, L. (2015). Receptor-binding domain-based subunit vaccines against MERS-CoV. Virus Research, 202, 151–159. https://doi.org/10.1016/j.virusres.2014.11.013
  • Zhou, Y., Jiang, S., & Du, L. (2018). Prospects for a MERS-CoV spike vaccine. Expert Review of Vaccines, 17(8), 677–686. https://doi.org/10.1080/14760584.2018.1506702
  • Zhuang, Z., Liu, D., Sun, J., Li, F., & Zhao, J. (2022). Immune responses to human respiratory coronaviruses infection in mouse models. Current Opinion in Virology, 52, 102–111. https://doi.org/10.1016/j.coviro.2021.11.015

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.