162
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

An integrated computational approach to infer therapeutic targets from Campylobacter concisus and peptidomimetic based inhibition of its pyrimidine metabolism pathway

, , , , , , & ORCID Icon show all
Pages 13127-13137 | Received 27 Sep 2022, Accepted 13 Jan 2023, Published online: 31 Mar 2023

References

  • Aabenhus, R., On, S. L., Siemer, B. L., Permin, H., & Andersen, L. P. (2005). Delineation of Campylobacter concisus genomospecies by amplified fragment length polymorphism analysis and correlation of results with clinical data. Journal of Clinical Microbiology, 43(10), 5091–5096. https://doi.org/10.1128/JCM.43.10.5091-5096.2005
  • Alfredson, D. A., & Korolik, V. J. F. (2007). Antibiotic resistance and resistance mechanisms in Campylobacter jejuni and Campylobacter coli. FEMS Microbiology Letters, 277(2), 123–132.
  • Arafat, M., Sarfraz, M., & AbuRuz, S. (2021). Development and in vitro evaluation of controlled release Viagra® containing poloxamer-188 using Gastroplus™ PBPK modeling software for in vivo predictions and pharmacokinetic assessments. Pharmaceuticals, 14(5), 479. https://doi.org/10.3390/ph14050479
  • Basharat, Z., Akhtar, U., Khan, K., Alotaibi, G., Jalal, K., Abbas, M. N., Hayat, A., Ahmad, D., & Hassan, S. S. (2022). Differential analysis of Orientia tsutsugamushi genomes for therapeutic target identification and possible intervention through natural product inhibitor screening. Computers in Biology and Medicine, 141, 105165. https://doi.org/10.1016/j.compbiomed.2021.105165
  • Basharat, Z., Jahanzaib, M., & Rahman, N. (2021). Therapeutic target identification via differential genome analysis of antibiotic resistant Shigella sonnei and inhibitor evaluation against a selected drug target. Infection, Genetics and Evolution, 94, 105004. https://doi.org/10.1016/j.meegid.2021.105004
  • Basharat, Z., Khan, K., Jalal, K., Ahmad, D., Hayat, A., Alotaibi, G., Al Mouslem, A., Aba Alkhayl, F. F., Almatroudi, A. (2022). An in silico hierarchal approach for drug candidate mining and validation of natural product inhibitors against pyrimidine biosynthesis enzyme in the antibiotic-resistant Shigella flexneri. Infection Genetics and Evolution, 98, 105233.
  • Batz, M. B., Hoffmann, S., & Morris, J. G., Jr. (2012). Ranking the disease burden of 14 pathogens in food sources in the United States using attribution data from outbreak investigations and expert elicitation. Journal of Food Protection, 75(7), 1278–1291. https://doi.org/10.4315/0362-028X.JFP-11-418
  • Chakrabarty, R. P., Alam, A. R. U., Shill, D. K., & Rahman, A. (2020). Identification and qualitative characterization of new therapeutic targets in Stenotrophomonas maltophilia through in silico proteome exploration. Microbial Pathogenesis, 149, 104293. https://doi.org/10.1016/j.micpath.2020.104293
  • Chen, Y., & Ung, C. (2001). Prediction of potential toxicity and side effect protein targets of a small molecule by a ligand–protein inverse docking approach. Journal of Molecular Graphics and Modelling, 20(3), 199–218. https://doi.org/10.1016/S1093-3263(01)00109-7
  • Daga, P. R., Bolger, M. B., Haworth, I. S., Clark, R. D., & Martin, E. J. (2018). Physiologically based pharmacokinetic modeling in lead optimization. 1. Evaluation and adaptation of GastroPlus to predict bioavailability of medchem series. Molecular Pharmaceutics, 15(3), 821–830. https://doi.org/10.1021/acs.molpharmaceut.7b00972
  • Daina, A., Michielin, O., & Zoete, V. (2017). SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Scientific Reports, 7, 42717. https://doi.org/10.1038/srep42717
  • Del Gatto, A., Cobb, S. L., Zhang, J., & Zaccaro, L. (2021). Editorial: Peptidomimetics: Synthetic tools for drug discovery and development. Frontiers in Chemistry, 9, 802120. https://doi.org/10.3389/fchem.2021.802120
  • Eisenberg, D., Luthy, R., & Bowie, J. U. (1997). VERIFY3D: Assessment of protein models with three-dimensional profiles. Methods in Enzymology, 277, 396–404. https://doi.org/10.1016/s0076-6879(97)77022-8
  • Garrity, G., Brenner, D., Krieg, N., & Staley, J. (2005). Genus I. Campylobacter. In Bergey’s manual of systematic bacteriology. Springer.
  • Geissler, B., Shiomi, D., & Margolin, W. J. M. (2007). The ftsA* gain-of-function allele of Escherichia coli and its effects on the stability and dynamics of the Z ring. Microbiology, 153(Pt 3), 814.
  • Hall, A. J., Wikswo, M. E., Manikonda, K., Roberts, V. A., Yoder, J. S., & Gould, L. H. (2013). Acute gastroenteritis surveillance through the national outbreak reporting system, United States. Emerging Infectious Diseases, 19(8), 1305.
  • Honório, T. d. S., Pinto, E. C., Rocha, H. V. A., Esteves, V. S. A. D., dos Santos, T. C., Castro, H. C. R., Rodrigues, C. R., de Sousa, V. P., & Cabral, L. M. (2013). In vitro–in vivo correlation of efavirenz tablets using GastroPlus®. AAPS PharmSciTech, 14(3), 1244–1254.
  • Huq, M., & Istivan, T. (2021). Conventional and molecular detection methods of the opportunistic bacterial pathogen Campylobacter concisus campylobacter. IntechOpen.
  • Hussain, A., Altamimi, M. A., Alshehri, S., Imam, S. S., & Singh, S. K. (2020). Vesicular elastic liposomes for transdermal delivery of rifampicin: In-vitro, in-vivo and in silico GastroPlus™ prediction studies. European Journal of Pharmaceutical Sciences, 151, 105411. https://doi.org/10.1016/j.ejps.2020.105411
  • Iovine, N. M. (2013). Resistance mechanisms in Campylobacter jejuni. Virulence, 4(3), 230–240.
  • Istivan, T. S., Coloe, P. J., Fry, B. N., Ward, P., & Smith, S. C. J. J. (2004). Characterization of a haemolytic phospholipase A2 activity in clinical isolates of Campylobacter concisus. Journal of Medical Microbiology, 53(6), 483–493.
  • Jalal, K., Khan, K., Hassam, M., Abbas, M. N., Uddin, R., Khusro, A., … Gajdács, M. J. M. (2021). Identification of a novel therapeutic target against XDR Salmonella typhi H58 using genomics driven approach followed up by natural products virtual screening. Microorganisms, 9(12), 2512.
  • Johansson, E., Fanø, M., Bynck, J. H., Neuhard, J., Larsen, S., Sigurskjold, B. W., Christensen, U., & Willemoës, M. (2005). Structures of dCTP deaminase from Escherichia coli with bound substrate and product: Reaction mechanism and determinants of mono- and bifunctionality for a family of enzymes. The Journal of Biological Chemistry, 280(4), 3051–3059.
  • Kaakoush, N. O., Castaño-Rodríguez, N., Mitchell, H. M., & Man, S. M. (2015). Global epidemiology of Campylobacter infection. Clinical Microbiology Reviews, 28(3), 687–720.
  • Kaakoush, N. O., & Mitchell, H. M. J. F. (2012). Campylobacter concisus – A new player in intestinal disease. Frontier in Cellular and Infection Microbiology, 2, 4.
  • Kandeel, M., & Al-Taher, A. J. P. V. J. (2021). Molecular landscapes of deoxyuridine 5′-triphosphatase (dUTPase) as a drug target against camel Trypanosoma evansi. Pakistan Veterinary Journal, 41(2), 235–241.
  • Kirk, K. F., Nielsen, H. L., Thorlacius-Ussing, O., & Nielsen, H. (2016). Optimized cultivation of Campylobacter concisus from gut mucosal biopsies in inflammatory bowel disease. Gut Pathogens, 8(1), 1–6.
  • Kotloff, K. L., Nataro, J. P., Blackwelder, W. C., Nasrin, D., Farag, T. H., Panchalingam, S., … Breiman, R. F. (2013). Burden and aetiology of diarrhoeal disease in infants and young children in developing countries (the Global Enteric Multicenter Study, GEMS): A prospective, case-control study. The Lancet, 382(9888), 209–222.
  • Kumar, S., & Ramanujam, M. (2020). Computational prediction of novel broad-spectrum drug targets against vibrio cholerae by integrated genomics and proteomics approach. Malysian Journal of Medical and Health Sciences, 16(2), 99–104.
  • Lastovica, A. J., On, S., & Zhang, L. (2014). The family Campylobacteraceae. Springer-Verlag.
  • Li, W., & Godzik, A. J. B. (2006). Cd-hit: A fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics (Oxford, England), 22(13), 1658–1659.
  • Little, C., Gormley, F., Rawal, N., & Richardson, J. (2010). A recipe for disaster: Outbreaks of Campylobacteriosis associated with poultry liver pâté in England and Wales. Epidemiology and Infection, 138(12), 1691–1694.
  • Liu, F., Ma, R., Tay, C. Y. A., Octavia, S., Lan, R., … Chung, H. K. L. (2018). Genomic analysis of oral Campylobacter concisus strains identified a potential bacterial molecular marker associated with active crohn’s disease. Emerging Microbes & Infections, 7(1), 1–14.
  • Liu, F., Ma, R., Wang, Y., & Zhang, L. (2018). The clinical importance of Campylobacter concisus and other human hosted Campylobacter species. Frontiers in Cellular and Infection Microbiology, 8, 243.
  • Liu, S., Wang, S.-X., Liu, W., Wang, C., Zhang, F.-Z., Ye, Y.-N., … Guo, F.-B J. D. (2020). CEG 2.0: An updated database of clusters of essential genes including eukaryotic organisms. 2020.
  • Lock, R. L., & Harry, E. J. (2008). Cell-division inhibitors: New insights for future antibiotics. Nature Reviews Drug Discovery, 7(4), 324–338.
  • Luo, H., Lin, Y., Liu, T., Lai, F.-L., Zhang, C.-T., Gao, F., & Zhang, R. (2021). DEG 15, an update of the Database of Essential Genes that includes built-in analysis tools. Nucleic Acids Research, 49(D1), D677–D686.
  • Mahendran, V., Riordan, S. M., Grimm, M. C., Tran, T. A. T., Major, J., Kaakoush, N. O., … Zhang, L. (2011). Prevalence of Campylobacter species in adult Crohn’s disease and the preferential colonization sites of Campylobacter species in the human intestine. PLoS One, 6(9), e25417.
  • Marshall, G. R., & Ballante, F. (2017). Limiting assumptions in the design of peptidomimetics. Drug Development Research, 78(6), 245–267. https://doi.org/10.1002/ddr.21406
  • Mukhopadhya, I., Thomson, J. M., Hansen, R., Berry, S. H., El-Omar, E. M., & Hold, G. L. (2011). Detection of Campylobacter concisus and other Campylobacter species in colonic biopsies from adults with ulcerative colitis. PLoS One, 6(6), e21490.
  • Naorem, R. S., Pangabam, B. D., Bora, S. S., Goswami, G., Barooah, M., Hazarika, D. J., & Fekete, C. (2022). Identification of putative vaccine and drug targets against the methicillin-resistant staphylococcus aureus by reverse vaccinology and subtractive genomics approaches. Molecules, 27(7), 2083.
  • Nielsen, H. L., Ejlertsen, T., Engberg, J., & Nielsen, H. (2013). High incidence of Campylobacter concisus in gastroenteritis in North Jutland, Denmark: A population-based study. Clinical Microbiology and Infection, 19(5), 445–450.
  • Pu, L., Naderi, M., Liu, T., Wu, H.-C., Mukhopadhyay, S., & Brylinski, M. (2019). e toxpred: A machine learning-based approach to estimate the toxicity of drug candidates. BMC Pharmacology and Toxicology, 20(1), 1–15.
  • Rahman, N., Basharat, Z., Yousuf, M., Castaldo, G., Rastrelli, L., & Khan, H. (2020). Virtual screening of natural products against type II transmembrane serine protease (TMPRSS2), the priming agent of coronavirus 2 (SARS-CoV-2). Molecules, 25(10), 2271. https://doi.org/10.3390/molecules25102271
  • Rytkonen, J., Ranta, V. P., Kokki, M., Kokki, H., Hautajarvi, H., Rinne, V., & Heikkinen, A. T. (2020). Physiologically based pharmacokinetic modelling of oxycodone drug-drug interactions. Biopharmaceutics & Drug Disposition, 41(1–2), 72–88. https://doi.org/10.1002/bdd.2215
  • Schuldt, L., Weyand, S., Kefala, G., & Weiss, M. S. (2009). The three-dimensional structure of a mycobacterial DapD provides insights into DapD diversity and reveals unexpected particulars about the enzymatic mechanism. Journal of Molecular Biology, 389(5), 863–879.
  • Sheik, S. S., Sundararajan, P., Hussain, A. S., & Sekar, K. (2002). Ramachandran plot on the web. Bioinformatics (Oxford, England), 18(11), 1548–1549. https://doi.org/10.1093/bioinformatics/18.11.1548
  • Tanner, A. C., Badger, S., Lai, C.-H., Listgarten, M. A., Visconti, R. A., & Socransky, S. S. (1981). Wolinella gen. nov., Wolinella succinogenes (Vibrio succinogenes Wolin et al.) comb. nov., and description of Bacteroides gracilis sp. nov., Wolinella recta sp. nov., Campylobacter concisus sp. nov., and Eikenella corrodens from humans with periodontal disease. International Journal of Systematic and Evolutionary Microbiology, 31(4), 432–445.
  • Tistaert, C., Heimbach, T., Xia, B., Parrott, N., Samant, T. S., & Kesisoglou, F. (2019). Food effect projections via physiologically based pharmacokinetic modeling: Predictive case studies. Journal of Pharmaceutical Sciences, 108(1), 592–602. https://doi.org/10.1016/j.xphs.2018.05.024
  • Vandamme, P. (2005). Genus I. Campylobacter Sebald and Veron 1963, 907, AL emend. Vandamme, Falsen, Rossau, Hoste, Segers, Tytgat, De Ley 1991a, 98. Bergey’s Mannual of Systematic Bacteriology, 2, 1147–1160.
  • Waterhouse, A., Bertoni, M., Bienert, S., Studer, G., Tauriello, G., Gumienny, R., Heer, F. T., de Beer, T. A. P., Rempfer, C., Bordoli, L., Lepore, R., & Schwede, T. (2018). SWISS-MODEL: Homology modelling of protein structures and complexes. Nucleic Acids Research, 46(W1), W296–W303. https://doi.org/10.1093/nar/gky427
  • Wishart, D. S., Feunang, Y. D., Guo, A. C., Lo, E. J., Marcu, A., Grant, J. R., … Sayeeda, Z. (2018). DrugBank 5.0: A major update to the DrugBank database for 2018. Nucleic Acids Research, 46(D1), D1074–D1082.
  • Yeow, M., Liu, F., Ma, R., Williams, T. J., Riordan, S. M., & Zhang, L. (2020). Analyses of energy metabolism and stress defence provide insights into Campylobacter concisus growth and pathogenicity. Gut Pathogens, 12(1), 1–13.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.